CSC 2515: Introduction to Machine Learning

Lecture 4: Bias-Variance Decomposition, Ensemble Method I: Bagging

Amir-massoud Farahmand ${ }^{1}$

University of Toronto and Vector Institute

[^0]
Table of Contents

(1) Bias-Variance Decomposition

- Mean Estimator
- General Case
(2) Ensemble Methods: Bagging

Today

- Closer look at what determines the error of ML algorithm
- Bootstrap Aggregation (Bagging)
- Skills to Learn
- What is the bias-variance decomposition is?
- The concept behind Bagging and why it works
- Random Forests

Bias-Variance Decomposition

Bias-Variance Decomposition

- Recall that overly simple models underfit the data, and overly complex models overfit.

- We quantify this effect in terms of the bias-variance decomposition.

Bias-Variance Decomposition for the Mean Estimator

- For the next few slides, we consider the simple problem of estimating the mean of a random variable using data.
- Consider a r.v. Y with an unknown distribution p. This random variable has an (unknown) mean $m=\mathbb{E}[Y]$ and variance $\sigma^{2}=\operatorname{Var}[Y]=\mathbb{E}\left[(Y-m)^{2}\right]$.
- Given: a dataset $\mathcal{D}=\left\{Y_{1}, \ldots, Y_{n}\right\}$ with independently sampled $Y_{i} \sim p$.
- How can we estimate m using \mathcal{D} ?

Bias-Variance Decomposition for the Mean Estimator

- Given: a dataset $\mathcal{D}=\left\{Y_{1}, \ldots, Y_{n}\right\}$ with independently sampled $Y_{i} \sim p$.
- Consider an algorithm that receives \mathcal{D}, does some processing on data, and outputs a number. The goal of this algorithm is to provide an estimate of m. Let us denote it by $h(\mathcal{D})$.
- Some good and bad examples:
- Sample average: $h(\mathcal{D})=\frac{1}{n} \sum_{i=1}^{n} Y_{i}$
- Single-sample estimator: $h(\mathcal{D})=Y_{1}$
- Zero estimator: $h(\mathcal{D})=0$
- How well do they perform?

Bias-Variance Decomposition for the Mean Estimator

- How can we assess the performance of a particular $h(\mathcal{D})$?
- Ideally, we want $h(\mathcal{D})$ be exactly equal to $m=\mathbb{E}[Y]$. But this might be too much to ask. (why?)
- What we can hope for is that $h(\mathcal{D}) \approx m$. How can we quantify the accuracy of approximation?

Bias-Variance Decomposition for the Mean Estimator

- We use the squared error $\operatorname{err}(\mathcal{D})=|h(\mathcal{D})-m|^{2}$ as a measure of quality. This is the familiar squared error loss function in regression.
- The error $\operatorname{err}(\mathcal{D})$ is a r.v. itself. (why?) For a dataset $\mathcal{D}=\left\{Y_{1}, \ldots, Y_{n}\right\}$ the loss $\operatorname{err}(D)$ might be small, but for another $\mathcal{D}^{\prime}=\left\{Y_{1}^{\prime}, \ldots, Y_{n}^{\prime}\right\}$ (still with $\left.Y_{i}^{\prime} \sim p\right)$ the loss $\operatorname{err}\left(D^{\prime}\right)$ might be large. We would like to quantify the "average" error.
- We focus on the expectation of $\operatorname{err}(\mathcal{D})$, i.e.,

$$
\mathbb{E}[\operatorname{err}(\mathcal{D})]=\mathbb{E}_{\mathcal{D}}\left[|h(\mathcal{D})-m|^{2}\right] .
$$

- Note that the dataset \mathcal{D} is random and this expectation is w.r.t. its randomness.

Bias-Variance Decomposition for the Mean Estimator

- We would like to understand what determines $\mathbb{E}_{\mathcal{D}}\left[|h(\mathcal{D})-m|^{2}\right]$ by looking more closely at it.
- We can decompose $\mathbb{E}_{\mathcal{D}}\left[|h(\mathcal{D})-m|^{2}\right]$ by adding and subtracting $\mathbb{E}_{\mathcal{D}}[h(\mathcal{D})]$ inside $|\cdot|$ and expanding:

$$
\begin{aligned}
\mathbb{E}_{\mathcal{D}}\left[|h(\mathcal{D})-m|^{2}\right]= & \mathbb{E}_{\mathcal{D}}\left[\left|h(\mathcal{D})-\mathbb{E}_{\mathcal{D}}[h(\mathcal{D})]+\mathbb{E}_{\mathcal{D}}[h(\mathcal{D})]-m\right|^{2}\right] \\
= & \mathbb{E}_{\mathcal{D}}\left[\left|h(\mathcal{D})-\mathbb{E}_{\mathcal{D}}[h(\mathcal{D})]\right|^{2}\right]+\mathbb{E}_{\mathcal{D}}\left[\left|\mathbb{E}_{\mathcal{D}}[h(\mathcal{D})]-m\right|^{2}\right]+ \\
& 2 \mathbb{E}_{\mathcal{D}}\left[\left(h(\mathcal{D})-\mathbb{E}_{\mathcal{D}}[h(\mathcal{D})]\right)\left(\mathbb{E}_{\mathcal{D}}[h(\mathcal{D})]-m\right)\right]
\end{aligned}
$$

- Let us simplify the right hand side (RHS).

