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Today

Closer look at what determines the error of ML algorithm

Bootstrap Aggregation (Bagging)

Skills to Learn
I What is the bias-variance decomposition is?
I The concept behind Bagging and why it works
I Random Forests
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Bias-Variance Decomposition
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Bias-Variance Decomposition

Recall that overly simple models underfit the data, and overly complex
models overfit.

We quantify this effect in terms of the bias-variance decomposition.
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Bias-Variance Decomposition for the Mean Estimator

For the next few slides, we consider the simple problem of estimating the
mean of a random variable using data.

Consider a r.v. Y with an unknown distribution p. This random variable
has an (unknown) mean m = E [Y ] and variance
σ2 = Var[Y ] = E

[
(Y −m)2

]
.

Given: a dataset D = {Y1, . . . , Yn} with independently sampled Yi ∼ p.

How can we estimate m using D?
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Bias-Variance Decomposition for the Mean Estimator

Given: a dataset D = {Y1, . . . , Yn} with independently sampled Yi ∼ p.

Consider an algorithm that receives D, does some processing on data,
and outputs a number. The goal of this algorithm is to provide an
estimate of m. Let us denote it by h(D).

Some good and bad examples:

I Sample average: h(D) = 1
n

∑n
i=1 Yi

I Single-sample estimator: h(D) = Y1
I Zero estimator: h(D) = 0

How well do they perform?
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Bias-Variance Decomposition for the Mean Estimator

How can we assess the performance of a particular h(D)?

Ideally, we want h(D) be exactly equal to m = E [Y ]. But this might be
too much to ask. (why?)

What we can hope for is that h(D) ≈ m. How can we quantify the
accuracy of approximation?
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Bias-Variance Decomposition for the Mean Estimator

We use the squared error err(D) = |h(D)−m|2 as a measure of quality.
This is the familiar squared error loss function in regression.

The error err(D) is a r.v. itself. (why?) For a dataset D = {Y1, . . . , Yn}
the loss err(D) might be small, but for another D′ = {Y ′1 , . . . , Y ′n} (still
with Y ′i ∼ p) the loss err(D′) might be large. We would like to quantify
the “average” error.

We focus on the expectation of err(D), i.e.,

E [err(D)] = ED
[
|h(D)−m|2

]
.

Note that the dataset D is random and this expectation is w.r.t. its
randomness.
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Bias-Variance Decomposition for the Mean Estimator

We would like to understand what determines ED
[
|h(D)−m|2

]
by

looking more closely at it.

We can decompose ED
[
|h(D)−m|2

]
by adding and subtracting

ED [h(D)] inside | · | and expanding:

ED
[
|h(D)−m|2

]
=ED

[
|h(D)− ED [h(D)] + ED [h(D)]−m|2

]
=ED

[
|h(D)− ED [h(D)]|2

]
+ ED

[
|ED [h(D)]−m|2

]
+

2ED [(h(D)− ED [h(D)]) (ED [h(D)]−m)] .

Let us simplify the right hand side (RHS).
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Bias-Variance Decomposition for the Mean Estimator

ED
[
|h(D)−m|2

]
=ED

[
|h(D)− ED [h(D)]|2

]
+ ED

[
|ED [h(D)]−m|2

]
+

2ED [(h(D)− ED [h(D)]) (ED [h(D)]−m)].

Recall that if X is a random variable and f is a function, the quantity
f(X) is a random variable. But its expectation E [f(X)] is not. We can
say that the expectation takes the randomness away. So ED [h(D)] is not
a random variable anymore.

We have
ED
[
|ED [h(D)]−m|2

]
= |ED [h(D)]−m|2 .

Intro ML (UofT) CSC2515-Lec4 11 / 42



Bias-Variance Decomposition for the Mean Estimator

ED
[
|h(D)−m|2

]
=ED

[
|h(D)− ED [h(D)]|2

]
+ ED

[
|ED [h(D)]−m|2

]
+

2ED [(h(D)− ED [h(D)]) (ED [h(D)]−m)].

Let us consider ED [(h(D)− ED [h(D)]) (ED [h(D)]−m)].

To reduce the clutter, we denote m̄ = ED [h(D)], i.e., the expected value
of the estimator.

Note that m̄ is an expectation of a r.v., so it is not random. This means
that E [m̄h(D)] = m̄E [h(D)].

