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Today

We have considered a modular framework to ML.

We considered several loss functions for regression and
classifications

We have “mostly” focused on linear models.
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Today

Feature mapping can make linear models much more powerful.

Coming up with feature mapping can be challenging.

Kernel-based approach is a way to partially address it.

(Artificial) Neural Networks is a general approach to represent
more complex models.

The predictor can be seen as a computer program that processes
the input in order to generate the output. Some programs are
simpler, some are more complex.
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Today

Skills to Learn

Multi-layer feedforward neural networks

Backpropagation for training NN
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Neural Networks
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Inspiration: The Brain

Our brain has ∼ 1011 neurons, each of which communicates (is
connected) to ∼ 104 other neurons

Figure: The basic computational unit of the brain: Neuron

[Pic credit: http://cs231n.github.io/neural-networks-1/]
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Inspiration: The Brain

Neurons receive input signals and accumulate voltage. After some
threshold they will fire spiking responses.

[Pic credit: www.moleculardevices.com]
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Inspiration: The Brain

For (artificial) neural nets, we use a much simpler model neuron,
or unit:

Compare with logistic activation function used in LR:
y = σ(w>x + b)

By throwing together lots of these incredibly simplistic neuron-like
processing units, we can do some powerful computations!
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Multilayer Perceptrons (Feedforward Neural Networks)

We can connect lots of
units together into a
directed acyclic graph.

Typically, units are
grouped together into
layers.

This gives a
feed-forward neural
network.

That is in contrast to
recurrent neural
networks, which can
have cycles.
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Multilayer Perceptrons (Feedforward Neural Networks)

Each hidden layer i connects Ni−1 input units to Ni output units.
In the simplest case, all input units are connected to all output
units. We call this a fully connected layer. We will consider other
layer types later.

I The inputs and outputs for a layer are distinct from the inputs and
outputs to the network.
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Multilayer Perceptrons (Feedforward Neural Networks)

If we need to compute M [= Ni] outputs from N = [Ni−1] inputs,
we can do so in parallel using matrix multiplication. This means
we will be using a M ×N weight matrix.
The output units are a function of the input units:

y = f(x) = φ (Wx + b)

A multilayer network consisting of fully connected layers is called
a multilayer perceptron. Despite the name, it has nothing to do
with the Perceptron algorithm.
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Activation Functions

Some activation functions:

Identity

y = z

Rectified Linear
Unit

(ReLU)

y = max(0, z)

Soft ReLU

y = log 1 + ez
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Activation Functions

Some activation functions:

Hard Threshold

y =

{
1 if z > 0
0 if z ≤ 0

Logistic

y =
1

1 + e−z

Hyperbolic Tangent
(tanh)

y =
ez − e−z
ez + e−z
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Multilayer Perceptrons (Feedforward Neural Networks)

Each layer computes a function, so the network
computes a composition of functions:

h(1) = f (1)(x) = φ(W(1)x + b(1))

h(2) = f (2)(h(1)) = φ(W(2)h(1) + b(2))

...

y = f (L)(h(L−1))

Or more compactly:

y = f (L) ◦ · · · ◦ f (1)(x).

Neural nets provide modularity: we can
implement each layer’s computations as a black
box.
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Multilayer Perceptrons (Feedforward Neural Networks)

Q: Write down the equations of a two layer NN
(one hidden, one output), two hidden units, φ as
the activation function of the hidden layer, and a
linear one dimensional output layer.
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Feature Learning

Last layer:

If task is regression: choose
y = f (L)(h(L−1)) = (w(L))Th(L−1) + b(L)

If task is binary classification: choose
y = f (L)(h(L−1)) = σ((w(L))Th(L−1) + b(L))
Neural nets can be viewed as a way of learning features:

x

h(1)

h(2)

y

<latexit sha1_base64="l7S1EJLFL/OdOPlCTEdG62OlLkA="></latexit>

linear regressor/
classifier

The goal:
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Feature Learning

Suppose that we are trying to classify images of handwritten
digits. Each image is represented as a vector of 28× 28 = 784 pixel
values.

Each first-layer hidden unit computes φ(wT
i x). It acts as a feature

detector.

We can visualize w by reshaping it into an image. Here is an
example that responds to a diagonal stroke.
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Feature Learning

Here are some of the features learned by the first hidden layer of a
handwritten digit classifier:
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Expressive Power

We have seen that there are some functions that linear classifiers
cannot represent. Are deep networks any better?