Bias-Variance Decomposition for the Mean Estimator

$$
\begin{aligned}
\mathbb{E}_{\mathcal{D}}\left[|h(\mathcal{D})-m|^{2}\right]= & \mathbb{E}_{\mathcal{D}}\left[\left|h(\mathcal{D})-\mathbb{E}_{\mathcal{D}}[h(\mathcal{D})]\right|^{2}\right]+\mathbb{E}_{\mathcal{D}}\left[\left|\mathbb{E}_{\mathcal{D}}[h(\mathcal{D})]-m\right|^{2}\right]+ \\
& 2 \mathbb{E}_{\mathcal{D}}\left[\left(h(\mathcal{D})-\mathbb{E}_{\mathcal{D}}[h(\mathcal{D})]\right)\left(\mathbb{E}_{\mathcal{D}}[h(\mathcal{D})]-m\right)\right] .
\end{aligned}
$$

- Recall that if X is a random variable and f is a function, the quantity $f(X)$ is a random variable. But its expectation $\mathbb{E}[f(X)]$ is not. We can say that the expectation takes the randomness away. So $\mathbb{E}_{\mathcal{D}}[h(\mathcal{D})]$ is not a random variable anymore.
- We have

$$
\mathbb{E}_{\mathcal{D}}\left[\left|\mathbb{E}_{\mathcal{D}}[h(\mathcal{D})]-m\right|^{2}\right]=\left|\mathbb{E}_{\mathcal{D}}[h(\mathcal{D})]-m\right|^{2}
$$

Bias-Variance Decomposition for the Mean Estimator

$$
\begin{aligned}
\mathbb{E}_{\mathcal{D}}\left[|h(\mathcal{D})-m|^{2}\right]= & \mathbb{E}_{\mathcal{D}}\left[\left|h(\mathcal{D})-\mathbb{E}_{\mathcal{D}}[h(\mathcal{D})]\right|^{2}\right]+\mathbb{E}_{\mathcal{D}}\left[\left|\mathbb{E}_{\mathcal{D}}[h(\mathcal{D})]-m\right|^{2}\right]+ \\
& 2 \mathbb{E}_{\mathcal{D}}\left[\left(h(\mathcal{D})-\mathbb{E}_{\mathcal{D}}[h(\mathcal{D})]\right)\left(\mathbb{E}_{\mathcal{D}}[h(\mathcal{D})]-m\right)\right] .
\end{aligned}
$$

- Let us consider $\mathbb{E}_{\mathcal{D}}\left[\left(h(\mathcal{D})-\mathbb{E}_{\mathcal{D}}[h(\mathcal{D})]\right)\left(\mathbb{E}_{\mathcal{D}}[h(\mathcal{D})]-m\right)\right]$.
- To reduce the clutter, we denote $\bar{m}=\mathbb{E}_{\mathcal{D}}[h(\mathcal{D})]$, i.e., the expected value of the estimator.
- Note that \bar{m} is an expectation of a r.v., so it is not random. This means that $\mathbb{E}[\bar{m} h(\mathcal{D})]=\bar{m} \mathbb{E}[h(\mathcal{D})]$.
- We have

$$
\begin{aligned}
& \mathbb{E}_{\mathcal{D}}\left[\left(h(\mathcal{D})-\mathbb{E}_{\mathcal{D}}[h(\mathcal{D})]\right)\left(\mathbb{E}_{\mathcal{D}}[h(\mathcal{D})]-m\right)\right]= \\
& \mathbb{E}_{\mathcal{D}}[(h(\mathcal{D})-\bar{m})(\bar{m}-m)]=(\bar{m}-m) \underbrace{\mathbb{E}[h(\mathcal{D})]-\bar{m})}_{=0}=0
\end{aligned}
$$

Bias-Variance Decomposition for the Mean Estimator

Bias-Variance Decomposition

$$
\mathbb{E}_{\mathcal{D}}\left[|h(\mathcal{D})-m|^{2}\right]=\underbrace{\left|\mathbb{E}_{\mathcal{D}}[h(\mathcal{D})]-m\right|^{2}}_{\text {bias }}+\underbrace{\mathbb{E}_{\mathcal{D}}\left[\left|h(\mathcal{D})-\mathbb{E}_{\mathcal{D}}[h(\mathcal{D})]\right|^{2}\right]}_{\text {variance }} .
$$

- Bias: The error of the expected estimator (over draws of dataset \mathcal{D}) compared to the mean $m=\mathbb{E}[Y]$ of the random variable Y.
- Variance: The variance of a single estimator $h(\mathcal{D})$ (whose randomness comes from \mathcal{D}).
- This is for an estimator of a mean of a random variable. We shall extend this decomposition to more general estimators too.