We have

ED [(h(D)− ED [h(D)]) (ED [h(D)]−m)] =

ED [(h(D)− m̄)(m̄−m)] = (m̄−m) (E [h(D)]− m̄)︸ ︷︷ ︸
=0

= 0
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Bias-Variance Decomposition for the Mean Estimator

Bias-Variance Decomposition

ED
[
|h(D)−m|2

]
= |ED [h(D)]−m|2︸ ︷︷ ︸

bias

+ED
[
|h(D)− ED [h(D)]|2

]
︸ ︷︷ ︸

variance

.

Bias: The error of the expected estimator (over draws of dataset D)
compared to the mean m = E [Y ] of the random variable Y .

Variance: The variance of a single estimator h(D) (whose randomness
comes from D).

This is for an estimator of a mean of a random variable. We shall extend
this decomposition to more general estimators too.
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Bias-Variance Decomposition for the Mean Estimator:
Examples

Bias-Variance Decomposition

ED
[
|h(D)−m|2

]
= |ED [h(D)]−m|2︸ ︷︷ ︸

bias

+ED
[
|h(D)− ED [h(D)]|2

]
︸ ︷︷ ︸

variance

.

Let us compute the bias and variance of a few estimators. Recall that
m = E [Y ] and σ2 = Var{Y } = E

[
(Y −m)2

]
.

Sample average: h(D) = 1
n

∑n
i=1 Yi.

I Bias |ED [h(D)]−m|2 = |E
[
1
n

∑n
i=1 Yi

]
−m|2 =

| 1n
∑n
i=1 E [Yi]−m|2 = | 1n

∑n
i=1m−m|2 = 0.

I Variance:
E
[
|h(D)− ED [h(D)]|2

]
= E

[
| 1n
∑n
i=1 Yi − E

[
1
n

∑n
i=1 Yi

]
|2
]

=

E
[
| 1n
∑n
i=1(Yi −m)|2

]
= 1

n2

∑n
i=1 E

[
(Yi −m)2

]
= 1

n2nσ
2 = σ2

n .

I ED
[
|h(D)−m|2

]
= bias + variance = 0 + σ2

n .
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Bias-Variance Decomposition for the Mean Estimator:
Examples

Bias-Variance Decomposition

ED
[
|h(D)−m|2

]
= |ED [h(D)]−m|2︸ ︷︷ ︸

bias

+ED
[
|h(D)− ED [h(D)]|2

]
︸ ︷︷ ︸

variance

.

Single-sample estimator: h(D) = Y1

I The algorithm behind this estimator only looks at the first data
point and ignores the rest.

I Bias |ED [h(D)]−m|2 = |E [Y1]−m|2 = |m−m|2 = 0.

I Variance: E
[
|h(D)− ED [h(D)]|2

]
= E

[
|Y1 − E [Y1] |2

]
= σ2.

I ED
[
|h(D)−m|2

]
= bias + variance = 0 + σ2.
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Bias-Variance Decomposition for the Mean Estimator:
Examples

Bias-Variance Decomposition

ED
[
|h(D)−m|2

]
= |ED [h(D)]−m|2︸ ︷︷ ︸

bias

+ED
[
|h(D)− ED [h(D)]|2

]
︸ ︷︷ ︸

variance

.

Zero estimator: h(D) = 0

I The algorithm behind this estimator does not look at data and
always outputs zero. (We do not really want to use it in practice.)

I Bias |ED [h(D)]−m|2 = |0−m|2 = m2.

I Variance: E
[
|h(D)− ED [h(D)]|2

]
= E

[
|0− E [0] |2

]
= 0.

I ED
[
|h(D)−m|2

]
= bias + variance = m2 + 0.
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Bias-Variance Decomposition for the Mean Estimator:
Examples

Summary:

I Sample average: ED
[
|h(D)−m|2

]
= bias + variance = 0 + σ2

n

I Single-sample estimator:

ED
[
|h(D)−m|2

]
= bias + variance = 0 + σ2.

I Zero estimator: ED
[
|h(D)−m|2

]
= bias + variance = m2 + 0.

These estimators show different behaviour of bias and variance.

I The zero estimator has no variance (surprising?), but potentially a
lot of bias (unless we are “lucky” and m is in fact very close to 0).

I The sample average has zero bias, but in general it has a non-zero
variance.

