Probability Theory Review

Introduction to Machine Learning (CSC 2515) Fall 2021

University of Toronto

Motivation

Uncertainty arises through:

- Noisy measurements
- Variability between samples
- Finite size of data sets

Probability provides a consistent framework for the quantification and manipulation of uncertainty.

Sample Space

Sample space Ω is the set of all possible outcomes of an experiment.
Observations $\omega \in \Omega$ are points in the space also called sample outcomes, realizations, or elements.
Events $E \subset \Omega$ are subsets of the sample space.
In this experiment we flip a coin twice:
Sample space All outcomes $\Omega=\{H H, H T, T H, T T\}$
Observation $\omega=H T$ valid sample since $\omega \in \Omega$
Event Both flips same $E=\{H H, T T\}$ valid event since $E \subset \Omega$

Probability

The probability of an event $\mathrm{E}, P(E)$, satisfies three axioms:
1: $P(E) \geq 0$ for every E
2: $P(\Omega)=1$
3: If E_{1}, E_{2}, \ldots are disjoint then

$$
P\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{\infty} P\left(E_{i}\right)
$$

Joint and Conditional Probabilities

Joint Probability of A and B is denoted $P(A, B)$.
Conditional Probability of A given B is denoted $P(A \mid B)$.

Conditional Example

Probability of passing the midterm is 60% and probability of passing both the final and the midterm is 45%.
What is the probability of passing the final given the student passed the midterm?

$$
\begin{aligned}
P(F \mid M) & =P(M, F) / P(M) \\
& =0.45 / 0.60 \\
& =0.75
\end{aligned}
$$

Independence

Events A and B are independent if $P(A, B)=P(A) P(B)$.

- Indepentent: A : first toss is HEAD; B : second toss is HEAD;

$$
P(A, B)=0.5 * 0.5=P(A) P(B)
$$

- Not Indepentent: A : first toss is HEAD; B : first toss is HEAD;

$$
P(A, B)=0.5 \neq P(A) P(B)
$$

Independence

Events A and B are conditionally independent given C if

$$
P(A, B \mid C)=P(B \mid C) P(A \mid C)
$$

Consider two coins ${ }^{1}$: A regular coin and a coin which always outputs HEAD or always outputs TAIL.
$A=$ The first toss is HEAD ; $B=$ The second toss is HEAD; $C=$ The regular coin is used. $D=$ The other coin is used.
Then A and B are conditionally independent given C, but A and B are NOT conditionally independent given D.

[^0]
Marginalization and Law of Total Probability

Law of Total Probability ${ }^{2}$

$$
P(X)=\sum_{Y} P(X, Y)=\sum_{Y} P(X \mid Y) P(Y)
$$

${ }^{2}$ www. probabilitycourse.com/chapter1/1_4_2_total_probability.php

Bayes' Rule

Bayes' Rule:

$$
\begin{aligned}
P(A \mid B) & =\frac{P(B \mid A) P(A)}{P(B)} \\
P(\theta \mid x) & =\frac{P(x \mid \theta) P(\theta)}{P(x)}
\end{aligned}
$$

Posterior $=\frac{\text { Likelihood } \times \text { Prior }}{\text { Evidence }}$
Posterior \propto Likelihood \times Prior

Bayes' Example

Suppose you have tested positive for a disease. What is the probability you actually have the disease?
This depends on the prior probability of the disease:

- $P(T=1 \mid D=1)=0.95$ (likelihood)
- $P(T=1 \mid D=0)=0.10$ (likelihood)
- $P(D=1)=0.1$ (prior)

So $P(D=1 \mid T=1)=$?