Bias-Variance Decomposition for the Mean Estimator: Examples

Bias-Variance Decomposition

$$
\mathbb{E}_{\mathcal{D}}\left[|h(\mathcal{D})-m|^{2}\right]=\underbrace{\left|\mathbb{E}_{\mathcal{D}}[h(\mathcal{D})]-m\right|^{2}}_{\text {bias }}+\underbrace{\mathbb{E}_{\mathcal{D}}\left[\left|h(\mathcal{D})-\mathbb{E}_{\mathcal{D}}[h(\mathcal{D})]\right|^{2}\right]}_{\text {variance }}
$$

- Let us compute the bias and variance of a few estimators. Recall that $m=\mathbb{E}[Y]$ and $\sigma^{2}=\operatorname{Var}\{Y\}=\mathbb{E}\left[(Y-m)^{2}\right]$.
- Sample average: $h(\mathcal{D})=\frac{1}{n} \sum_{i=1}^{n} Y_{i}$.
- Bias $\left|\mathbb{E}_{\mathcal{D}}[h(\mathcal{D})]-m\right|^{2}=\left|\mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} Y_{i}\right]-m\right|^{2}=$ $\left|\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[Y_{i}\right]-m\right|^{2}=\left|\frac{1}{n} \sum_{i=1}^{n} m-m\right|^{2}=0$.
- Variance:
$\mathbb{E}\left[\left|h(\mathcal{D})-\mathbb{E}_{\mathcal{D}}[h(\mathcal{D})]\right|^{2}\right]=\mathbb{E}\left[\left|\frac{1}{n} \sum_{i=1}^{n} Y_{i}-\mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} Y_{i}\right]\right|^{2}\right]=$ $\mathbb{E}\left[\left|\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-m\right)\right|^{2}\right]=\frac{1}{n^{2}} \sum_{i=1}^{n} \mathbb{E}\left[\left(Y_{i}-m\right)^{2}\right]=\frac{1}{n^{2}} n \sigma^{2}=\frac{\sigma^{2}}{n}$.
- $\mathbb{E}_{\mathcal{D}}\left[|h(\mathcal{D})-m|^{2}\right]=$ bias + variance $=0+\frac{\sigma^{2}}{n}$.

Bias-Variance Decomposition for the Mean Estimator: Examples

Bias-Variance Decomposition

$$
\mathbb{E}_{\mathcal{D}}\left[|h(\mathcal{D})-m|^{2}\right]=\underbrace{\left|\mathbb{E}_{\mathcal{D}}[h(\mathcal{D})]-m\right|^{2}}_{\text {bias }}+\underbrace{\mathbb{E}_{\mathcal{D}}\left[\left|h(\mathcal{D})-\mathbb{E}_{\mathcal{D}}[h(\mathcal{D})]\right|^{2}\right]}_{\text {variance }}
$$

- Single-sample estimator: $h(\mathcal{D})=Y_{1}$
- The algorithm behind this estimator only looks at the first data point and ignores the rest.
- Bias $\left|\mathbb{E}_{\mathcal{D}}[h(\mathcal{D})]-m\right|^{2}=\left|\mathbb{E}\left[Y_{1}\right]-m\right|^{2}=|m-m|^{2}=0$.
- Variance: $\mathbb{E}\left[\left|h(\mathcal{D})-\mathbb{E}_{\mathcal{D}}[h(\mathcal{D})]\right|^{2}\right]=\mathbb{E}\left[\left|Y_{1}-\mathbb{E}\left[Y_{1}\right]\right|^{2}\right]=\sigma^{2}$.
- $\mathbb{E}_{\mathcal{D}}\left[|h(\mathcal{D})-m|^{2}\right]=$ bias + variance $=0+\sigma^{2}$.

Bias-Variance Decomposition for the Mean Estimator: Examples

Bias-Variance Decomposition

$$
\mathbb{E}_{\mathcal{D}}\left[|h(\mathcal{D})-m|^{2}\right]=\underbrace{\left|\mathbb{E}_{\mathcal{D}}[h(\mathcal{D})]-m\right|^{2}}_{\text {bias }}+\underbrace{\mathbb{E}_{\mathcal{D}}\left[\left|h(\mathcal{D})-\mathbb{E}_{\mathcal{D}}[h(\mathcal{D})]\right|^{2}\right]}_{\text {variance }} .
$$

- Zero estimator: $h(\mathcal{D})=0$
- The algorithm behind this estimator does not look at data and always outputs zero. (We do not really want to use it in practice.)
- Bias $\left|\mathbb{E}_{\mathcal{D}}[h(\mathcal{D})]-m\right|^{2}=|0-m|^{2}=m^{2}$.
- Variance: $\mathbb{E}\left[\left|h(\mathcal{D})-\mathbb{E}_{\mathcal{D}}[h(\mathcal{D})]\right|^{2}\right]=\mathbb{E}\left[|0-\mathbb{E}[0]|^{2}\right]=0$.
- $\mathbb{E}_{\mathcal{D}}\left[|h(\mathcal{D})-m|^{2}\right]=$ bias + variance $=m^{2}+0$.

