CSC 2515: Introduction to Machine Learning

Lecture 6: Neural Networks

Amir-massoud Farahmand?!

University of Toronto and Vector Institute

1
Credit for slides goes to many members of the ML Group at the U of T, and beyond, including
(recent past): Roger Grosse, Murat Erdogdu, Richard Zemel, Juan Felipe Carrasquilla, Emad Andrews,
and myself.
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@ We have considered a modular framework to ML.

o We considered several loss functions for regression and
classifications

o We have “mostly” focused on linear models.
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Today
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o Decision tree: f(w;w) = Y1 wil{z € R;}
“~»e Lincar model: f(z;w) = aTw
o Linear model in feature space: f(z;w) = ¢(z) w

Feature mapping can make linear models much more powerful.
Coming up with feature mapping can be challenging.
Kernel-based approach is a way to partially address it.
(Artificial) Neural Networks is a general approach to represent
more complex models.

The predictor can be seen as a computer program that processes
the input in order to generate the output. Some programs are
simpler, some are more complex.
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Today

Skills to Learn
@ Multi-layer feedforward neural networks

e Backpropagation for training NN
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Neural Networks




Inspiration: The Brain

o Our brain has ~ 10! neurons, each of which communicates (is
connected) to ~ 10* other neurons

impulses carried
toward cell body
) branches

of axon

dendrites

nucleus terminals

impulses carried

' away from cell body
cell body

Figure: The basic computational unit of the brain: Neuron

[Pic credit: http://cs231n.github.io/neural-networks-1/]
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Inspiration: The Brain

e Neurons receive input signals and accumulate voltage. After some
threshold they will fire spiking responses.
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[Pic credit: www.moleculardevices.com]
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Inspiration: The Brain

e For (artificial) neural nets, we use a much simpler model neuron,
Oor unit:

y H .
output output weights bias

| \
X §:¢($vTx+1£)

inputs \
ry X2 Zs
activation function inputs

e Compare with logistic activation function used in LR:
y=o(w'x+b)
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Multilayer Perceptrons (Feedforward Neural Networks)

@ We can connect lots of
units together into a
directed acyclic graph. anf,lf;tpu'

. . output layer
e Typically, units are putiay

lgrouPed together mto second hidden layer
ayers.
o This gives a

feed-forward neural ahidden

first hidden layer

network. input layer

a connection

o That is in contrast to depth
recurrent neural
networks, which can
have cycles.

an input
unit
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Multilayer Perceptrons (Feedforward Neural Networks)

e Each hidden layer ¢ connects N;_1 input units to INV; output units.
o In the simplest case, all input units are connected to all output
units. We call this a fully connected layer. We will consider other
layer types later.
» The inputs and outputs for a layer are distinct from the inputs and
outputs to the network.
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Multilayer Perceptrons (Feedforward Neural Networks)

e If we need to compute M[= N;] outputs from N = [N;_1] inputs,
we can do so in parallel using matrix multiplication. This means
we will be using a M x N weight matrix.

@ The output units are a function of the input units:

y = f(x) = ¢(Wx+Db)
o A multilayer network consisting of fully connected layers is called

a multilayer perceptron. Despite the name, it has nothing to do
with the Perceptron algorithm.
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Activation Functions

Some activation functions:

Rectified Linear

Identity Unit Soft ReLU
(ReLU)
y=z y=logl+e?
y = max(0, z)
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Activation Functions

Some activation functions:

H bolic T t
Hard Threshold Logistic yperone tangen

(tanh)
1 ifz>0 B 1 . .
Y10 ifz<o0 Y= T3> yo oo

e*+e”~
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Multilayer Perceptrons (Feedforward Neural Networks)

e Each layer computes a function, so the network
computes a composition of functions:

y [ O O]
hM = fD(x) = g(WHx + b)) F

h® = f@OnM) = p(WEnM® 4 p?)

