CSC 2515: Introduction to Machine Learning Lecture 6: Neural Networks

Amir-massoud Farahmand¹

University of Toronto and Vector Institute

¹Credit for slides goes to many members of the ML Group at the U of T, and beyond, including (recent past): Roger Grosse, Murat Erdogdu, Richard Zemel, Juan Felipe Carrasquilla, Emad Andrews, and myself.

Table of Contents

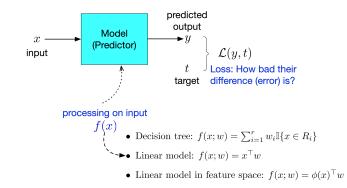
1 From Brain to Artificial Neural Networks

2 Multilayer Perceptrons (Feedforward Neural Networks)• Expressive Power

3 Backpropagation

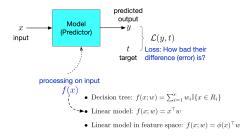
4 Convolutional Networks

- Convolution Operator
- Convolutional Layer
- Pooling Layer
- Samples of Convolutional Networks



- We have considered a modular framework to ML.
- We considered several loss functions for regression and classifications
- We have "mostly" focused on linear models.

Intro ML (UofT)



- Feature mapping can make linear models much more powerful.
- Coming up with feature mapping can be challenging.
- Kernel-based approach is a way to partially address it.
- (Artificial) Neural Networks is a general approach to represent more complex models.
- The predictor can be seen as a computer program that processes the input in order to generate the output. Some programs are simpler, some are more complex.

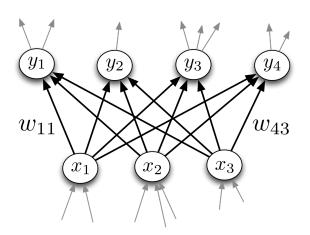
Intro ML (UofT)

Skills to Learn

- Multi-layer feedforward neural networks
- Backpropagation for training NN

Neural Networks

. . .



. . .

Inspiration: The Brain

• Our brain has $\sim 10^{11}$ neurons, each of which communicates (is connected) to $\sim 10^4$ other neurons

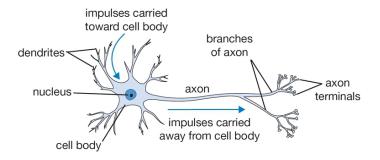
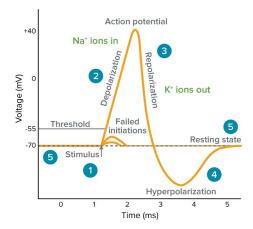


Figure: The basic computational unit of the brain: Neuron

[Pic credit: http://cs231n.github.io/neural-networks-1/]

Inspiration: The Brain

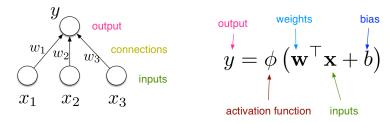
• Neurons receive input signals and accumulate voltage. After some threshold they will fire spiking responses.



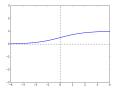
[Pic credit: www.moleculardevices.com]

Inspiration: The Brain

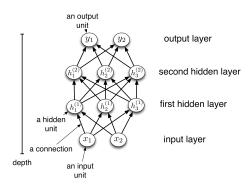
• For (artificial) neural nets, we use a much simpler model neuron, or unit:

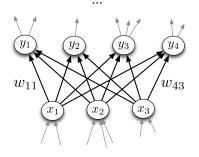


• Compare with logistic activation function used in LR: $y = \sigma(\mathbf{w}^\top \mathbf{x} + b)$



- We can connect lots of units together into a directed acyclic graph.
- Typically, units are grouped together into layers.
- This gives a feed-forward neural network.
- That is in contrast to recurrent neural networks, which can have cycles.



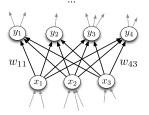


Each hidden layer i connects N_{i-1} input units to N_i output units.
In the simplest case, all input units are connected to all output units. We call this a fully connected layer. We will consider other layer types later.

. . .

• The inputs and outputs for a layer are distinct from the inputs and outputs to the network.

Intro ML (UofT)



- If we need to compute $M[=N_i]$ outputs from $N = [N_{i-1}]$ inputs, we can do so in parallel using matrix multiplication. This means we will be using a $M \times N$ weight matrix.
- The output units are a function of the input units:

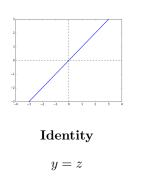
$$\mathbf{y} = f(\mathbf{x}) = \phi\left(\mathbf{W}\mathbf{x} + \mathbf{b}\right)$$

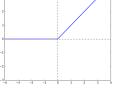
• A multilayer network consisting of fully connected layers is called a multilayer perceptron. Despite the name, it has nothing to do with the Perceptron algorithm.