Bias-Variance Decomposition for the Mean Estimator: Examples

- Summary:
- Sample average: $\mathbb{E}_{\mathcal{D}}\left[|h(\mathcal{D})-m|^{2}\right]=$ bias + variance $=0+\frac{\sigma^{2}}{n}$
- Single-sample estimator: $\mathbb{E}_{\mathcal{D}}\left[|h(\mathcal{D})-m|^{2}\right]=$ bias + variance $=0+\sigma^{2}$.
- Zero estimator: $\mathbb{E}_{\mathcal{D}}\left[|h(\mathcal{D})-m|^{2}\right]=$ bias + variance $=m^{2}+0$.
- These estimators show different behaviour of bias and variance.
- The zero estimator has no variance (surprising?), but potentially a lot of bias (unless we are "lucky" and m is in fact very close to 0).
- The sample average has zero bias, but in general it has a non-zero variance.
- Q: When does it have a zero variance?

Bias-Variance Decomposition for the Mean Estimator

- We could also define error as

$$
\mathbb{E}_{\mathcal{D}, Y}\left[|h(\mathcal{D})-Y|^{2}\right]
$$

instead of $\mathbb{E}_{\mathcal{D}}\left[|h(\mathcal{D})-m|^{2}\right]$. This measure the expected squared error of $h(\mathcal{D})$ compared to Y instead of the mean $m=\mathbb{E}[Y]$.

- We have a similar decomposition:

$$
\begin{aligned}
\mathbb{E}\left[|h(\mathcal{D})-Y|^{2}\right]= & \mathbb{E}\left[|h(\mathcal{D})-m+m-Y|^{2}\right] \\
= & \mathbb{E}\left[|h(\mathcal{D})-m|^{2}\right]+\mathbb{E}\left[|m-Y|^{2}\right]+ \\
& 2 \mathbb{E}[(h(\mathcal{D})-m)(m-Y)] .
\end{aligned}
$$

- The last term is zero because

$$
\begin{aligned}
\mathbb{E}[(h(\mathcal{D})-m)(m-Y)] & =\mathbb{E}[\mathbb{E}[(h(\mathcal{D})-m)(m-Y) \mid \mathcal{D}]] \\
& =\mathbb{E}[(h(\mathcal{D})-m) \mathbb{E}[m-Y \mid \mathcal{D}]]=0 .
\end{aligned}
$$

Bias-Variance Decomposition for the Mean Estimator

Bias-Variance Decomposition

$$
\mathbb{E}\left[|h(\mathcal{D})-Y|^{2}\right]=\underbrace{\left|\mathbb{E}_{\mathcal{D}}[h(\mathcal{D})]-m\right|^{2}}_{\text {bias }}+\underbrace{\mathbb{E}_{\mathcal{D}}\left[\left|h(\mathcal{D})-\mathbb{E}_{\mathcal{D}}[h(\mathcal{D})]\right|^{2}\right]}_{\text {variance }}+\underbrace{\mathbb{E}\left[|Y-m|^{2}\right]}_{\text {Bayes error }}
$$

- We have an additional term of $\mathbb{E}\left[|m-Y|^{2}\right]=\sigma^{2}$. This is the variance of Y. This comes from the randomness of the r.v. Y and cannot be avoided. This is called the Bayes error.

Bias-Variance Decomposition: General Case

- What about the bias-variance decomposition for a machine learning algorithm such as a regression estimator or a classifier?
- Two importance issues to be addressed:
- We are not trying to estimate a single real-valued number $(h(\mathcal{D}) \in \mathbb{R})$ anymore, but a function over input \mathbf{x}. How can we measure the error in this case?
- When we only wanted to estimate the mean, the "best" solution was $m=\mathbb{E}[Y]$. What is the best solution here?

Bias-Variance Decomposition: General Case

- Suppose that the training set \mathcal{D} consists of N pairs $\left(\mathbf{x}^{(i)}, t^{(i)}\right)$ sampled independent and identically distributed (i.i.d.) from a sample generating distribution $p_{\text {sample }}$, i.e., $\left(\mathbf{x}^{(i)}, t^{(i)}\right) \sim p_{\text {sample }}$.
- We consider the marginal distributions $p_{\mathbf{x}}$ and the distribution of t conditioned on \mathbf{x} by $p(t \mid \mathbf{x})$:
- $p_{\mathbf{x}}(\mathbf{x})=\int p_{\text {sample }}(\mathbf{x}, t) \mathrm{d} t$
- $p(t \mid \mathbf{x})=\frac{p_{\text {sample }}(\mathbf{x}, t)}{p_{\mathbf{x}}(\mathbf{x})}$
- Let $p_{\text {dataset }}$ denote the induced distribution over training sets, i.e.
$\mathcal{D} \sim p_{\text {dataset }}$.
- We have that

$$
p_{\text {dataset }}\left(\left(\mathbf{x}^{(1)}, t^{(1)}\right), \ldots,\left(\mathbf{x}^{(N)}, t^{(N)}\right)\right)=\prod_{i=1}^{N} p_{\text {sample }}\left(\left(\mathbf{x}^{(i)}, t^{(i)}\right)\right)
$$

