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Motivation

Uncertainty arises through:

Noisy measurements

Variability between samples

Finite size of data sets

Probability provides a consistent framework for the quantification and
manipulation of uncertainty.
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Sample Space

Sample space Ω is the set of all possible outcomes of an
experiment.

Observations ω ∈ Ω are points in the space also called sample
outcomes, realizations, or elements.

Events E ⊂ Ω are subsets of the sample space.

In this experiment we flip a coin twice:

Sample space All outcomes Ω = {HH,HT, TH, TT}
Observation ω = HT valid sample since ω ∈ Ω

Event Both flips same E = {HH,TT} valid event since E ⊂ Ω
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Probability

The probability of an event E, P (E), satisfies three axioms:

1: P (E) ≥ 0 for every E

2: P (Ω) = 1

3: If E1, E2, . . . are disjoint then

P (

∞⋃
i=1

Ei) =

∞∑
i=1

P (Ei)
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Joint and Conditional Probabilities

Joint Probability of A and B is denoted P (A,B).

Conditional Probability of A given B is denoted P (A|B).

𝐴 ∩ 𝐵𝐴 𝐵

Joint: 𝑝 𝐴, 𝐵 = 𝑝(𝐴 ∩ 𝐵)

Conditional: 𝑝 𝐴|𝐵 = *(+∩,)
*(,)

p(A,B) = p(A|B)p(B) = p(B|A)p(A)
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Conditional Example

Probability of passing the midterm is 60% and probability of passing
both the final and the midterm is 45%.
What is the probability of passing the final given the student passed
the midterm?

P (F |M) = P (M,F )/P (M)

= 0.45/0.60

= 0.75
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Independence

Events A and B are independent if P (A,B) = P (A)P (B).

Indepentent: A: first toss is HEAD; B: second toss is HEAD;

P (A,B) = 0.5 ∗ 0.5 = P (A)P (B)

Not Indepentent: A: first toss is HEAD; B: first toss is HEAD;

P (A,B) = 0.5 6= P (A)P (B)
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Independence

Events A and B are conditionally independent given C if

P (A,B|C) = P (B|C)P (A|C)

Consider two coins 1: A regular coin and a coin which always outputs
HEAD or always outputs TAIL.
A=The first toss is HEAD; B=The second toss is HEAD; C=The
regular coin is used. D=The other coin is used.
Then A and B are conditionally independent given C, but A and B are
NOT conditionally independent given D.

1www.probabilitycourse.com/chapter1/1_4_4_conditional_independence.

php
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Marginalization and Law of Total Probability

Law of Total Probability 2

P (X) =
∑
Y

P (X,Y ) =
∑
Y

P (X|Y )P (Y )

2www.probabilitycourse.com/chapter1/1_4_2_total_probability.php
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Bayes’ Rule

Bayes’ Rule:

P (A|B) =
P (B|A)P (A)

P (B)

P (θ|x) =
P (x|θ)P (θ)

P (x)

Posterior =
Likelihood× Prior

Evidence
Posterior ∝ Likelihood× Prior
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Bayes’ Example

Suppose you have tested positive for a disease. What is the probability
you actually have the disease?
This depends on the prior probability of the disease:

P (T = 1|D = 1) = 0.95 (likelihood)

P (T = 1|D = 0) = 0.10 (likelihood)

P (D = 1) = 0.1 (prior)

So P (D = 1|T = 1) =?
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Bayes’ Example

Suppose you have tested positive for a disease. What is the probability
you actually have the disease?

P (T = 1|D = 1) = 0.95 (true positive)

P (T = 1|D = 0) = 0.10 (false positive)

P (D = 1) = 0.1 (prior)

So P (D = 1|T = 1) =?
Use Bayes’ Rule:

P (D = 1|T = 1) =
P (T = 1|D = 1)P (D = 1)

P (T = 1)
=

0.95× 0.1

P (T = 1)
= 0.51

P (T = 1) = P (T = 1|D = 1)P (D = 1) + P (T = 1|D = 0)P (D = 0)

= 0.95× 0.1 + 0.1× 0.90 = 0.185
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Random Variable

How do we connect sample spaces and events to data?
A random variable is a mapping which assigns a real number X(ω) to
each observed outcome ω ∈ Ω

For example, let’s flip a coin 10 times. X(ω) counts the number of
Heads we observe in our sequence. If ω = HHTHTHHTHT then
X(ω) = 6.
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Discrete and Continuous Random Variables

Discrete Random Variables

Takes countably many values, e.g., number of heads

Distribution defined by probability mass function (PMF)

Marginalization: p(x) =
∑

y p(x, y)

Continuous Random Variables

Takes uncountably many values, e.g., time to complete task

Distribution defined by probability density function (PDF)

Marginalization: p(x) =
∫
y p(x, y)dy
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I.I.D.