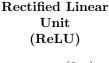
Intro ML (UofT)

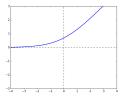
Activation Functions

Some activation functions:



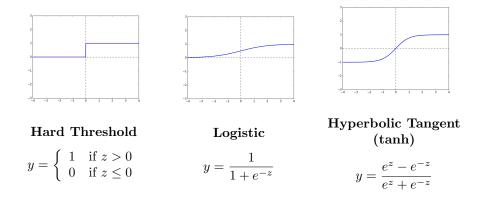






Soft ReLU $y = \log 1 + e^z$

Some activation functions:



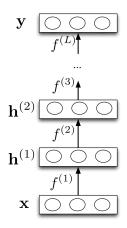
• Each layer computes a function, so the network computes a composition of functions:

$$\begin{split} \mathbf{h}^{(1)} &= f^{(1)}(\mathbf{x}) = \phi(\mathbf{W}^{(1)}\mathbf{x} + \mathbf{b}^{(1)}) \\ \mathbf{h}^{(2)} &= f^{(2)}(\mathbf{h}^{(1)}) = \phi(\mathbf{W}^{(2)}\mathbf{h}^{(1)} + \mathbf{b}^{(2)}) \\ &\vdots \\ \mathbf{y} &= f^{(L)}(\mathbf{h}^{(L-1)}) \end{split}$$

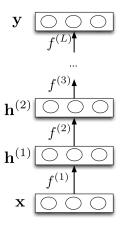
• Or more compactly:

$$\mathbf{y} = f^{(L)} \circ \cdots \circ f^{(1)}(\mathbf{x}).$$

• Neural nets provide modularity: we can implement each layer's computations as a black box.



 Q: Write down the equations of a two layer NN (one hidden, one output), two hidden units, φ as the activation function of the hidden layer, and a linear one dimensional output layer.

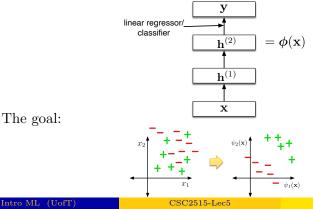


Feature Learning

Last layer:

• The goal:

- If task is regression: choose $\mathbf{y} = f^{(L)}(\mathbf{h}^{(L-1)}) = (\mathbf{w}^{(L)})^T \mathbf{h}^{(L-1)} + b^{(L)}$
- If task is binary classification: choose $\mathbf{v} = f^{(L)}(\mathbf{h}^{(L-1)}) = \sigma((\mathbf{w}^{(L)})^T \mathbf{h}^{(L-1)} + b^{(L)})$
- Neural nets can be viewed as a way of learning features:



17 / 97

Feature Learning

- Suppose that we are trying to classify images of handwritten digits. Each image is represented as a vector of $28 \times 28 = 784$ pixel values.
- Each first-layer hidden unit computes $\phi(\mathbf{w}_i^T \mathbf{x})$. It acts as a feature detector.
- We can visualize **w** by reshaping it into an image. Here is an example that responds to a diagonal stroke.

Here are some of the features learned by the first hidden layer of a handwritten digit classifier:

2			11	Ser.		C.	
1					(Call		19
4	1		約				93
11	12			18	9 2)		
					続		
-	翻					10	
	N	1		2	all a	物	
1	-		No.		191	同	d'a

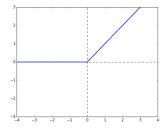
- We have seen that there are some functions that linear classifiers cannot represent. Are deep networks any better?
- Suppose a layer's activation function is the identity function, so the layer just computes an affine transformation of the input
 - ▶ We call this a linear layer
- Any sequence of *linear* layers can be equivalently represented with a single linear layer.

$$\mathbf{y} = \underbrace{\mathbf{W}^{(3)}\mathbf{W}^{(2)}\mathbf{W}^{(1)}}_{\triangleq \mathbf{W}'}\mathbf{x}$$

• Deep linear networks are no more expressive than linear models.

Expressive Power

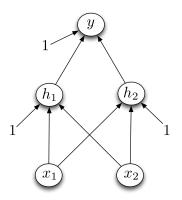
- Multilayer feed-forward neural nets with *nonlinear* activation functions are universal function approximators: they can approximate any function arbitrarily well.
- This has been shown for various activation functions (thresholds, logistic, ReLU, etc.)
 - ▶ Even though ReLU is "almost" linear, it is nonlinear enough.



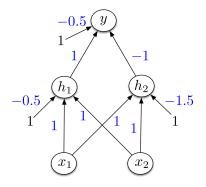
Multilayer Perceptrons

Designing a network to classify XOR:

Assume hard threshold activation function



Multilayer Perceptrons

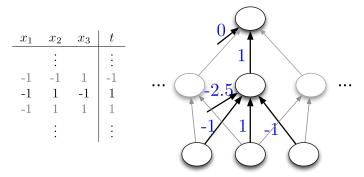


- h₁ computes I[x₁ + x₂ 0.5 > 0]
 i.e. x₁ OR x₂
 h₂ computes I[x₁ + x₂ 1.5 > 0]
 i.e. x₁ AND x₂
 y computes I[h₁ h₂ 0.5 > 0] ≡ I[h₁ + (1 h₂) 1.5 > 0]
 i.e. h₁ AND (NOT h₂) = x₁ XOR x₂
 - Intro ML (UofT)

Expressive Power

Universality for binary inputs and targets:

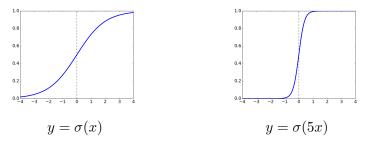
- Hard threshold hidden units, linear output
- Strategy: 2^D hidden units, each of which responds to one particular input configuration



• Only requires one hidden layer, though it needs to be extremely wide.