Bias-Variance Decomposition: General Case

- Pick a fixed query point \mathbf{x} (denoted with a green x).
- Consider an experiment where we sample lots of training datasets i.i.d. from $p_{\text {dataset }}$.

Bias-Variance Decomposition: General Case

- Let us run our learning algorithm on each training set \mathcal{D}, producing a regressor or classifier $h(\mathcal{D}): \mathcal{X} \rightarrow \mathcal{T}$.
- As \mathcal{D} is random, and $h(\mathcal{D})$ is a function of \mathcal{D}, the function $h(\mathcal{D})$ is a random function.
- Fix a query point \mathbf{x}. We use $h(\mathcal{D})$ to predict the output at \mathbf{x}, i.e., $y=h(\mathbf{x} ; \mathcal{D})$.
- y is a random variable, where the randomness comes from the choice of training set
- \mathcal{D} is random $\Longrightarrow h(\cdot ; \mathcal{D})$ is random $\Longrightarrow h(\mathbf{x} ; \mathcal{D})$ is random

$y=$

$y=$

$y=$

Bias-Variance Decomposition: Basic Setup

Here is the analogous setup for regression:

Since $y=h(\mathbf{x} ; \mathcal{D})$ is a random variable, we can talk about its expectation, variance, etc. over the distribution of training sets $p_{\text {dataset }}$

Bias-Variance Decomposition: General Case

- Recap of the setup:

- When \mathbf{x} is fixed, this is very similar to the mean estimator case.
- Recall that we had $\mathbb{E}_{\mathcal{D}}\left[|h(\mathcal{D})-m|^{2}\right]$. In the mean estimator, $h(\mathcal{D})$ was a scalar r.v., but here we have $h(\mathcal{D}): \mathcal{X} \rightarrow \mathcal{T}$.
- Can we have a bias-variance decomposition for a $h(\mathcal{D}): \mathcal{X} \rightarrow \mathcal{T}$?
- Two questions:
- What should replace m in the error decomposition?
- How should we evaluate the performance when \mathbf{x} is random?

Bayes Optimality

Proposition: For a fixed \mathbf{x}, the best estimator is the conditional expectation of the target value $y_{*}(\mathbf{x})=\mathbb{E}[t \mid \mathbf{x}]$ (Distribution of $t \sim p(t \mid \mathbf{x})$), i.e.,

$$
y_{*}(\mathbf{x})=\underset{y}{\operatorname{argmin}} \mathbb{E}\left[(y-t)^{2} \mid \mathbf{x}\right] .
$$

- Proof: Start by conditioning on (a fixed) \mathbf{x}.

$$
\begin{aligned}
\mathbb{E}\left[(y-t)^{2} \mid \mathbf{x}\right] & =\mathbb{E}\left[y^{2}-2 y t+t^{2} \mid \mathbf{x}\right] \\
& =y^{2}-2 y \mathbb{E}[t \mid \mathbf{x}]+\mathbb{E}\left[t^{2} \mid \mathbf{x}\right] \\
& =y^{2}-2 y \mathbb{E}[t \mid \mathbf{x}]+\mathbb{E}[t \mid \mathbf{x}]^{2}+\operatorname{Var}[t \mid \mathbf{x}] \\
& =y^{2}-2 y y_{*}(\mathbf{x})+y_{*}(\mathbf{x})^{2}+\operatorname{Var}[t \mid \mathbf{x}] \\
& =\left(y-y_{*}(\mathbf{x})\right)^{2}+\operatorname{Var}[t \mid \mathbf{x}] .
\end{aligned}
$$

- The first term is nonnegative, and can be made 0 by setting $y=y_{*}(\mathbf{x})$.
- The second term does not depend on y. It corresponds to the inherent unpredictability, or noise, of the targets, and is called the Bayes error or irreducible error.
- This is the best we can ever hope to do with any learning algorithm. An algorithm that achieves it is Bayes optimal.