: f(3)m
' @O OO
_ fL)(pE-D) h [:i:j

e Or more compactly: WO O O
y= oo fO(x). o

@ Neural nets provide modularity: we can
implement each layer’s computations as a black
box.
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Multilayer Perceptrons (Feedforward Neural Networks)

y [© O O]
f(L)
) . @
e Q: Write down the equations of a two layer NN

(one hidden, one output), two hidden units, ¢ as O O O

the activation function of the hidden layer, and a @
linear one dimensional output layer. L @E
f(l)

x O O
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Feature Learning

Last layer:
o If task is regression: choose
y = fO (D) = (wNTh(E=1) 4 pL)
o If task is binary classification: choose
y = f(L)(h(Lfl)) = U((W(L))Th(Lfl) + b(L))
e Neural nets can be viewed as a way of learning features:

linear regressor/
classifier

o The goal:
it ;
o B (x) +‘:_+
=4 _ +
++y -

1
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Feature Learning

@ Suppose that we are trying to classify images of handwritten
digits. Each image is represented as a vector of 28 x 28 = 784 pixel
values.

o Each first-layer hidden unit computes ¢(w!x). It acts as a feature
detector.

e We can visualize w by reshaping it into an image. Here is an
example that responds to a diagonal stroke.

CSC2515-Locs 18 / o7



Feature Learning

Here are some of the features learned by the first hidden layer of a
handwritten digit classifier:
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Expressive Power

o We have seen that there are some functions that linear classifiers
cannot represent. Are deep networks any better?

@ Suppose a layer’s activation function is the identity function, so
the layer just computes an affine transformation of the input

» We call this a linear layer

@ Any sequence of linear layers can be equivalently represented with
a single linear layer.

y = WOWAWW x
~— —
LW/

» Deep linear networks are no more expressive than linear regression.

Intro ML (UofT) CSC2515-Lech 20 / 97



Expressive Power

e Multilayer feed-forward neural nets with nonlinear activation
functions are universal function approximators: they can
approximate any function arbitrarily well.

e This has been shown for various activation functions (thresholds,
logistic, ReLU, etc.)
» Even though ReLU is “almost” linear, it is nonlinear enough.
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Multilayer Perceptrons

Designing a network to classify XOR:

Assume hard threshold activation function

1

1 ‘@ 1
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Multilayer Perceptrons

e hj computes I[z] + z3 — 0.5 > 0]
> ie. Iy OR ZTo

@ ho computes [[z] + x5 — 1.5 > 0]
> ie. Ty AND To

e y computes I[hy —hg — 0.5 > 0] =I[h1 + (1 — hg) — 1.5 > 0]
> ie. hl AND (NOT hg) =X XOR X2
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Expressive Power

Universality for binary inputs and targets:
e Hard threshold hidden units, linear output
o Strategy: 2” hidden units, each of which responds to one

particular input configuration

X X9 X3 t

@ Only requires one hidden layer, though it needs to be extremely

wide.
CSC2515-Lech
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Expressive Power

e What about the logistic activation function?

@ You can approximate a hard threshold by scaling up the weights
and biases:

1

0.8;

06

0.4:

0.2

o.

=4 -3 -2 -1 o0 1 2 3 w4 -3 2 -

y=o(x) y = o(bx)

e This is good: logistic units are differentiable, so we can train them
with gradient descent.
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Expressive Power

Let us do some exercises ...

e Q: How can we represent the function that takes value of +1 in
z € [1,2] and 0 elsewhere using a simple NN with hard threshold
activation function?

f(=)

1 2 x

f(x) = wid(x —by) + UJZ?(I — ba)
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Expressive Power

Let us do some exercises ...

e Q: How can we approximately represent the function that takes
value of +1 in = € [1,2] and 0 elsewhere using a simple NN with
ReLLU activation function?

f(x)

1 2 T

f(x) =~ w1¢£v1 (x = b1)) + wad(va(w — ba)) + ...

\
\

/]
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Expressive Power

e Limits of universality
» You may need to represent an exponentially large network.
» How can you find the appropriate weights to represent a given
function?
» If you can learn any function, you’ll just overfit.
» We desire a compact representation.
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Training Neural Networks with
Backpropagation
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Recap: Gradient Descent

@ Recall: gradient descent moves in the opposite of the gradient

0.5

0
o

0,5
boo 500 0 500 1000 1500 2000
0

@ Weight space for a multilayer neural net: one coordinate for each weight
or bias of the network, in all the layers

@ Conceptually, not any different from what we have seen so far — just
higher dimensional and harder to visualize!