Suppose a layer’s activation function is the identity function, so
the layer just computes an affine transformation of the input

I We call this a linear layer

Any sequence of linear layers can be equivalently represented with
a single linear layer.

y = W(3)W(2)W(1)︸ ︷︷ ︸
,W′

x

I Deep linear networks are no more expressive than linear regression.
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Expressive Power

Multilayer feed-forward neural nets with nonlinear activation
functions are universal function approximators: they can
approximate any function arbitrarily well.

This has been shown for various activation functions (thresholds,
logistic, ReLU, etc.)

I Even though ReLU is “almost” linear, it is nonlinear enough.
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Multilayer Perceptrons

Designing a network to classify XOR:

Assume hard threshold activation function
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Multilayer Perceptrons

h1 computes I[x1 + x2 − 0.5 > 0]
I i.e. x1 OR x2

h2 computes I[x1 + x2 − 1.5 > 0]
I i.e. x1 AND x2

y computes I[h1 − h2 − 0.5 > 0] ≡ I[h1 + (1− h2)− 1.5 > 0]
I i.e. h1 AND (NOT h2) = x1 XOR x2
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Expressive Power

Universality for binary inputs and targets:

Hard threshold hidden units, linear output

Strategy: 2D hidden units, each of which responds to one
particular input configuration

Only requires one hidden layer, though it needs to be extremely
wide.
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Expressive Power

What about the logistic activation function?

You can approximate a hard threshold by scaling up the weights
and biases:

y = σ(x) y = σ(5x)

This is good: logistic units are differentiable, so we can train them
with gradient descent.

Intro ML (UofT) CSC2515-Lec5 25 / 97



Expressive Power

Let us do some exercises ...

Q: How can we represent the function that takes value of +1 in
x ∈ [1, 2] and 0 elsewhere using a simple NN with hard threshold
activation function?
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Expressive Power

Let us do some exercises ...

Q: How can we approximately represent the function that takes
value of +1 in x ∈ [1, 2] and 0 elsewhere using a simple NN with
ReLU activation function?
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Expressive Power

Limits of universality
I You may need to represent an exponentially large network.
I How can you find the appropriate weights to represent a given

function?
I If you can learn any function, you’ll just overfit.
I We desire a compact representation.
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Training Neural Networks with
Backpropagation
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Recap: Gradient Descent

Recall: gradient descent moves in the opposite of the gradient

Weight space for a multilayer neural net: one coordinate for each weight
or bias of the network, in all the layers

Conceptually, not any different from what we have seen so far — just
higher dimensional and harder to visualize!

We want to define a loss L and compute the gradient of the cost dJ /dw,
which is the vector of partial derivatives.

I This is the average of dL/dw over all the training examples, so in
this lecture we focus on computing dL/dw.
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Univariate Chain Rule

We have already been using the univariate Chain Rule.

Recall: if f(x) and x(t) are univariate functions, then

d

dt
f(x(t)) =

df

dx

dx

dt
.
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Univariate Chain Rule

Recall: Univariate logistic least squares model

z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

Let’s compute the loss derivatives ∂L
∂w ,

∂L
∂b .
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Univariate Chain Rule

How you would have done it in calculus class:

L =
1

2
(σ(wx+ b)− t)2

∂L
∂w

=
∂

∂w

[
1

2
(σ(wx+ b)− t)2

]
=

1

2

∂

∂w
(σ(wx+ b)− t)2

= (σ(wx+ b)− t)
∂

∂w
(σ(wx+ b)− t)

= (σ(wx+ b)− t)σ′(wx+ b)
∂

∂w
(wx+ b)

= (σ(wx+ b)− t)σ′(wx+ b)x

∂L
∂b

=
∂

∂b

[
1

2
(σ(wx+ b)− t)2

]
=? (Exercise!)

What are the disadvantages of this approach?
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Univariate Chain Rule

A more structured way to do it:

Computing the loss:

z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

Computing the derivatives:

dL
dy

= y − t

dL
dz

=
dL
dy

dy

dz
=

dL
dy

σ′(z)

∂L
∂w

=
dL
dz

dz

dw
=

dL
dz

x

∂L
∂b

=
dL
dz

dz

db
=

dL
dz

Remember: The goal is not to obtain closed-form solutions, but to be
able to write a program that efficiently computes the derivatives.
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Univariate Chain Rule

We can diagram out the computations using a computation graph.