Intro ML (UofT)

- What about the logistic activation function?
- You can approximate a hard threshold by scaling up the weights and biases:

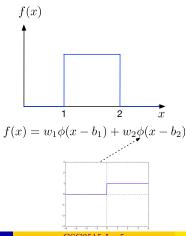


• This is good: logistic units are differentiable, so we can train them with gradient descent.

Expressive Power

Let us do some exercises ...

• Q: How can we represent the function that takes value of +1 in $x \in [1, 2]$ and 0 elsewhere using a simple NN with hard threshold activation function?

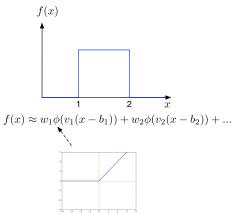


Intro ML (UofT)

Expressive Power

Let us do some exercises ...

• Q: How can we approximately represent the function that takes value of +1 in $x \in [1, 2]$ and 0 elsewhere using a simple NN with ReLU activation function?

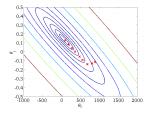


- Limits of universality
 - ▶ You may need to represent an exponentially large network.
 - ▶ How can you find the appropriate weights to represent a given function?
 - ▶ If you can learn any function, you'll just overfit.
 - We desire a *compact* representation.

Training Neural Networks with Backpropagation

Recap: Gradient Descent

• Recall: gradient descent moves in the opposite of the gradient



- Weight space for a multilayer neural net: one coordinate for each weight or bias of the network, in *all* the layers
- Conceptually, not any different from what we have seen so far just higher dimensional and harder to visualize!
- We want to define a loss \mathcal{L} and compute the gradient of the cost $d\mathcal{J}/d\mathbf{w}$, which is the vector of partial derivatives.
 - ► This is the average of $d\mathcal{L}/d\mathbf{w}$ over all the training examples, so in this lecture we focus on computing $d\mathcal{L}/d\mathbf{w}$.

- We have already been using the univariate Chain Rule.
- Recall: if f(x) and x(t) are univariate functions, then

$$\frac{\mathrm{d}}{\mathrm{d}t}f(x(t)) = \frac{\mathrm{d}f}{\mathrm{d}x}\frac{\mathrm{d}x}{\mathrm{d}t}.$$

Recall: Univariate logistic least squares model

$$z = wx + b$$

$$y = \sigma(z)$$

$$\mathcal{L} = \frac{1}{2}(y - t)^{2}$$

Let's compute the loss derivatives $\frac{\partial \mathcal{L}}{\partial w}, \frac{\partial \mathcal{L}}{\partial b}$.

How you would have done it in calculus class:

$$\mathcal{L} = \frac{1}{2} (\sigma(wx+b) - t)^2$$

$$\frac{\partial \mathcal{L}}{\partial w} = \frac{\partial}{\partial w} \left[\frac{1}{2} (\sigma(wx+b) - t)^2 \right]$$

$$= \frac{1}{2} \frac{\partial}{\partial w} (\sigma(wx+b) - t)^2$$

$$= (\sigma(wx+b) - t) \frac{\partial}{\partial w} (\sigma(wx+b) - t)$$

$$= (\sigma(wx+b) - t) \sigma'(wx+b) \frac{\partial}{\partial w} (wx+b)$$

$$= (\sigma(wx+b) - t) \sigma'(wx+b) x$$

$$\frac{\partial \mathcal{L}}{\partial b} = \frac{\partial}{\partial b} \left[\frac{1}{2} (\sigma(wx+b) - t)^2 \right]$$
$$=? \quad \text{(Exercise!)}$$

What are the disadvantages of this approach?

A more structured way to do it:

Computing the derivatives:

 $d\mathcal{L}$

Computing the loss:

$$z = wx + b$$

$$y = \sigma(z)$$

$$\mathcal{L} = \frac{1}{2}(y - t)^{2}$$

$$\frac{d\mathcal{L}}{dz} = \frac{d\mathcal{L}}{dy}\frac{dy}{dz} = \frac{d\mathcal{L}}{dy}\sigma'(z)$$

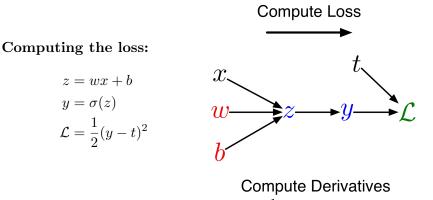
$$\frac{\partial\mathcal{L}}{\partial w} = \frac{d\mathcal{L}}{dz}\frac{dz}{dw} = \frac{d\mathcal{L}}{dz}x$$

$$\frac{\partial\mathcal{L}}{\partial b} = \frac{d\mathcal{L}}{dz}\frac{dz}{db} = \frac{d\mathcal{L}}{dz}$$

Remember: The goal is not to obtain closed-form solutions, but to be able to write a program that efficiently computes the derivatives.