Bias-Variance Decomposition: General Case

- For each query point \mathbf{x}, the expected loss is different. We are interested in quantifying how well our estimator performs over the distribution $p_{\text {sample }}$. That is, the error measure is

$$
\begin{aligned}
\operatorname{err}(\mathcal{D}) & =\mathbb{E}_{\mathbf{x} \sim p_{\mathbf{x}}}\left[\left|h(\mathbf{x} ; D)-y_{*}(\mathbf{x})\right|^{2}\right] \\
& =\int\left|h(\mathbf{x} ; D)-y_{*}(\mathbf{x})\right|^{2} p_{\mathbf{x}}(\mathbf{x}) \mathrm{d} \mathbf{x}
\end{aligned}
$$

- This is similar to $\operatorname{err}(\mathcal{D})=|h(\mathcal{D})-m|^{2}$ of the Mean Estimator case, except that
- The ideal estimator is $y_{*}(\mathbf{x})$ and not m.
- We take average over \mathbf{x} according to the probability distribution $p_{\mathbf{x}}$.
- As before, $\operatorname{err}(\mathcal{D})$ is random due to the randomness of $\mathcal{D} \sim p_{\text {dataset }}$.
- We focus on the expectation of $\operatorname{err}(\mathcal{D})$, i.e.,

$$
\mathbb{E}[\operatorname{err}(\mathcal{D})]=\mathbb{E}_{\mathcal{D} \sim p_{\text {dataset }}, \mathbf{x} \sim p_{\star}}\left[\left|h(\mathbf{x} ; D)-y_{*}(\mathbf{x})\right|^{2}\right]
$$

Bias-Variance Decomposition: General Case

- To obtain the bias-variance decomposition of

$$
\mathbb{E}[\operatorname{err}(\mathcal{D})]=\mathbb{E}_{\mathcal{D} \sim p_{\text {dataset }}, \mathbf{x} \sim p_{\mathbf{x}}}\left[\left|h(\mathbf{x} ; D)-y_{*}(\mathbf{x})\right|^{2}\right]
$$

we add and subtract $\mathbb{E}_{\mathcal{D}}[h(\mathbf{x} ; \mathcal{D}) \mid \mathbf{x}]$ inside $|\cdot|$ (similar to before):

$$
\begin{aligned}
& \mathbb{E}_{\mathcal{D}, \mathbf{x}}\left[\left|h(\mathbf{x} ; \mathcal{D})-y_{*}(\mathbf{x})\right|^{2}\right]= \\
& \mathbb{E}_{\mathcal{D}, \mathbf{x}}\left[\left|h(\mathbf{x} ; \mathcal{D})-\mathbb{E}_{\mathcal{D}}[h(\mathbf{x} ; \mathcal{D}) \mid \mathbf{x}]+\mathbb{E}_{\mathcal{D}}[h(\mathbf{x} ; \mathcal{D}) \mid \mathbf{x}]-y_{*}(\mathbf{x})\right|^{2}\right]= \\
& \mathbb{E}_{\mathcal{D}, \mathbf{x}}\left[\left|h(\mathbf{x} ; \mathcal{D})-\mathbb{E}_{\mathcal{D}}[h(\mathbf{x} ; \mathcal{D}) \mid \mathbf{x}]\right|^{2}\right]+\mathbb{E}_{\mathcal{D}, \mathbf{x}}\left[\left|\mathbb{E}_{\mathcal{D}}[h(\mathbf{x} ; \mathcal{D}) \mid \mathbf{x}]-y_{*}(\mathbf{x})\right|^{2}\right]+ \\
& 2 \mathbb{E}_{\mathcal{D}, \mathbf{x}}\left[\left(h(\mathbf{x} ; \mathcal{D})-\mathbb{E}_{\mathcal{D}}[h(\mathbf{x} ; \mathcal{D}) \mid \mathbf{x}]\right)\left(\mathbb{E}_{\mathcal{D}}[h(\mathbf{x} ; \mathcal{D}) \mid \mathbf{x}]-y_{*}(\mathbf{x})\right)\right]= \\
& \mathbb{E}_{\mathcal{D}, \mathbf{x}}\left[\left|h(\mathbf{x} ; \mathcal{D})-\mathbb{E}_{\mathcal{D}}[h(\mathbf{x} ; \mathcal{D}) \mid \mathbf{x}]\right|^{2}\right]+\mathbb{E}_{\mathbf{x}}\left[\left|\mathbb{E}_{\mathcal{D}}[h(\mathbf{x} ; \mathcal{D}) \mid \mathbf{x}]-y_{*}(\mathbf{x})\right|^{2}\right]
\end{aligned}
$$

- Try to convince yourself that the inner product term is zero.
- This is the bias and variance decomposition for the general estimator (with the squared error loss).