@ We want to define a loss £ and compute the gradient of the cost dJ/dw,
which is the vector of partial derivatives.

» This is the average of dL/dw over all the training examples, so in
this lecture we focus on computing d£/dw.

Intro ML (UofT) CSC2515-Lech 30 / 97



Univariate Chain Rule

@ We have already been using the univariate Chain Rule.
e Recall: if f(z) and x(t) are univariate functions, then

_dfde

d
/)= 4
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Univariate Chain Rule

Recall: Univariate logistic least squares model

z=wx+b
y=o0(2)
R

Let’s compute the loss derivatives c%’ %—’g‘.
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Univariate Chain Rule

How you would have done it in calculus class:

L— %(a(wx +b) —1)?
oc o [1 ,
b0 = Fw i(a(wx +b)—1t)

= 2 (owr +8) ~ 1) 08 _ 0 Lo+ -1
= (o(wz +b) — t)%(o’(wx +b)—1t) =7 (Exercise!)

= (o(wz +b) — t)o’ (wx + b)ai(wx + b)

w

= (o(wz +b) — t)o’ (wz + b)x

What are the disadvantages of this approach?
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Univariate Chain Rule

A more structured way to do it:

Computing the derivatives:
Computing the loss:

N c(lii/’, dfd dc
— ay /
y= 01(Z) o dyd o' (2)
L=5-1)’ oL _dLdz _dL
ow  dzdw  dz
8£ dL dz dll
T dzdb
Remember: The goal is not to obtain closed form solutlons but to be

able to write a program that efficiently computes the derivatives.
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Univariate Chain Rule

@ We can diagram out the computations using a computation graph.

@ The nodes represent all the inputs and computed quantities, and
the edges represent which nodes are computed directly as a
function of which other nodes.

Computing the loss:

z=wx+b

y=o(z)
L=l
Intro ML (UofT)

Compute Loss
—_—

t

e

Compute Derivatives
—
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Univariate Chain Rule

A slightly more convenient notation:

@ Use 7 to denote the derivative of the loss w.r.t. y (i.e., dL/dy),
sometimes called the error signal.

@ This emphasizes that the error signals are just values our program is
computing (rather than a mathematical operation).

Computing the loss: Computing the derivatives:

=wx+b

: =yt
y=o(z) z=y0'(2)
1 .
£:§(y—t)2 W=7Zx

b=z
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Multivariate Chain Rule

Problem: what if the computation graph has fan-out > 17
This requires the Multivariate Chain Rule!

Lo-Regularized regression

72_’y_’£_’£reg
w :R/
z=wr+b
y=o0(z)
c=1 t)?
= §(y* )
_1 o
R = 2w
Lreg = L+ AR

Intro ML (UofT)

Softmax classifier with the
cross-entropy loss
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Multivariate Chain Rule

e Suppose that we have a function f(z,y) and functions z(¢) and
y(t). (All the variables here are scalar-valued). Then

d (‘9f de  0fdy /
o Example:
fla,y) =y +e
x(t) = cost
y(t) =¢*
@ Plug in to Chain Rule:
ﬂ of dx L of of dy
dt ~ oz dt oy dt
= (ye™) - (—sint) + (1 + ze™) - 2t
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Multivariate Chain Rule

o In the context of backpropagation:

Mathematical expressions
to be evaluated

df OJfdx Ofdy

dt  ozdt  oydt

/\/

Values already computed
by our program

s

@ In our notation:

oM
2l&

gl b
dt Yy

Intro ML (UofT) CSC2515-Lech
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Backpropagation

Full backpropagation algorithm:

Let v1,...,vN be a topological ordering of the computation graph

(i.e. parents come before children.)

vy denotes the variable we're trying to compute derivatives of (e.g. loss).

forward pass

backward pass

Intro ML (UofT)

Fori=1,...,N

Compute v; as a function of Pa(v;)

Fori=N-1,...,1
— — Ovj
Ui = 2 jecn(v) U gur

CSC2515-Lech
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Backpropagation