Univariate Chain Rule

- We can diagram out the computations using a computation graph.
- The nodes represent all the inputs and computed quantities, and the edges represent which nodes are computed directly as a function of which other nodes.



Intro ML (UofT)

A slightly more convenient notation:

- Use \overline{y} to denote the derivative of the loss w.r.t. y (i.e., $d\mathcal{L}/dy$), sometimes called the error signal.
- This emphasizes that the error signals are just values our program is computing (rather than a mathematical operation).

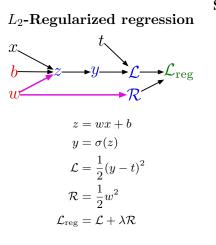
Computing the loss:

Computing the derivatives:

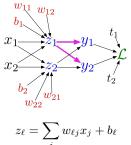
 $z = wx + b \qquad \qquad \overline{y} = y - t$ $y = \sigma(z) \qquad \qquad \overline{z} = \overline{y} \, \sigma'(z)$ $\mathcal{L} = \frac{1}{2} (y - t)^2 \qquad \qquad \overline{w} = \overline{z} \, x$ $\overline{b} = \overline{z}$

Multivariate Chain Rule

Problem: what if the computation graph has fan-out > 1? This requires the Multivariate Chain Rule!



Softmax classifier with the cross-entropy loss



$$y_k = \frac{e^{z_k}}{\sum_{\ell} e^{z_\ell}}$$
$$\mathcal{L} = -\sum_k t_k \log y_k$$

Intro ML (UofT)

Multivariate Chain Rule

• Suppose that we have a function f(x, y) and functions x(t) and y(t). (All the variables here are scalar-valued). Then

$$\frac{\mathrm{d}}{\mathrm{d}t}f(x(t),y(t)) = \frac{\partial f}{\partial x}\frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial f}{\partial y}\frac{\mathrm{d}y}{\mathrm{d}t}$$

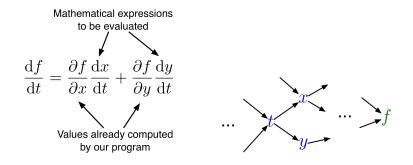
• Example:

$$f(x, y) = y + e^{xy}$$
$$x(t) = \cos t$$
$$y(t) = t^{2}$$

• Plug in to Chain Rule:

$$\frac{\mathrm{d}f}{\mathrm{d}t} = \frac{\partial f}{\partial x}\frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial f}{\partial y}\frac{\mathrm{d}y}{\mathrm{d}t}$$
$$= (ye^{xy}) \cdot (-\sin t) + (1 + xe^{xy}) \cdot 2t$$

• In the context of backpropagation:



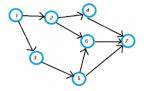
• In our notation:

$$\bar{t} = \bar{x} \, \frac{\mathrm{d}x}{\mathrm{d}t} + \bar{y} \, \frac{\mathrm{d}y}{\mathrm{d}t}$$

Backpropagation

Full backpropagation algorithm:

Let v_1, \ldots, v_N be a topological ordering of the computation graph (i.e. parents come before children.)



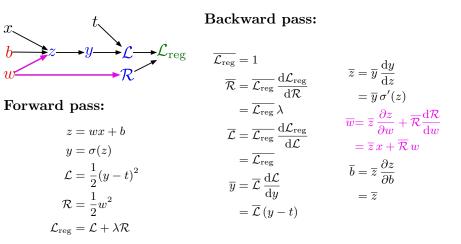
 v_N denotes the variable we're trying to compute derivatives of (e.g. loss).

forward pass For $i = 1, \dots, N$ Compute v_i as a function of $Pa(v_i)$ backward pass $\left[\begin{array}{c} \overline{v_N}=1\\ & \text{For }i=N-1,\ldots,1\\ & \overline{v_i}=\sum_{j\in \operatorname{Ch}(v_i)}\overline{v_j}\,\frac{\partial v_j}{\partial v_i}\end{array}\right]$

Intro ML (UofT)

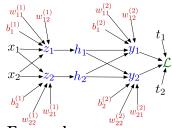
Backpropagation

Example: univariate logistic least squares regression



Backpropagation

Multilayer Perceptron (multiple outputs):



Forward pass:

$$z_{i} = \sum_{j} w_{ij}^{(1)} x_{j} + b_{i}^{(1)}$$
$$h_{i} = \sigma(z_{i})$$
$$y_{k} = \sum_{i} w_{ki}^{(2)} h_{i} + b_{k}^{(2)}$$
$$\mathcal{L} = \frac{1}{2} \sum_{k} (y_{k} - t_{k})^{2}$$