Random variables are said to be independent and identically
distributed (i.i.d.) if they are sampled from the same probability
distribution and are mutually independent.
This is a common assumption for observations. For example, coin flips
are assumed to be iid.
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Probability Distribution Statistics

Mean: First Moment, µ

E [X] =

∞∑
i=1

xip(xi) (univariate discrete r.v.)

E [X] =

∫ ∞
−∞

xp(x)dx (univariate continuous r.v.)

Variance: Second (central) Moment, σ2

Var[X] =

∫ ∞
−∞

(x− µ)2p(x)dx

= E
[
(X − µ)2

]
= E

[
X2
]
− E [X]2

It is common to use capital letters such as X to denote a random
variable drawn from a distribution p(x). That is why we wrote E [X]
instead of E [x], but the latter may also be used sometimes. We may go
back and forth between these two.
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Univariate Gaussian Distribution

Also known as the Normal Distribution, N (µ, σ2)

N (x|µ, σ2) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
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Multivariate Gaussian Distribution

Multidimensional generalization of the Gaussian.
x is a D-dimensional vector
µ is a D-dimensional mean vector
Σ is a D ×D covariance matrix with determinant |Σ|

N (x|µ,Σ) =
1

(2π)D/2
1

|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
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Covariance Matrix

Recall that x and µ are D-dimensional vectors
Covariance matrix Σ is a matrix whose (i, j) entry is the covariance

Σij = Cov (Xi,Xj)

= E [(Xi − µi)(Xj − µj)]
= E [XiXj ]− µiµj .

Notice that the diagonal entries are the variance of each elements.
The covariant matrix has the property that it is symmetric and
positive-semidefinite (this is useful for whitening).
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Inferring Parameters

We have data X and we assume it is sampled from some distribution.
How do we figure out the parameters that “best” fit that distribution?
Maximum Likelihood Estimation (MLE)

θ̂MLE = argmax
θ

P (X|θ)

Maximum A posteriori Probability (MAP)

θ̂MAP = argmax
θ

P (θ|X)
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MLE for Univariate Gaussian Distribution

We are trying to infer the parameters mean µ and variance σ2 of a
univariate Gaussian Distribution:

N (x|µ, σ2) =
1√

2πσ2
exp(− 1

2σ2
(x− µ)2).

The likelihood that our observations X1, . . . , XN were generated by a
univariate Gaussian with parameters µ and σ2 is

Likelihood = p(X1, . . . , XN |µ, σ2) =

N∏
i=1

1√
2πσ2

exp(− 1

2σ2
(Xi − µ)2).
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MLE for Univariate Gaussian Distribution

For MLE we want to maximize this likelihood, which is difficult
because it is represented by a product of terms

Likelihood = p(X1, . . . , XN |µ, σ2) =

N∏
i=1

1√
2πσ2

exp(− 1

2σ2
(Xi − µ)2)

So we take the log of the likelihood so the product becomes a sum

Log Likelihood = log p(X1, . . . , XN |µ, σ2)

=
N∑
i=1

log
1√

2πσ2
exp(− 1

2σ2
(Xi − µ)2).

Since log is monotonically increasing, their maximizers are the same,
i.e. argmax θL(θ) = argmax θ logL(θ).
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MLE for Univariate Gaussian Distribution

The log Likelihood simplifies to

L(µ, σ) =

N∑
i=1

log

[
1√

2πσ2
exp(− 1

2σ2
(Xi − µ)2)

]

= −1

2
N log(2πσ2)−

N∑
i=1

(Xi − µ)2

2σ2

Which we want to maximize. How?
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MLE for Univariate Gaussian Distribution

To maximize we take the derivatives, set equal to 0, and solve:

L(µ, σ) = −1

2
N log(2πσ2)−

N∑
i=1

(xi − µ)2

2σ2

Derivative w.r.t. µ, set equal to 0, and solve for µ̂

∂L(µ, σ)

∂µ
= 0 =⇒ µ̂ =

1

N

N∑
i=1

Xi.

Therefore the µ̂ that maximizes the likelihood is the average of the data
points, which is called the sample average or empirical expectation too.
Derivative w.r.t. σ2, set equal to 0, and solve for σ̂2

∂L(µ, σ)

∂σ2
= 0 =⇒ σ̂2 =

1

N

N∑
i=1

(Xi − µ̂)2.
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