I Q: When does it have a zero variance?
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Bias-Variance Decomposition for the Mean Estimator

We could also define error as

ED,Y
[
|h(D)− Y |2

]
instead of ED

[
|h(D)−m|2

]
. This measure the expected squared error of

h(D) compared to Y instead of the mean m = E [Y ].

We have a similar decomposition:

E
[
|h(D)− Y |2

]
=E

[
|h(D)−m+m− Y |2

]
=E

[
|h(D)−m|2

]
+ E

[
|m− Y |2

]
+

2E [(h(D)−m) (m− Y )] .

The last term is zero because

E [(h(D)−m) (m− Y )] = E [E [(h(D)−m) (m− Y ) | D]]

= E [(h(D)−m)E [m− Y | D]] = 0.
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Bias-Variance Decomposition for the Mean Estimator

Bias-Variance Decomposition

E
[
|h(D)− Y |2

]
= |ED [h(D)]−m|2︸ ︷︷ ︸

bias

+ED
[
|h(D)− ED [h(D)]|2

]︸ ︷︷ ︸
variance

+E
[
|Y −m|2

]︸ ︷︷ ︸
Bayes error

.

We have an additional term of E
[
|m− Y |2

]
= σ2. This is the variance of

Y . This comes from the randomness of the r.v. Y and cannot be
avoided. This is called the Bayes error.
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Bias-Variance Decomposition: General Case

What about the bias-variance decomposition for a machine learning
algorithm such as a regression estimator or a classifier?

Two importance issues to be addressed:

I We are not trying to estimate a single real-valued number
(h(D) ∈ R) anymore, but a function over input x. How can we
measure the error in this case?

I When we only wanted to estimate the mean, the “best” solution
was m = E [Y ]. What is the best solution here?
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Bias-Variance Decomposition: General Case

Suppose that the training set D consists of N pairs (x(i), t(i))
sampled independent and identically distributed (i.i.d.) from a
sample generating distribution psample, i.e., (x(i), t(i)) ∼ psample.

We consider the marginal distributions px and the distribution of t
conditioned on x by p(t|x):

I px(x) =
∫
psample(x, t)dt

I p(t|x) =
psample(x,t)

px(x)

Let pdataset denote the induced distribution over training sets, i.e.
D ∼ pdataset.

I We have that

pdataset

(
(x(1), t(1)), . . . , (x(N), t(N))

)
=

N∏
i=1

psample((x
(i), t(i))).
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Bias-Variance Decomposition: General Case

Pick a fixed query point x (denoted with a green x).

Consider an experiment where we sample lots of training datasets
i.i.d. from pdataset.
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Bias-Variance Decomposition: General Case

Let us run our learning algorithm on each training set D,
producing a regressor or classifier h(D) : X → T .
As D is random, and h(D) is a function of D, the function h(D) is
a random function.
Fix a query point x. We use h(D) to predict the output at x, i.e.,
y = h(x;D).
y is a random variable, where the randomness comes from the
choice of training set

I D is random =⇒ h(·;D) is random =⇒ h(x;D) is random
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Bias-Variance Decomposition: Basic Setup

Here is the analogous setup for regression:

Since y = h(x;D) is a random variable, we can talk about its expectation,
variance, etc. over the distribution of training sets pdataset
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Bias-Variance Decomposition: General Case

Recap of the setup:

!"#$
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When x is fixed, this is very similar to the mean estimator case.

I Recall that we had ED
[
|h(D)−m|2

]
. In the mean estimator, h(D)

was a scalar r.v., but here we have h(D) : X → T .

Can we have a bias-variance decomposition for a h(D) : X → T ?

Two questions:

I What should replace m in the error decomposition?
I How should we evaluate the performance when x is random?
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Bayes Optimality

Proposition: For a fixed x, the best estimator is the conditional expectation of
the target value y∗(x) = E [t|x] (Distribution of t ∼ p(t|x)), i.e.,

y∗(x) = argmin
y

E[(y − t)2 |x].

Proof: Start by conditioning on (a fixed) x.

E[(y − t)2 |x] = E[y2 − 2yt+ t2 |x]

= y2 − 2yE[t |x] + E[t2 |x]

= y2 − 2yE[t |x] + E[t |x]2 + Var[t |x]

= y2 − 2yy∗(x) + y∗(x)2 + Var[t |x]

= (y − y∗(x))2 + Var[t |x].