Backward pass:

$$\overline{\mathcal{L}} = 1$$

$$\overline{y_k} = \overline{\mathcal{L}} (y_k - t_k)$$

$$\overline{w_{ki}^{(2)}} = \overline{y_k} h_i$$

$$\overline{b_k^{(2)}} = \overline{y_k}$$

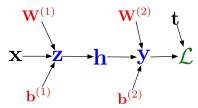
$$\overline{h_i} = \sum_k \overline{y_k} w_{ki}^{(2)}$$

$$\overline{z_i} = \overline{h_i} \sigma'(z_i)$$

$$\overline{w_{ij}^{(1)}} = \overline{z_i} x_j$$

$$\overline{b_i^{(1)}} = \overline{z_i}$$

In vectorized form:



Forward pass:

$$\begin{aligned} \mathbf{z} &= \mathbf{W}^{(1)}\mathbf{x} + \mathbf{b}^{(1)} \\ \mathbf{h} &= \sigma(\mathbf{z}) \\ \mathbf{y} &= \mathbf{W}^{(2)}\mathbf{h} + \mathbf{b}^{(2)} \\ \mathcal{L} &= \frac{1}{2} \|\mathbf{y} - \mathbf{t}\|^2 \end{aligned}$$

Backward pass:

$$\begin{split} \overline{\mathcal{L}} &= 1\\ \overline{\mathbf{y}} &= \overline{\mathcal{L}} \left(\mathbf{y} - \mathbf{t} \right)\\ \overline{\mathbf{W}^{(2)}} &= \overline{\mathbf{y}} \mathbf{h}^\top\\ \overline{\mathbf{b}^{(2)}} &= \overline{\mathbf{y}}\\ \overline{\mathbf{h}} &= \mathbf{W}^{(2)\top} \overline{\mathbf{y}}\\ \overline{\mathbf{z}} &= \overline{\mathbf{h}} \circ \sigma'(\mathbf{z})\\ \overline{\mathbf{W}^{(1)}} &= \overline{\mathbf{z}} \mathbf{x}^\top\\ \overline{\mathbf{b}^{(1)}} &= \overline{\mathbf{z}} \end{split}$$

Computational Cost

• Computational cost of forward pass: one add-multiply operation per weight

$$z_i = \sum_j w_{ij}^{(1)} x_j + b_i^{(1)}$$

• Computational cost of backward pass: two add-multiply operations per weight

$$\overline{w_{ki}^{(2)}} = \overline{y_k} h_i$$
$$\overline{h_i} = \sum_k \overline{y_k} w_{ki}^{(2)}$$

- Rule of thumb: the backward pass is about as expensive as two forward passes.
- For a multilayer perceptron, this means the cost is linear in the number of layers, quadratic in the number of units per layer.

Intro ML (UofT)

- Backprop is used to train the overwhelming majority of neural nets today.
 - Even optimization algorithms much fancier than gradient descent (e.g. second-order methods) use backprop to compute the gradients.
- Despite its practical success, backprop is believed to be neurally implausible.

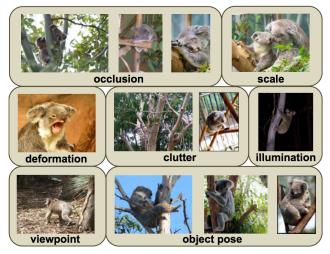
- Multi-layer feedforward NN addressed the feature learning problem
- Backpropagation as a method to learn NN

Convolutional Networks (Optional)

- People are very good at recognizing shapes
 - ▶ Intrinsically difficult, computers are bad at it
- Why is it difficult?

Why is it a Problem?

• Difficult scene conditions



[From: Grauman & Leibe]

Intro ML (UofT)

Why is it a Problem?

• Huge within-class variations. Recognition is mainly about modeling variation.

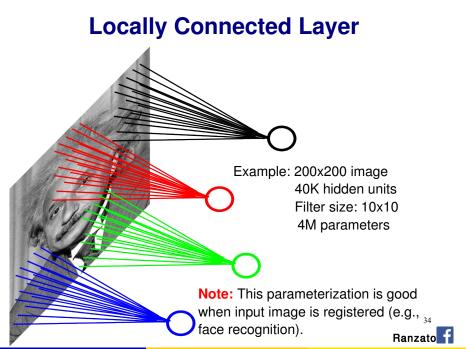
Why is it a Problem?

• Tons of classes

[Biederman]

- People are very good at recognizing object
 - ▶ Intrinsically difficult, computers are bad at it
- Some reasons why it is difficult:
 - ▶ Segmentation: Real scenes are cluttered
 - ▶ Invariances: We are very good at ignoring all sorts of variations that do not affect class
 - ► Deformations: Natural object classes allow variations (faces, letters, chairs)
 - ▶ A huge amount of computation is required

- How can we apply neural nets to images?
- $\bullet\,$ Images can have millions of pixels, i.e., ${\bf x}$ is very high dimensional
- How many parameters do we have?
- Prohibitive to have fully-connected layers
- What can we do?
- We can use a locally connected layer



CSC2515-Lec5

When Will this Work?