Example: univariate logistic least squares regression

" t Backward pass:
Qz_,y_,ﬁ_,}crcn_
/ /"C> Lreg =1 ___d
U =R *: [« d[freg z _y&
F d reg dR _ 70-/ Z)
orward pass: — ﬁreg A . 7/:/ . @
z=wr+b L ="Cres dLreg - T ow du
y=o0(2) dac =zZr+Ru
c=Ly—v o bz
2 y y=L— b
— 2" =Ly-1)
Lreg =L+ AR
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Backpropagation

Multilayer Perceptron (multiple outputs):

b<u\“:\" bm\\‘ Backward pass:
N N ti =

Ti—>21—>hi—V1

>< >f£ Uk =L (yr — ti)

$2—>22—>h2—>?/2 ®)
,u‘//T \,)/T ta wyi' =Tk hi
%2 (1) by
(1) W21

2 -
(2) wyy b<2) Tr

Wao Woy k. — Yk
Forward pass: o = Zy—kwl(j)
(1) (1) k
zi = w;: T +b; _
g Z Jj 7 %=, O'I(ZZ)
J

hi = o(z) wg;) =Z

Yk = Zw,(j.)hi -l-b,(f) W:zﬁ-

1 2
L= Eg(yk*tk)
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Backpropagation

In vectorized form:

w w t Backward pass:
\ .
X—7—h—Y—L =l
y=L(y—t)
b b® WEe — yhT
Forward pass: b® — 7
z=WWx 4+ bl h=wW®Ty
h = o(z) Z=hoo/(z)
y=W®&h +b® WO = zx"
£=3ly - tl? b =2

Intro ML (UofT) CSC2515-Lech
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Computational Cost

e Computational cost of forward pass: one add-multiply operation

per weight
Zi = Zw(l)x] + b

e Computational cost of backward pass: two add-multiply
operations per weight

hi =Y wrw)
k

@ Rule of thumb: the backward pass is about as expensive as two
forward passes.

o For a multilayer perceptron, this means the cost is linear in the
number of layers, quadratic in the number of units per layer.
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Backpropagation

e Backprop is used to train the overwhelming majority of neural
nets today.

» Even optimization algorithms much fancier than gradient descent
(e.g. second-order methods) use backprop to compute the gradients.

o Despite its practical success, backprop is believed to be neurally
implausible.
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Conclusion

e Multi-layer feedforward NN addressed the feature learning problem

e Backpropagation as a method to learn NN
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Convolutional Networks

Convolutional Networks
(Optional)
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Neural Nets for Visual Object Recognition

@ People are very good at recognizing shapes

» Intrinsically difficult, computers are bad at it

o Why is it difficult?
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Why is it a Problem?

o Difficult scene conditions

EECETT 2 \
\__Vviewpoint object pose

[From: Grauman & Leibe]
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Why is it a Problem?

@ Huge within-class variations. Recognition is mainly about modeling
variation.
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Why is it a Problem?

@ Tons of classes

NLRSE N ICE B ark .
MWTLQ e | 6 %«,Aﬂm\
mm@ m..&l .1"%
1Y ele~i vl
@ | ]
H A &7y He«§
=L~ QS %! (8
2 =) o mleetnf<=
4Y < S V= &(
bli’.lul.‘r\i_eﬂx»"
Mot T B
A @ ]
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Neural Nets for Object Recognition

@ People are very good at recognizing object
» Intrinsically difficult, computers are bad at it
@ Some reasons why it is difficult:

» Segmentation: Real scenes are cluttered

Invariances: We are very good at ignoring all sorts of variations
that do not affect class

Deformations: Natural object classes allow variations (faces, letters,
chairs)

A huge amount of computation is required

v

v

\4
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How to Deal with Large Input Spaces

@ How can we apply neural nets to images?

@ Images can have millions of pixels, i.e., x is very high dimensional
@ How many parameters do we have?

@ Prohibitive to have fully-connected layers

@ What can we do?

@ We can use a locally connected layer
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Locally Connected Layer

Example: 200x200 image
40K hidden units
Filter size: 10x10
4M parameters

Note: This parameterization is good
when input image is registered (e.g., “
face recognition). ranzatolld

CSC2515-Lech 54 / 97
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When Will this Work?

When Will this Work?