The first term is nonnegative, and can be made 0 by setting y = y∗(x).

The second term does not depend on y. It corresponds to the inherent
unpredictability, or noise, of the targets, and is called the Bayes error or
irreducible error.

I This is the best we can ever hope to do with any learning
algorithm. An algorithm that achieves it is Bayes optimal.
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Bias-Variance Decomposition: General Case

For each query point x, the expected loss is different. We are interested
in quantifying how well our estimator performs over the distribution
psample. That is, the error measure is

err(D) = Ex∼px

[
|h(x;D)− y∗(x)|2

]
=

∫
|h(x;D)− y∗(x)|2 px(x)dx.

This is similar to err(D) = |h(D)−m|2 of the Mean Estimator case,
except that

I The ideal estimator is y∗(x) and not m.
I We take average over x according to the probability distribution px.

As before, err(D) is random due to the randomness of D ∼ pdataset.
We focus on the expectation of err(D), i.e.,

E [err(D)] = ED∼pdataset,x∼px

[
|h(x;D)− y∗(x)|2

]
.
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Bias-Variance Decomposition: General Case

To obtain the bias-variance decomposition of

E [err(D)] = ED∼pdataset,x∼px

[
|h(x;D)− y∗(x)|2

]
,

we add and subtract ED [h(x;D) | x] inside | · | (similar to before):

ED,x
[
|h(x;D)− y∗(x)|2

]
=

ED,x
[
|h(x;D)− ED [h(x;D) | x] + ED [h(x;D) | x]− y∗(x)|2

]
=

ED,x
[
|h(x;D)− ED [h(x;D) | x]|2

]
+ ED,x

[
|ED [h(x;D) | x]− y∗(x)|2

]
+

2ED,x [(h(x;D)− ED [h(x;D) | x]) (ED [h(x;D) | x]− y∗(x))] =

ED,x
[
|h(x;D)− ED [h(x;D) | x]|2

]
+ Ex

[
|ED [h(x;D) | x]− y∗(x)|2

]
Try to convince yourself that the inner product term is zero.

This is the bias and variance decomposition for the general estimator
(with the squared error loss).
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Bias-Variance Decomposition for the General Estimator

Bias-Variance Decomposition

ED,x
[
|h(x;D)− y∗(x)|2

]
=Ex

[
|ED [h(x;D) | x]− y∗(x)|2

]
︸ ︷︷ ︸

bias

+

ED,x
[
|h(x;D)− ED [h(x;D) | x]|2

]
︸ ︷︷ ︸

variance

.

Bias: The squared error between the average estimator (averaged
over dataset D) and the best predictor y∗(x) = E [t|x], averaged
over x ∼ px.
Variance: The variance of a single estimator h(x;D) (whose
randomness comes from D).

I Note that ED,x
[
|h(x;D)− ED [h(x;D) | x]|2

]
=

Ex

[
ED
[
|h(x;D)− ED [h(x;D) | x]|2

]]
= Ex [VarD[h(x;D)|x]].
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Bias-Variance Decomposition: General Case

Bias-Variance Decomposition

ED,x
[
|h(x;D)− t|2

]
=Ex

[
|ED [h(x;D) | x]− y∗(x)|2

]
︸ ︷︷ ︸

bias

+

ED,x
[
|h(x;D)− ED [h(x;D) | x]|2

]
︸ ︷︷ ︸

variance

+E
[
|y∗(x)− t|2

]︸ ︷︷ ︸
Bayes error

.

We have an additional term of E
[
|y∗(x)− t|2

]
= Ex [Var[t | x]] (Why?!).

This is due to the the variance of t at each fixed x, averaged over x ∼ px.
As before, this comes from the randomness of the r.v. t and cannot be
avoided. This is the Bayes error.
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Bias-Variance Decomposition: A Visualization

Throwing darts = predictions for each draw of a dataset

What doesn’t this capture?