• This is good when the input is (roughly) registered

General Images

• The object can be anywhere

[Slide: Y. Zhu]

Intro ML (UofT)

CSC2515-Lec5

General Images

• The object can be anywhere

[Slide: Y. Zhu]

Intro ML (UofT)

CSC2515-Lec5

General Images

• The object can be anywhere

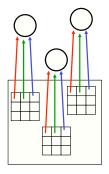
[Slide: Y. Zhu]

Intro ML (UofT)

The replicated feature approach

5

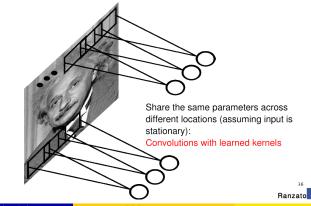
The red connections all have the same weight.



- Adopt approach apparently used in monkey visual systems
- Use many different copies of the same feature detector.
 - Copies have slightly different positions.
 - Could also replicate across scale and orientation.
 - ▶ Tricky and expensive
 - Replication reduces the number of free parameters to be learned.
- Use several **different feature types**, each with its own replicated pool of detectors.
 - Allows each patch of image to be represented in several ways.

Convolutional Neural Net

- Idea: Statistics are similar at different locations (Lecun 1998)
- Connect each hidden unit to a small input patch and share the weight across space
- This is called a convolution layer and the network is a convolutional network

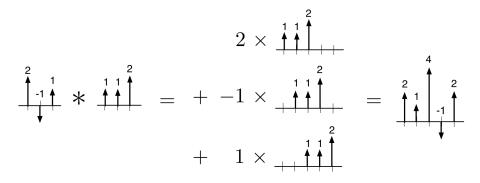


- Convolution layers are named after the convolution operator.
- If a and b are two arrays (or vector or signal), the convolution a * b between them is defined as a new array (or vector or signal) with its t-th component being

$$(a*b)_t = \sum_{\tau} a_{\tau} b_{t-\tau}.$$

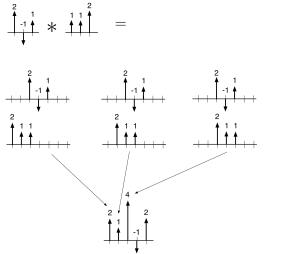
Convolution Operator

Method 1: translate-and-scale



Convolution Operator

Method 2: flip-and-filter



...

Convolution can also be viewed as matrix multiplication:

$$(2, -1, 1) * (1, 1, 2) = \begin{pmatrix} 1 & & \\ 1 & 1 & \\ 2 & 1 & 1 \\ & 2 & 1 \\ & & 2 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$$

Note: This is how convolution is typically implemented. It is more efficient than the fast Fourier transform (FFT) for modern conv nets on GPUs.

Some properties of convolution:

• Commutativity

$$a * b = b * a$$

• Distributivity

$$a * (\lambda_1 b + \lambda_2 c) = \lambda_1 a * b + \lambda_2 a * c$$

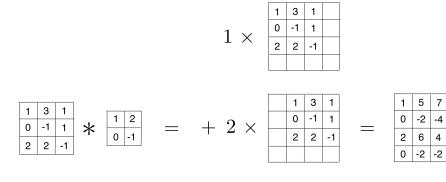
2-D convolution is defined analogously to 1-D convolution.

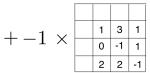
If A and B are two 2-D arrays, then:

$$(A*B)_{ij} = \sum_{s} \sum_{t} A_{st} B_{i-s,j-t}.$$

2-D Convolution Operator

Method 1: Translate-and-Scale





2

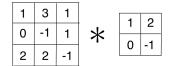
1

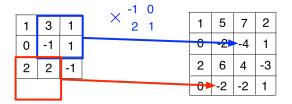
-3

1

2-D Convolution Operator

Method 2: Flip-and-Filter





2-D Convolution Operator

We convolve an input by a kernel, or filter.

- The term Filter is used due to the original of convolutional in signal processing, in which the convolution operator is used to compute the effect of a linear filter on an input.
- Do not confuse this kernel with the kernels in an RKHS.

What does this filter do?

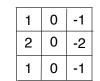
What does this filter do?

*

What does this filter do?

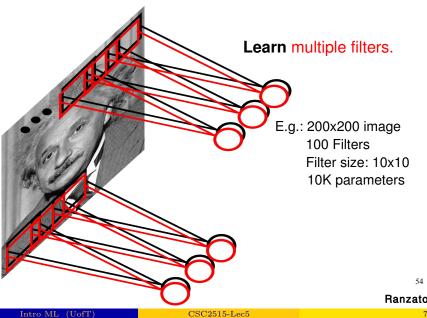
*

What does this filter do?