@ This is good when the input is (roughly) registered
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General Images

@ The object can be anywhere

[Slide: Y. Zhu]
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General Images

@ The object can be anywhere

[Slide: Y. Zhu]
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General Images

@ The object can be anywhere

[Slide: Y. Zhu]
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The replicated feature approach

@ Adopt approach apparently used in
monkey visual systems

The red connections all @ Use many different copies of the same
have the same weight. feature detector.
» Copies have slightly different
O O positions.
» Could also replicate across scale
O and orientation.
51 > Tricky and expensive
! | i > Replication reduces the number
of free parameters to be learned.
LEN @ Use several different feature types,

each with its own replicated pool of
detectors.

» Allows each patch of image to be
represented in several ways.
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Convolutional Neural Net

@ Idea: Statistics are similar at different locations (Lecun 1998)

@ Connect each hidden unit to a small input patch and share the weight
across space

@ This is called a convolution layer and the network is a convolutional
network

Share the same parameters across
different locations (assuming input is
stationary):

Convolutions with learned kernels

36
Ranzaton
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Convolution Operator

e Convolution layers are named after the convolution operator.

e If a and b are two arrays (or vector or signal), the convolution a * b
between them is defined as a new array (or vector or signal) with
its t-th component being

(axb), = Z arbi_r.

Intro ML (UofT) CSC2515-Lech 61 / 97




Convolution Operator

Method 1: translate-and-scale

Intro ML (UofT) CSC2515-Lech 62 / 97



Convolution Operator

Method 2: flip-and-filter

HI_J%\H HI-?%\H HI-]}\H
2 * 2l 2‘
. i i
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Convolution Operator

Convolution can also be viewed as matrix multiplication:

2
-1

1
1
2 1
1 1
2

1
(2,-1,1) % (1,1,2) = 1
2

Note: This is how convolution is typically implemented. It is more
efficient than the fast Fourier transform (FFT) for modern conv nets
on GPUs.
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Convolution Operator

Some properties of convolution:

e Commutativity
axb=bxa

e Distributivity

a* (A1b+ Aac) = AMa*xb+ Aaxc

Intro ML (UofT) CSC2515-Lech
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2-D Convolution Operator

2-D convolution is defined analogously to 1-D convolution.

If A and B are two 2-D arrays, then:

(A * B)U = Z Z AstBi—s,j—t-
s t
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2-D Convolution Operator

Method 1: Translate-and-Scale

1131
1] 1
1 x
2| -1
1|31 115]7]2
811 1]2 ol-1]1 02|41
0[-1]1 = 2 X = —
>I<o1 + 221 2|64 |3
2|21
02|21
_|_1 1131
—1 X 11
2 |1

Intro ML (UofT) CSC2515-Lech 67 / 97



2-D Convolution Operator

Method 2: Flip-and-Filter

131
o11>|<12
0 -1
2121
-10
3|1 X 54 115]7]2
0-1] 1 o84
2 -1 2|6 |4 |-3
o%-2 |2 | 1
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2-D Convolution Operator

We convolve an input by a kernel, or filter.

@ The term Filter is used due to the original of convolutional in
signal processing, in which the convolution operator is used to
compute the effect of a linear filter on an input.

@ Do not confuse this kernel with the kernels in an RKHS.

What does this filter do?

o(1]0
>l< 4
o|{1|0
Intro ML (UofT) CSC2515-Lech
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2-D Convolution Operator

What does this filter do?

0o|-1]0
sk |-1]8]-
0[-1]0
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2-D Convolution Operator

What does this filter do?

0[-1]0
ko [-1] 4]
0|10
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2-D Convolution Operator

What does this filter do?

1]0]-1
%k |2]0]-2
1101
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Convolutional Layer

E.g.: 200x200 image
100 Filters
Filter size: 10x10
10K parameters

54
Ranzaton
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Convolutional Layer

32

cood

32

Hyperparameters of a convolutional layer:

@ The number of filters (controls the depth of the output volume)

@ The stride: how many units apart do we apply a filter spatially (this
controls the spatial size of the output volume)

@ The size w x h of the filters

[http://cs231n.github.io/convolutional-networks/]
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Pooling Layer

By “pooling” (e.g., taking max) filter

responses at different locations we gain
robustness to the exact spatial location
of features.