We average over points x from the data distribution
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Bias-Variance Decomposition: Another Visualization

We can visualize this decomposition in the output space, where
the axes correspond to predictions on the test examples.
If we have an overly simple model (e.g., K-NN with large K), it
might have

I high bias (because it is too simplistic to capture the structure in the
data)

I low variance (because there is enough data to get a stable estimate
of the decision boundary)
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Bias-Variance Decomposition: Another Visualization

If you have an overly complex model (e.g., K-NN with K = 1), it
might have

I low bias (since it learns all the relevant structure)
I high variance (it fits the quirks of the data you happened to sample)
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Ensemble Methods – Part I: Bagging
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Ensemble Methods: Brief Overview

An ensemble of predictors is a set of predictors whose individual
decisions are combined in some way to predict new examples, for
example by (weighted) majority vote.

For the result to be nontrivial, the learned hypotheses must differ
somehow, for example because of

I Trained on different data sets
I Trained with different weighting of the training examples
I Different algorithms
I Different choices of hyperparameters

Ensembles are usually easy to implement. The hard part is deciding
what kind of ensemble you want, based on your goals.

Two major types of ensembles methods:

I Bagging
I Boosting
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Bagging: Motivation

Suppose that we could somehow sample m independent training
sets {Di}mi=1 from pdataset.

We could then learn a predictor hi , h(·;Di) based on each
dataset, and take the average h(x) = 1

m

∑m
i=1 hi(x).

How does this affect the terms of the expected loss?
I Bias: Unchanged, since the averaged prediction has the same

expectation

E
Di,...,Dm

i.i.d.∼ pdataset
[h(x)] =

1

m

m∑
i=1

EDi∼pdataset [hi(x)]

= ED∼pdataset
[h(x;D)] .

I Variance: Reduced, since we are averaging over independent
samples

Var
D1,...,Dm

[h(x)] =
1

m2

m∑
i=1

Var
Di

[hi(x)] =
1

m
Var
D

[hD(x)].

Q: What if m→∞?
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Bagging

In practice, we do not have access to the underlying data
generating distribution psample.

It is expensive to collect many i.i.d. datasets from pdataset.

Solution: bootstrap aggregation, or bagging.

I Take a single dataset D with n examples.

I Generate m new datasets, each by sampling n training examples
from D, with replacement.

I Average the predictions of models trained on each of these datasets.

Bagging works well for low-bias / high-variance estimators.
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Bagging

Problem: the datasets are not independent, so we do not get the
1
m variance reduction.

Possible to show that if the sampled predictions have variance σ2

and correlation ρ, then

Var

(
1

m

m∑
i=1

hi(x)

)
= ρσ2 +

1

m
(1− ρ)σ2.

I Exercise: Prove this! (See next slide)

By increasing m, the second term decreases.

The first term, however, remains the same. It limits the benefit of
bagging.

If we can make correlation ρ as small as possible, we benefit more
from bagging.
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Bagging

Var

(
1

m

m∑
i=1

hi(x)

)
= ρσ2 +

1

m
(1− ρ)σ2.

It can be advantageous to introduce additional variability into your
algorithm, as long as it reduces the correlation between samples.

I Intuition: you want to invest in a diversified portfolio, not just one
stock.

I Can help to use average over multiple algorithms, or multiple
configurations (i.e., hyperparameters) of the same algorithm.
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Some Properties of Variance

Covariance:

Cov (X,Y ) = E [(X − E [X])(Y − E [Y ])] .

Correlation:

ρX,Y =
Cov (X,Y )

σXσY
.

Covariance of linear combination:

Var

[
m∑
i=1

Zi

]
=

m∑
i,j=1

Cov (Zi, Zj)

=

m∑
i=1

Var[Zi] +

m∑
i,j=1;i 6=j

Cov (Zi, Zj) .
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Random Forests

Random forests: bagged decision trees, with one extra trick to
decorrelate the predictions

When choosing each node of the decision tree, choose a random
set of p input attributes (e.g., p =

√
d), and only consider splits on

those features.

I Smaller p reduces the correlation between trees.

Random forests improve the variance reduction of bagging by
reducing the correlation between the trees (ρ).

For regression, we take the average output of the ensemble; for
classification, we perform a majority vote.

Random forests are probably one of the best black-box machine
learning algorithm. They often work well with no tuning
whatsoever.

I One of the most widely used algorithms in Kaggle competitions.
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Conclusion

Bias-Variance Decomposition
I The error of a machine learning algorithm can be decomposed to a

bias term and a variance term.
I Hyperparameters of an algorithm might allow us to tradeoff

between these two.

Ensemble Methods
I Bagging as a simple way to reduce the variance of an estimation

method
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