*

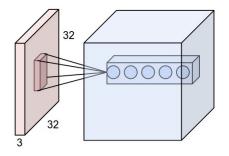
Convolutional Layer



73 / 97

54

Convolutional Layer



Hyperparameters of a convolutional layer:

- The number of filters (controls the **depth** of the output volume)
- The **stride**: how many units apart do we apply a filter spatially (this controls the spatial size of the output volume)
- The size $w \times h$ of the filters

[http://cs231n.github.io/convolutional-networks/]

Pooling Layer

By "pooling" (e.g., taking max) filter responses at different locations we gain robustness to the exact spatial location of features.

75 / 97

61 Ranzat

- Max Pooling: return the maximal argument
- Average Pooling: return the average of the arguments
- Other types of pooling exist too

Pooling

224x224x64 112x112x64 Single depth slice pool 1 2 4 1 х max pool with 2x2 filters 6 5 6 7 8 and stride 2 3 3 2 1 0 1 2 3 4 112 224 downsampling 112 У 224

Figure: Left: Pooling, right: max pooling example

Hyperparameters of a pooling layer:

- The spatial extent F
- The stride

[http://cs231n.github.io/convolutional-networks/]

Intro ML (UofT)

8

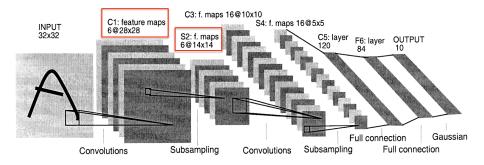
4

- The backpropagation algorithm from earlier can be applied directly to ConvNets
- This is covered in CSC2516.
- As a user, you do not need to worry about the details, since they are handled by automatic differentiation packages.

• MNIST dataset of handwritten digits

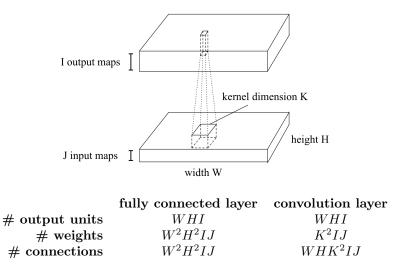
- ▶ Categories: 10 digit classes
- ▶ Source: Scans of handwritten zip codes from envelopes
- ► Size: 60,000 training images and 10,000 test images, grayscale, of size 28 × 28
- ▶ **Normalization:** centered within in the image, scaled to a consistent size
 - ▶ The assumption is that the digit recognizer would be part of a larger pipeline that segments and normalizes images.
- In 1998, Yann LeCun and colleagues built a conv net called LeNet which was able to classify digits with 98.9% test accuracy.
 - It was good enough to be used in a system for automatically reading numbers on checks.

Here is the LeNet architecture, which was applied to handwritten digit recognition on MNIST in 1998:



- Ways to measure the size of a network:
 - ▶ **Number of units.** This is important because the activations need to be stored in memory during training (i.e. backprop).
 - ▶ Number of weights. This is important because the weights need to be stored in memory, and because the number of parameters affects the overfitting.
 - ▶ Number of connections. This is important because there are approximately 3 add-multiply operations per connection (1 for the forward pass, 2 for the backward pass).
- We saw that a fully connected layer with M input units and N output units has MN connections and MN weights.
- The story for conv nets is more complicated.

Size of a Conv Net



Sizes of layers in LeNet:

Layer	Type	# units	# connections	# weights
C1	convolution	4704	117,600	150
S2	pooling	1176	4704	0
C3	$\operatorname{convolution}$	1600	240,000	2400
S4	pooling	400	1600	0
F5	fully connected	120	48,000	48,000
F6	fully connected	84	10,080	10,080
output	fully connected	10	840	840

Conclusions?

- Rules of thumb:
 - ▶ Most of the units and connections are in the convolution layers.
 - ▶ Most of the weights are in the fully connected layers.
- If you try to make layers larger, you'll run up against various resource limitations (i.e. computation time, memory)
- You'll repeat this exercise for AlexNet for homework.
 - ▶ Conv nets have gotten a LOT larger since 1998!

ImageNet

ImageNet is the modern object recognition benchmark dataset. It was introduced in 2009, and has led to amazing progress in object recognition since then.

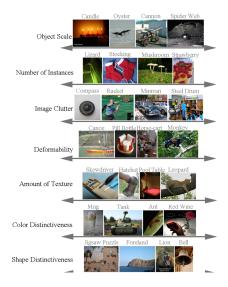
dalmatian

keeshond

ImageNet

- Used for the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), an annual benchmark competition for object recognition algorithms
- Design decisions
 - ▶ Categories: Taken from a lexical database called WordNet
 - WordNet consists of "synsets", or sets of synonymous words
 - They tried to use as many of these as possible; almost 22,000 as of 2010
 - ▶ Of these, they chose the 1000 most common for the ILSVRC
 - ▶ The categories are really specific, e.g. hundreds of kinds of dogs
 - ▶ Size: 1.2 million full-sized images for the ILSVRC
 - ▶ **Source:** Results from image search engines, hand-labeled by Mechanical Turkers
 - Labeling such specific categories was challenging; annotators had to be given the WordNet hierarchy, Wikipedia, etc.
 - Normalization: none, although the contestants are free to do preprocessing

Images and object categories vary on a lot of dimensions



Russakovsky et al.