61
Ranzaton
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Pooling Options

@ Max Pooling: return the maximal argument
@ Average Pooling: return the average of the arguments

@ Other types of pooling exist too
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Pooling

224x224x64

112x112x64

h @
—_

. 112
224 downsampling E

224

Single depth slice

% 111124
max pool with 2x2 filters
5|67 |8 and stride 2
3(2|1(0
11213 |4
y

Figure: Left: Pooling, right: max pooling example

Hyperparameters of a pooling layer:

@ The spatial extent F
@ The stride

Intro ML (UofT)

[http://cs231n.github.io/convolutional-networks/]
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Backpropagation with Weight Constraints

@ The backpropagation algorithm from earlier can be applied directly to
ConvNets

@ This is covered in CSC2516.

@ As a user, you do not need to worry about the details, since they are
handled by automatic differentiation packages.
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MNIST Dataset

e MNIST dataset of handwritten digits

>
>
>

Categories: 10 digit classes
Source: Scans of handwritten zip codes from envelopes
Size: 60,000 training images and 10,000 test images, grayscale, of
size 28 x 28
Normalization: centered within in the image, scaled to a
consistent size

» The assumption is that the digit recognizer would be part of a

larger pipeline that segments and normalizes images.

e In 1998, Yann LeCun and colleagues built a conv net called LeNet
which was able to classify digits with 98.9% test accuracy.

|

It was good enough to be used in a system for automatically
reading numbers on checks.

Intro ML (UofT) CSC2515-Lech 79 / 97



LeNet

Here is the LeNet architecture, which was applied to handwritten digit
recognition on MNIST in 1998:

C3: f. maps 16@10x10
o S4: . maps 16@5x5

S2:f. maps | i C5: layer .
6@14x14 l : 120 Y l;i layer O1gTPUT

C1: feature maps

INPUT
32x32 ‘ 6@28x28

! Full conrl.ection Gaussian
Convolutions Subsampling Convolutions ~ Subsampling Full connection
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Size of a Conv Net

e Ways to measure the size of a network:

» Number of units. This is important because the activations need
to be stored in memory during training (i.e. backprop).

» Number of weights. This is important because the weights need
to be stored in memory, and because the number of parameters
affects the overfitting.

» Number of connections. This is important because there are
approximately 3 add-multiply operations per connection (1 for the
forward pass, 2 for the backward pass).

o We saw that a fully connected layer with M input units and N
output units has M N connections and M N weights.

o The story for conv nets is more complicated.
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Size of a Conv Net

I output maps I ‘

kernel dimension K

height H

.....

Jinput maps T |

width W

fully connected layer convolution layer

# output units WHI WHI
# weights W2H?IJ K?1J
# connections W2H?IJ WHK?IJ
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Size of a Conv Net

Sizes of layers in LeNet:

Layer Type # units | # connections | # weights
C1 convolution 4704 117,600 150
S2 pooling 1176 4704 0
C3 convolution 1600 240,000 2400
S4 pooling 400 1600 0
F5 fully connected 120 48,000 48,000
F6 fully connected 84 10,080 10,080

output | fully connected 10 840 840

Conclusions?

Intro ML

(UofT)
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Size of a Conv Net

@ Rules of thumb:

» Most of the units and connections are in the convolution layers.
» Most of the weights are in the fully connected layers.

o If you try to make layers larger, you’ll run up against various
resource limitations (i.e. computation time, memory)
@ You'll repeat this exercise for AlexNet for homework.
» Conv nets have gotten a LOT larger since 1998!
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ImageNet

ImageNet is the modern object recognition benchmark dataset. It was
introduced in 2009, and has led to amazing progress in object
recognition since then.