Bias-Variance Decomposition for the General Estimator

Bias-Variance Decomposition

$$
\begin{aligned}
\mathbb{E}_{\mathcal{D}, \mathbf{x}}\left[\left|h(\mathbf{x} ; \mathcal{D})-y_{*}(\mathbf{x})\right|^{2}\right]= & \underbrace{\mathbb{E}_{\mathbf{x}}\left[\left|\mathbb{E}_{\mathcal{D}}[h(\mathbf{x} ; \mathcal{D}) \mid \mathbf{x}]-y_{*}(\mathbf{x})\right|^{2}\right]}_{\text {bias }}+ \\
& \underbrace{\mathbb{E}_{\mathcal{D}, \mathbf{x}}\left[\left|h(\mathbf{x} ; \mathcal{D})-\mathbb{E}_{\mathcal{D}}[h(\mathbf{x} ; \mathcal{D}) \mid \mathbf{x}]\right|^{2}\right]}_{\text {variance }} .
\end{aligned}
$$

- Bias: The squared error between the average estimator (averaged over dataset \mathcal{D}) and the best predictor $y_{*}(\mathbf{x})=\mathbb{E}[t \mid \mathbf{x}]$, averaged over $\mathbf{x} \sim p_{\mathbf{x}}$.
- Variance: The variance of a single estimator $h(\mathbf{x} ; \mathcal{D})$ (whose randomness comes from \mathcal{D}).
- Note that $\mathbb{E}_{\mathcal{D}, \mathbf{x}}\left[\left|h(\mathbf{x} ; \mathcal{D})-\mathbb{E}_{\mathcal{D}}[h(\mathbf{x} ; \mathcal{D}) \mid \mathbf{x}]\right|^{2}\right]=$

$$
\mathbb{E}_{\mathbf{x}}\left[\mathbb{E}_{\mathcal{D}}\left[\left|h(\mathbf{x} ; \mathcal{D})-\mathbb{E}_{\mathcal{D}}[h(\mathbf{x} ; \mathcal{D}) \mid \mathbf{x}]\right|^{2}\right]\right]=\mathbb{E}_{\mathbf{x}}\left[\operatorname{Var}_{\mathcal{D}}[h(\mathbf{x} ; \mathcal{D}) \mid \mathbf{x}]\right] .
$$

Bias-Variance Decomposition: General Case

Bias-Variance Decomposition

$$
\begin{aligned}
\mathbb{E}_{\mathcal{D}, \mathbf{x}}\left[|h(\mathbf{x} ; \mathcal{D})-t|^{2}\right]= & \underbrace{\mathbb{E}_{\mathbf{x}}\left[\left|\mathbb{E}_{\mathcal{D}}[h(\mathbf{x} ; \mathcal{D}) \mid \mathbf{x}]-y_{*}(\mathbf{x})\right|^{2}\right]}_{\text {bias }}+ \\
& \underbrace{\mathbb{E}_{\mathcal{D}, \mathbf{x}}\left[\left|h(\mathbf{x} ; \mathcal{D})-\mathbb{E}_{\mathcal{D}}[h(\mathbf{x} ; \mathcal{D}) \mid \mathbf{x}]\right|^{2}\right]}_{\text {variance }}+\underbrace{\mathbb{E}\left[\left|y_{*}(\mathbf{x})-t\right|^{2}\right]}_{\text {Bayes error }}
\end{aligned}
$$

- We have an additional term of $\mathbb{E}\left[\left|y_{*}(\mathbf{x})-t\right|^{2}\right]=\mathbb{E}_{\mathbf{x}}[\operatorname{Var}[t \mid \mathbf{x}]]$ (Why?!).
- This is due to the the variance of t at each fixed \mathbf{x}, averaged over $\mathbf{x} \sim p_{\mathbf{x}}$. As before, this comes from the randomness of the r.v. t and cannot be avoided. This is the Bayes error.

Bias-Variance Decomposition: A Visualization

- Throwing darts $=$ predictions for each draw of a dataset

- What doesn't this capture?
- We average over points \mathbf{x} from the data distribution

Bias-Variance Decomposition: Another Visualization

- We can visualize this decomposition in the output space, where the axes correspond to predictions on the test examples.
- If we have an overly simple model (e.g., K-NN with large K), it might have
- high bias (because it is too simplistic to capture the structure in the data)
- low variance (because there is enough data to get a stable estimate of the decision boundary)

Bias-Variance Decomposition: Another Visualization

- If you have an overly complex model (e.g., K-NN with $K=1$), it might have
- low bias (since it learns all the relevant structure)
- high variance (it fits the quirks of the data you happened to sample)

Ensemble Methods - Part I: Bagging

Ensemble Methods: Brief Overview

- An ensemble of predictors is a set of predictors whose individual decisions are combined in some way to predict new examples, for example by (weighted) majority vote.
- For the result to be nontrivial, the learned hypotheses must differ somehow, for example because of
- Trained on different data sets
- Trained with different weighting of the training examples
- Different algorithms
- Different choices of hyperparameters
- Ensembles are usually easy to implement. The hard part is deciding what kind of ensemble you want, based on your goals.
- Two major types of ensembles methods:
- Bagging
- Boosting