The nodes represent all the inputs and computed quantities, and
the edges represent which nodes are computed directly as a
function of which other nodes.

Computing the loss:

z = wx+ b

y = σ(z)

L =
1

2
(y − t)2
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Univariate Chain Rule

A slightly more convenient notation:

Use y to denote the derivative of the loss w.r.t. y (i.e., dL/dy),
sometimes called the error signal.

This emphasizes that the error signals are just values our program is
computing (rather than a mathematical operation).

Computing the loss:

z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

Computing the derivatives:

y = y − t
z = y σ′(z)

w = z x

b = z
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Multivariate Chain Rule

Problem: what if the computation graph has fan-out > 1?
This requires the Multivariate Chain Rule!

L2-Regularized regression

z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

R =
1

2
w2

Lreg = L+ λR

Softmax classifier with the
cross-entropy loss

z` =
∑
j

w`jxj + b`

yk =
ezk∑
` e

z`

L = −
∑
k

tk log yk
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Multivariate Chain Rule

Suppose that we have a function f(x, y) and functions x(t) and
y(t). (All the variables here are scalar-valued). Then

d

dt
f(x(t), y(t)) =

∂f

∂x

dx

dt
+
∂f

∂y

dy

dt

Example:

f(x, y) = y + exy

x(t) = cos t

y(t) = t2

Plug in to Chain Rule:

df

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt

= (yexy) · (− sin t) + (1 + xexy) · 2t
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Multivariate Chain Rule

In the context of backpropagation:

In our notation:

t = x
dx

dt
+ y

dy

dt
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Backpropagation

Full backpropagation algorithm:
Let v1, . . . , vN be a topological ordering of the computation graph
(i.e. parents come before children.)

vN denotes the variable we’re trying to compute derivatives of (e.g. loss).
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Backpropagation

Example: univariate logistic least squares regression

Forward pass:

z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

R =
1

2
w2

Lreg = L+ λR

Backward pass:

Lreg = 1

R = Lreg
dLreg

dR
= Lreg λ

L = Lreg
dLreg

dL
= Lreg

y = L dL
dy

= L (y − t)

z = y
dy

dz

= y σ′(z)

w= z
∂z

∂w
+RdR

dw

= z x+Rw

b = z
∂z

∂b

= z
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Backpropagation

Multilayer Perceptron (multiple outputs):

Forward pass:

zi =
∑
j

w
(1)
ij xj + b

(1)
i

hi = σ(zi)

yk =
∑
i

w
(2)
ki hi + b

(2)
k

L =
1

2

∑
k

(yk − tk)2

Backward pass:

L = 1

yk = L (yk − tk)

w
(2)
ki = yk hi

b
(2)
k = yk

hi =
∑
k

ykw
(2)
ki

zi = hi σ
′(zi)

w
(1)
ij = zi xj

b
(1)
i = zi
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Backpropagation

In vectorized form:

Forward pass:

z = W(1)x + b(1)

h = σ(z)

y = W(2)h + b(2)

L =
1

2
‖y − t‖2

Backward pass:

L = 1

y = L (y − t)

W(2) = yh>

b(2) = y

h = W(2)>y

z = h ◦ σ′(z)

W(1) = zx>

b(1) = z
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Computational Cost

Computational cost of forward pass: one add-multiply operation
per weight

zi =
∑
j

w
(1)
ij xj + b

(1)
i

Computational cost of backward pass: two add-multiply
operations per weight

w
(2)
ki = yk hi

hi =
∑
k

ykw
(2)
ki

Rule of thumb: the backward pass is about as expensive as two
forward passes.

For a multilayer perceptron, this means the cost is linear in the
number of layers, quadratic in the number of units per layer.
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Backpropagation

Backprop is used to train the overwhelming majority of neural
nets today.

I Even optimization algorithms much fancier than gradient descent
(e.g. second-order methods) use backprop to compute the gradients.

Despite its practical success, backprop is believed to be neurally
implausible.
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Conclusion

Multi-layer feedforward NN addressed the feature learning problem

Backpropagation as a method to learn NN

Intro ML (UofT) CSC2515-Lec5 46 / 97



Convolutional Networks

Convolutional Networks
(Optional)
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Neural Nets for Visual Object Recognition

People are very good at recognizing shapes

I Intrinsically difficult, computers are bad at it

Why is it difficult?
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Why is it a Problem?

Difficult scene conditions

[From: Grauman & Leibe]
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Why is it a Problem?