ILSVRC

quail partridge

flamingo ruffed grouse

A

lfgypnan cat

F <
Persian cat Siamese cat

g L.y
[ T
Y iz ; ' ¥ T
dalmatian keeshond miniature schnauzer standard schnauzer giant schnauzer
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ImageNet

@ Used for the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC), an annual benchmark competition for object recognition
algorithms

@ Design decisions
» Categories: Taken from a lexical database called WordNet
» WordNet consists of “synsets”, or sets of synonymous words
> They tried to use as many of these as possible; almost 22,000 as of
2010

> Of these, they chose the 1000 most common for the ILSVRC
> The categories are really specific, e.g. hundreds of kinds of dogs

» Size: 1.2 million full-sized images for the ILSVRC
» Source: Results from image search engines, hand-labeled by
Mechanical Turkers

» Labeling such specific categories was challenging; annotators had to
be given the WordNet hierarchy, Wikipedia, etc.

» Normalization: none, although the contestants are free to do
preprocessing
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ImageNet

Candle Cannon __Spider Web

Object Scale|

Lizard _ Stocking  Mushroom

.

Number of Instances

Compass  Racket
Image Clutter ’
Images and object categories vary T

on a lot of dimensions —

_Skewdriver _HatchetPagl Table Leopard
Amount of Texture %m.
< 2 »
Mug Tank Ant  Red Wine
Color Distinctiveness
Foreland Lion
Shape Distinctiveness

Russakovsky et al.
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ImageNet

Size on disk:

MNIST ImageNet
60 MB 50 GB
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AlexNet

@ AlexNet, 2012. 8 weight layers. 16.4% top-5 error (i.e. the network gets 5 tries

to guess the right category).

192

8 204 2048 \dense

dense dense|

1000

Max 128 Max
pooling pooling

128 Max
pooling

204 2048

(Krizhevsky et al., 2012)

@ The two processing pathways correspond to 2 GPUs. (At the time, the

network couldn’t fit on one GPU.)

@ AlexNet’s stunning performance on the ILSVRC is what set off the deep

learning boom of the last 8-9 years.
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Inception

Inception, 2014. (“We need to =
go deeper!”)
22 weight layers >

.
Fully convolutional (no fully
connected layers) 5
Convolutions are broken down }
into a bunch of smaller L&
convolutions =5

6.6% test error on ImageNet

(Szegedy et al., 2014)
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Inception

o They were really aggressive about cutting the number of
parameters.
» Motivation: train the network on a large cluster, run it on a cell
phone
» Memory at test time is the big constraint.
» Having lots of units is OK, since the activations only need to be
stored at training time (for backpropagation).
» Parameters need to be stored both at training and test time, so
these are the memory bottleneck.
» How they did it
> No fully connected layers (remember, these have most of the
weights)
» Break down convolutions into multiple smaller convolutions (since
this requires fewer parameters total)
» Inception has “only” 2 million parameters, compared with 60
million for AlexNet
» This turned out to improve generalization as well. (Overfitting can
still be a problem, even with over a million images!)
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150 Layers!

@ Networks are now at 150 layers
@ They use a skip connections with special form
@ In fact, they don’t fit on this screen

@ Amazing performance!

A lot of “mistakes” are due to wrong
ground-truth

weight layer
weight layer

Hx)=F(@x)+x @

identity
X

F(x)

[He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition.
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Results: Object Classification

Revolution of Depth 282
\: 152 layers |

AY
AY
: 7.3

\ 6.7

[ I I

ILSVRC'15 ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12  ILSVRC'11  ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image

Recognition. arXiv:1512.03385, 2016]
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Results: Object Detection

’ A S )

cakecake’

o |
dining table : 0.879~

'\
A

Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image
Recognition. arXiv:1512.03385, 2016]
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Results: Object Detection

person : 0.989 L
- refrigerator : 0.979

H H e W D Qo Q... T
S Intro ML (UofT) CSCIBT5-Lacs

bowl : 0.927

!b w :0.969
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Results: Object Detection

person :0.910 ‘ person : 0.998

handbag 0.66;

person 0.998 umbrella 0.§10
5 !,
chaird0757.972 chair 1 0.639
B

Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image
Recognition. arXiv:1512.03385, 2016]
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What Do Networks Learn?

@ Recall: we can understand what first-layer features are doing by
visualizing the weight matrices.
Fully connected ]
(MNIST) Convolutional
AT (ImageNet)

5

o Higher-level weight matrices are hard to interpret.
@ The better the input matches these weights, the more the feature
activates.
» Obvious generalization: visualize higher-level features by seeing
what inputs activate them.
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