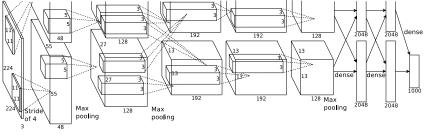
Size on disk:

MNIST 60 MB

$\begin{array}{c} {\rm ImageNet} \\ {\rm 50~GB} \end{array}$

AlexNet

• AlexNet, 2012. 8 weight layers. 16.4% top-5 error (i.e. the network gets 5 tries to guess the right category).



⁽Krizhevsky et al., 2012)

- The two processing pathways correspond to 2 GPUs. (At the time, the network couldn't fit on one GPU.)
- AlexNet's stunning performance on the ILSVRC is what set off the deep learning boom of the last 8-9 years.

Inception

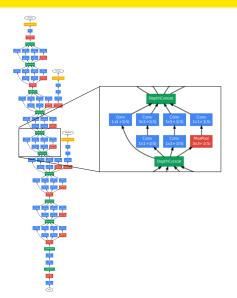
Inception, 2014. ("We need to go deeper!")

22 weight layers

Fully convolutional (no fully connected layers)

Convolutions are broken down into a bunch of smaller convolutions

6.6%test error on ImageNet



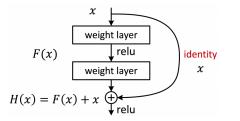
(Szegedy et al., 2014)

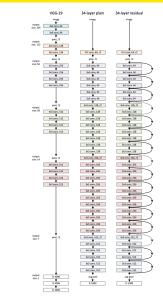
Inception

- They were really aggressive about cutting the number of parameters.
 - ▶ Motivation: train the network on a large cluster, run it on a cell phone
 - Memory at test time is the big constraint.
 - Having lots of units is OK, since the activations only need to be stored at training time (for backpropagation).
 - ▶ Parameters need to be stored both at training and test time, so these are the memory bottleneck.
 - ► How they did it
 - No fully connected layers (remember, these have most of the weights)
 - Break down convolutions into multiple smaller convolutions (since this requires fewer parameters total)
 - ▶ Inception has "only" 2 million parameters, compared with 60 million for AlexNet
 - ▶ This turned out to improve generalization as well. (Overfitting can still be a problem, even with over a million images!)

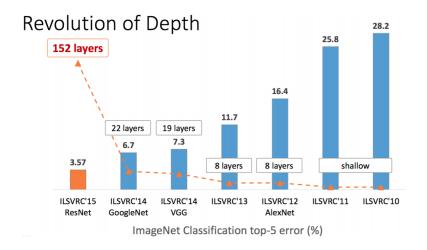
150 Layers!

- Networks are now at 150 layers
- They use a skip connections with special form
- In fact, they don't fit on this screen
- Amazing performance!
- A lot of "mistakes" are due to wrong ground-truth





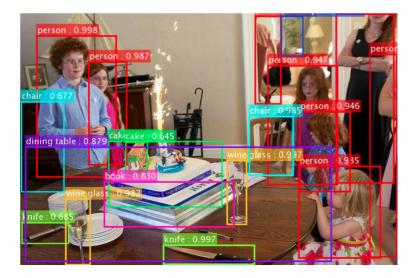
[He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition. arXiv:1512.03385, 2016]



Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition. arXiv:1512.03385, 2016]

Intro ML (UofT)

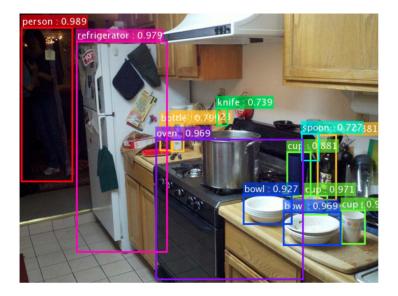
Results: Object Detection



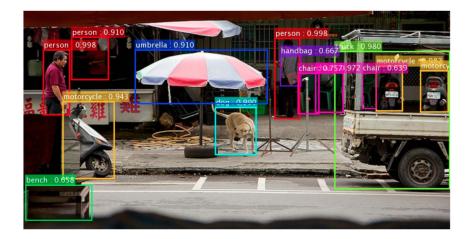
Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition. arXiv:1512.03385, 2016]

Intro ML (UofT)

Results: Object Detection



Results: Object Detection



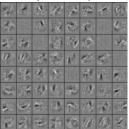
Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition. arXiv:1512.03385, 2016]

Intro ML (UofT)

What Do Networks Learn?

• Recall: we can understand what first-layer features are doing by visualizing the weight matrices.

Fully connected (MNIST)





- Higher-level weight matrices are hard to interpret.
- The better the input matches these weights, the more the feature activates.
 - Obvious generalization: visualize higher-level features by seeing what inputs activate them.

Intro ML (UofT)