Huge within-class variations. Recognition is mainly about modeling
variation.

[Pic from: S. Lazebnik]Intro ML (UofT) CSC2515-Lec5 50 / 97



Why is it a Problem?

Tons of classes

[Biederman]
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Neural Nets for Object Recognition

People are very good at recognizing object

I Intrinsically difficult, computers are bad at it

Some reasons why it is difficult:

I Segmentation: Real scenes are cluttered
I Invariances: We are very good at ignoring all sorts of variations

that do not affect class
I Deformations: Natural object classes allow variations (faces, letters,

chairs)
I A huge amount of computation is required
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How to Deal with Large Input Spaces

How can we apply neural nets to images?

Images can have millions of pixels, i.e., x is very high dimensional

How many parameters do we have?

Prohibitive to have fully-connected layers

What can we do?

We can use a locally connected layer
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34

Locally Connected Layer

Example: 200x200 image
                40K hidden units
                Filter size: 10x10

      4M parameters

Ranzato

Note: This parameterization is good 
when input image is registered (e.g., 
face recognition).
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When Will this Work?

When Will this Work?

This is good when the input is (roughly) registered
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General Images

The object can be anywhere

[Slide: Y. Zhu]
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General Images

The object can be anywhere

[Slide: Y. Zhu]
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General Images

The object can be anywhere

[Slide: Y. Zhu]
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The replicated feature approach

The red connections all 
have the same weight. 

5 

Adopt approach apparently used in
monkey visual systems

Use many different copies of the same
feature detector.

I Copies have slightly different
positions.

I Could also replicate across scale
and orientation.

I Tricky and expensive

I Replication reduces the number
of free parameters to be learned.

Use several different feature types,
each with its own replicated pool of
detectors.

I Allows each patch of image to be
represented in several ways.

Intro ML (UofT) CSC2515-Lec5 59 / 97



Convolutional Neural Net

Idea: Statistics are similar at different locations (Lecun 1998)

Connect each hidden unit to a small input patch and share the weight
across space

This is called a convolution layer and the network is a convolutional
network
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Convolution Operator

Convolution layers are named after the convolution operator.

If a and b are two arrays (or vector or signal), the convolution a ∗ b
between them is defined as a new array (or vector or signal) with
its t-th component being

(a ∗ b)t =
∑
τ

aτ bt−τ .
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Convolution Operator

Method 1: translate-and-scale
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Convolution Operator

Method 2: flip-and-filter
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Convolution Operator

Convolution can also be viewed as matrix multiplication:

(2,−1, 1) ∗ (1, 1, 2) =


1
1 1
2 1 1

2 1
2


 2
−1
1



Note: This is how convolution is typically implemented. It is more
efficient than the fast Fourier transform (FFT) for modern conv nets
on GPUs.
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Convolution Operator

Some properties of convolution:

Commutativity
a ∗ b = b ∗ a

Distributivity

a ∗ (λ1b+ λ2c) = λ1a ∗ b+ λ2a ∗ c
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2-D Convolution Operator

2-D convolution is defined analogously to 1-D convolution.

If A and B are two 2-D arrays, then:

(A ∗B)ij =
∑
s

∑
t

AstBi−s,j−t.
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2-D Convolution Operator

Method 1: Translate-and-Scale
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2-D Convolution Operator

Method 2: Flip-and-Filter
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2-D Convolution Operator

We convolve an input by a kernel, or filter.

The term Filter is used due to the original of convolutional in
signal processing, in which the convolution operator is used to
compute the effect of a linear filter on an input.

Do not confuse this kernel with the kernels in an RKHS.

What does this filter do?

� 0 1 0
1 4 1

0 1 0
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2-D Convolution Operator

What does this filter do?

� 0 -1 0
-1 8 -1

0 -1 0
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2-D Convolution Operator

What does this filter do?

� 0 -1 0
-1 4 -1

0 -1 0
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2-D Convolution Operator

What does this filter do?

� 1 0 -1
2 0 -2

1 0 -1
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54

Learn multiple filters.

E.g.: 200x200 image
        100 Filters
        Filter size: 10x10

   10K parameters

Ranzato

Convolutional Layer
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Convolutional Layer

Hyperparameters of a convolutional layer:

The number of filters (controls the depth of the output volume)

The stride: how many units apart do we apply a filter spatially (this
controls the spatial size of the output volume)

The size w × h of the filters
[http://cs231n.github.io/convolutional-networks/]
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61

By “pooling” (e.g., taking max) filter
responses at different locations we gain
robustness to the exact spatial location
of features.