Bagging: Motivation

- Suppose that we could somehow sample m independent training sets $\left\{\mathcal{D}_{i}\right\}_{i=1}^{m}$ from $p_{\text {dataset }}$.
- We could then learn a predictor $h_{i} \triangleq h\left(\cdot ; \mathcal{D}_{i}\right)$ based on each dataset, and take the average $h(\mathbf{x})=\frac{1}{m} \sum_{i=1}^{m} h_{i}(\mathbf{x})$.
- How does this affect the terms of the expected loss?
- Bias: Unchanged, since the averaged prediction has the same expectation

$$
\left.\left.\begin{array}{rl}
\mathbb{E}_{\mathcal{D}_{i}, \ldots, \mathcal{D}_{m}} \sim \text { i.i.d. }_{\text {dataset }}
\end{array}\right](\mathbf{x})\right]=\frac{1}{m} \sum_{i=1}^{m} \mathbb{E}_{\mathcal{D}_{i} \sim p_{\text {dataset }}}\left[h_{i}(\mathbf{x})\right] .
$$

- Variance: Reduced, since we are averaging over independent samples

$$
\underset{\mathcal{D}_{1}, \ldots,, \mathcal{D}_{m}}{\operatorname{Var}}[h(\mathbf{x})]=\frac{1}{m^{2}} \sum_{i=1}^{m} \underset{\mathcal{D}_{i}}{\operatorname{Var}}\left[h_{i}(\mathbf{x})\right]=\frac{1}{m} \underset{\mathcal{D}}{\operatorname{Var}}\left[h_{\mathcal{D}}(\mathbf{x})\right] .
$$

- Q: What if $m \rightarrow \infty$?

Bagging

- In practice, we do not have access to the underlying data generating distribution $p_{\text {sample }}$.
- It is expensive to collect many i.i.d. datasets from $p_{\text {dataset }}$.
- Solution: bootstrap aggregation, or bagging.
- Take a single dataset \mathcal{D} with n examples.
- Generate m new datasets, each by sampling n training examples from \mathcal{D}, with replacement.
- Average the predictions of models trained on each of these datasets.
- Bagging works well for low-bias / high-variance estimators.

Bagging

- Problem: the datasets are not independent, so we do not get the $\frac{1}{m}$ variance reduction.
- Possible to show that if the sampled predictions have variance σ^{2} and correlation ρ, then

$$
\operatorname{Var}\left(\frac{1}{m} \sum_{i=1}^{m} h_{i}(\mathbf{x})\right)=\rho \sigma^{2}+\frac{1}{m}(1-\rho) \sigma^{2} .
$$

- Exercise: Prove this! (See next slide)
- By increasing m, the second term decreases.
- The first term, however, remains the same. It limits the benefit of bagging.
- If we can make correlation ρ as small as possible, we benefit more from bagging.

Bagging

$$
\operatorname{Var}\left(\frac{1}{m} \sum_{i=1}^{m} h_{i}(\mathbf{x})\right)=\rho \sigma^{2}+\frac{1}{m}(1-\rho) \sigma^{2} .
$$

- It can be advantageous to introduce additional variability into your algorithm, as long as it reduces the correlation between samples.
- Intuition: you want to invest in a diversified portfolio, not just one stock.
- Can help to use average over multiple algorithms, or multiple configurations (i.e., hyperparameters) of the same algorithm.

Some Properties of Variance

- Covariance:

$$
\operatorname{Cov}(X, Y)=\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]
$$

- Correlation:

$$
\rho_{X, Y}=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}
$$

- Covariance of linear combination:

$$
\begin{aligned}
\operatorname{Var}\left[\sum_{i=1}^{m} Z_{i}\right] & =\sum_{i, j=1}^{m} \operatorname{Cov}\left(Z_{i}, Z_{j}\right) \\
& =\sum_{i=1}^{m} \operatorname{Var}\left[Z_{i}\right]+\sum_{i, j=1 ; i \neq j}^{m} \operatorname{Cov}\left(Z_{i}, Z_{j}\right) .
\end{aligned}
$$

Random Forests

- Random forests: bagged decision trees, with one extra trick to decorrelate the predictions
- When choosing each node of the decision tree, choose a random set of p input attributes (e.g., $p=\sqrt{d}$), and only consider splits on those features.
- Smaller p reduces the correlation between trees.
- Random forests improve the variance reduction of bagging by reducing the correlation between the trees (ρ).
- For regression, we take the average output of the ensemble; for classification, we perform a majority vote.
- Random forests are probably one of the best black-box machine learning algorithm. They often work well with no tuning whatsoever.
- One of the most widely used algorithms in Kaggle competitions.

Conclusion

- Bias-Variance Decomposition
- The error of a machine learning algorithm can be decomposed to a bias term and a variance term.
- Hyperparameters of an algorithm might allow us to tradeoff between these two.
- Ensemble Methods
- Bagging as a simple way to reduce the variance of an estimation method

[^0]: ${ }^{1}$ Credit for slides goes to many members of the ML Group at the U of T, and beyond, including (recent past): Roger Grosse, Murat Erdogdu, Richard Zemel, Juan Felipe Carrasquilla, Emad Andrews, and myself.