Ranzato

Pooling Layer
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Pooling Options

Max Pooling: return the maximal argument

Average Pooling: return the average of the arguments

Other types of pooling exist too
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Pooling

Figure: Left: Pooling, right: max pooling example

Hyperparameters of a pooling layer:

The spatial extent F

The stride

[http://cs231n.github.io/convolutional-networks/]
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Backpropagation with Weight Constraints

The backpropagation algorithm from earlier can be applied directly to
ConvNets

This is covered in CSC2516.

As a user, you do not need to worry about the details, since they are
handled by automatic differentiation packages.
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MNIST Dataset

MNIST dataset of handwritten digits
I Categories: 10 digit classes
I Source: Scans of handwritten zip codes from envelopes
I Size: 60,000 training images and 10,000 test images, grayscale, of

size 28× 28
I Normalization: centered within in the image, scaled to a

consistent size
I The assumption is that the digit recognizer would be part of a

larger pipeline that segments and normalizes images.

In 1998, Yann LeCun and colleagues built a conv net called LeNet
which was able to classify digits with 98.9% test accuracy.

I It was good enough to be used in a system for automatically
reading numbers on checks.
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LeNet

Here is the LeNet architecture, which was applied to handwritten digit
recognition on MNIST in 1998:The!architecture!of!LeNet5!
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Size of a Conv Net

Ways to measure the size of a network:
I Number of units. This is important because the activations need

to be stored in memory during training (i.e. backprop).
I Number of weights. This is important because the weights need

to be stored in memory, and because the number of parameters
affects the overfitting.

I Number of connections. This is important because there are
approximately 3 add-multiply operations per connection (1 for the
forward pass, 2 for the backward pass).

We saw that a fully connected layer with M input units and N
output units has MN connections and MN weights.

The story for conv nets is more complicated.
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Size of a Conv Net

fully connected layer convolution layer
# output units WHI WHI

# weights W 2H2IJ K2IJ
# connections W 2H2IJ WHK2IJ
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Size of a Conv Net

Sizes of layers in LeNet:

Layer Type # units # connections # weights

C1 convolution 4704 117,600 150
S2 pooling 1176 4704 0
C3 convolution 1600 240,000 2400
S4 pooling 400 1600 0
F5 fully connected 120 48,000 48,000
F6 fully connected 84 10,080 10,080

output fully connected 10 840 840

Conclusions?
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Size of a Conv Net

Rules of thumb:
I Most of the units and connections are in the convolution layers.
I Most of the weights are in the fully connected layers.

If you try to make layers larger, you’ll run up against various
resource limitations (i.e. computation time, memory)

You’ll repeat this exercise for AlexNet for homework.
I Conv nets have gotten a LOT larger since 1998!
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ImageNet

ImageNet is the modern object recognition benchmark dataset. It was
introduced in 2009, and has led to amazing progress in object
recognition since then.
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ImageNet

Used for the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC), an annual benchmark competition for object recognition
algorithms

Design decisions

I Categories: Taken from a lexical database called WordNet
I WordNet consists of “synsets”, or sets of synonymous words
I They tried to use as many of these as possible; almost 22,000 as of

2010
I Of these, they chose the 1000 most common for the ILSVRC
I The categories are really specific, e.g. hundreds of kinds of dogs

I Size: 1.2 million full-sized images for the ILSVRC
I Source: Results from image search engines, hand-labeled by

Mechanical Turkers
I Labeling such specific categories was challenging; annotators had to

be given the WordNet hierarchy, Wikipedia, etc.

I Normalization: none, although the contestants are free to do
preprocessing
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ImageNet

Images and object categories vary
on a lot of dimensions

Russakovsky et al.
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ImageNet

Size on disk:

MNIST
60 MB

ImageNet
50 GB

Intro ML (UofT) CSC2515-Lec5 88 / 97



AlexNet

AlexNet, 2012. 8 weight layers. 16.4% top-5 error (i.e. the network gets 5 tries
to guess the right category).

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5 ⇥ 5 ⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3 ⇥ 3 ⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224 ⇥ 224 ⇥ 3-dimensional.

5

(Krizhevsky et al., 2012)

The two processing pathways correspond to 2 GPUs. (At the time, the
network couldn’t fit on one GPU.)

AlexNet’s stunning performance on the ILSVRC is what set off the deep
learning boom of the last 8-9 years.
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Inception

Inception, 2014. (“We need to
go deeper!”)

22 weight layers

Fully convolutional (no fully
connected layers)

Convolutions are broken down
into a bunch of smaller
convolutions

6.6% test error on ImageNet

(Szegedy et al., 2014)
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Inception

They were really aggressive about cutting the number of
parameters.

I Motivation: train the network on a large cluster, run it on a cell
phone

I Memory at test time is the big constraint.
I Having lots of units is OK, since the activations only need to be

stored at training time (for backpropagation).
I Parameters need to be stored both at training and test time, so

these are the memory bottleneck.

I How they did it
I No fully connected layers (remember, these have most of the

weights)
I Break down convolutions into multiple smaller convolutions (since

this requires fewer parameters total)

I Inception has “only” 2 million parameters, compared with 60
million for AlexNet

I This turned out to improve generalization as well. (Overfitting can
still be a problem, even with over a million images!)
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150 Layers!

Networks are now at 150 layers

They use a skip connections with special form

In fact, they don’t fit on this screen

Amazing performance!

A lot of “mistakes” are due to wrong
ground-truth

[He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition.
arXiv:1512.03385, 2016]
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Results: Object Classification

Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image
Recognition. arXiv:1512.03385, 2016]
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Results: Object Detection

Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image
Recognition. arXiv:1512.03385, 2016]
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Results: Object Detection

Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image
Recognition. arXiv:1512.03385, 2016]
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Results: Object Detection

Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image
Recognition. arXiv:1512.03385, 2016]
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What Do Networks Learn?

Recall: we can understand what first-layer features are doing by
visualizing the weight matrices.

Fully connected
(MNIST) Convolutional

(ImageNet)

826 M.D. Zeiler and R. Fergus

(a) (b)

(c) (d)

Fig. 5. (a): 1st layer features without feature scale clipping. Note that one feature dom-
inates. (b): 1st layer features from Krizhevsky et al. [18]. (c): Our 1st layer features. The
smaller stride (2 vs 4) and filter size (7x7 vs 11x11) results in more distinctive features
and fewer “dead” features. (d): Visualizations of 2nd layer features from Krizhevsky
et al. [18]. (e): Visualizations of our 2nd layer features. These are cleaner, with no
aliasing artifacts that are visible in (d).

1 & 2). This model, shown in Fig. 3, significantly outperforms the architecture
of Krizhevsky et al. [18], beating their single model result by 1.7% (test top-5).
When we combine multiple models, we obtain a test error of 14.8%, an improve-
ment of 1.6%. This result is close to that produced by the data-augmentation
approaches of Howard [15], which could easily be combined with our architec-
ture. However, our model is some way short of the winner of the 2013 Imagenet
classification competition [28].

Table 1. ImageNet 2012/2013 classification error rates. The ∗ indicates models that
were trained on both ImageNet 2011 and 2012 training sets.

Val Val Test
Error % Top-1 Top-5 Top-5

Gunji et al. [12] - - 26.2

DeCAF [7] - - 19.2

Krizhevsky et al. [18], 1 convnet 40.7 18.2 −−
Krizhevsky et al. [18], 5 convnets 38.1 16.4 16.4
Krizhevsky et al. ∗[18], 1 convnets 39.0 16.6 −−
Krizhevsky et al. ∗[18], 7 convnets 36.7 15.4 15.3

Our replication of
Krizhevsky et al. , 1 convnet 40.5 18.1 −−
1 convnet as per Fig. 3 38.4 16.5 −−
5 convnets as per Fig. 3 – (a) 36.7 15.3 15.3

1 convnet as per Fig. 3 but with
layers 3,4,5: 512,1024,512 maps – (b) 37.5 16.0 16.1

6 convnets, (a) & (b) combined 36.0 14.7 14.8

Howard [15] - - 13.5
Clarifai [28] - - 11.7

Varying ImageNet Model Sizes: In Table 2, we first explore the architecture
of Krizhevsky et al. [18] by adjusting the size of layers, or removing them entirely.
In each case, the model is trained from scratch with the revised architecture.
Removing the fully connected layers (6,7) only gives a slight increase in error (in

Higher-level weight matrices are hard to interpret.
The better the input matches these weights, the more the feature
activates.

I Obvious generalization: visualize higher-level features by seeing
what inputs activate them.
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