Bayes' Example

Suppose you have tested positive for a disease. What is the probability you actually have the disease?

$$
\begin{aligned}
& P(T=1 \mid D=1)=0.95 \text { (true positive) } \\
& P(T=1 \mid D=0)=0.10 \text { (false positive) } \\
& P(D=1)=0.1 \text { (prior) }
\end{aligned}
$$

So $P(D=1 \mid T=1)=$?
Use Bayes' Rule:

$$
\begin{aligned}
& P(D=1 \mid T=1)=\frac{P(T=1 \mid D=1) P(D=1)}{P(T=1)}=\frac{0.95 \times 0.1}{P(T=1)}=0.51 \\
& P(T=1)=P(T=1 \mid D=1) P(D=1)+P(T=1 \mid D=0) P(D=0) \\
& \quad=0.95 \times 0.1+0.1 \times 0.90=0.185
\end{aligned}
$$

Random Variable

How do we connect sample spaces and events to data?
A random variable is a mapping which assigns a real number $X(\omega)$ to each observed outcome $\omega \in \Omega$

For example, let's flip a coin 10 times. $X(\omega)$ counts the number of Heads we observe in our sequence. If $\omega=$ HHTHTHHTHT then $X(\omega)=6$.

Discrete and Continuous Random Variables

Discrete Random Variables

- Takes countably many values, e.g., number of heads
- Distribution defined by probability mass function (PMF)
- Marginalization: $p(x)=\sum_{y} p(x, y)$

Continuous Random Variables

- Takes uncountably many values, e.g., time to complete task
- Distribution defined by probability density function (PDF)
- Marginalization: $p(x)=\int_{y} p(x, y) \mathrm{d} y$

I.I.D.

Random variables are said to be independent and identically distributed (i.i.d.) if they are sampled from the same probability distribution and are mutually independent.
This is a common assumption for observations. For example, coin flips are assumed to be iid.

Probability Distribution Statistics

Mean: First Moment, μ

$$
\begin{array}{lr}
\mathbb{E}[X]=\sum_{i=1}^{\infty} x_{i} p\left(x_{i}\right) & \text { (univariate discrete r.v.) } \\
\mathbb{E}[X]=\int_{-\infty}^{\infty} x p(x) d x & \text { (univariate continuous r.v.) }
\end{array}
$$

Variance: Second (central) Moment, σ^{2}

$$
\begin{aligned}
\operatorname{Var}[X] & =\int_{-\infty}^{\infty}(x-\mu)^{2} p(x) \mathrm{d} x \\
& =\mathbb{E}\left[(X-\mu)^{2}\right] \\
& =\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}
\end{aligned}
$$

It is common to use capital letters such as X to denote a random variable drawn from a distribution $p(x)$. That is why we wrote $\mathbb{E}[X]$ instead of $\mathbb{E}[x]$, but the latter may also be used sometimes. We may go back and forth between these two.

Univariate Gaussian Distribution

Also known as the Normal Distribution, $\mathcal{N}\left(\mu, \sigma^{2}\right)$

$$
\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

Multivariate Gaussian Distribution

Multidimensional generalization of the Gaussian.
\mathbf{x} is a D -dimensional vector
μ is a D -dimensional mean vector
Σ is a $D \times D$ covariance matrix with determinant $|\Sigma|$

$$
\mathcal{N}(\mathbf{x} \mid \mu, \Sigma)=\frac{1}{(2 \pi)^{D / 2}} \frac{1}{|\Sigma|^{1 / 2}} \exp \left(-\frac{1}{2}(\mathbf{x}-\mu)^{T} \Sigma^{-1}(\mathbf{x}-\mu)\right)
$$

Multivariate Normal Distribution

Covariance Matrix

Recall that \mathbf{x} and μ are D-dimensional vectors
Covariance matrix Σ is a matrix whose (i, j) entry is the covariance

$$
\begin{aligned}
\Sigma_{i j} & =\mathbf{C o v}\left(\mathbf{X}_{i}, \mathbf{X}_{j}\right) \\
& =\mathbb{E}\left[\left(\mathbf{X}_{i}-\mu_{i}\right)\left(\mathbf{X}_{j}-\mu_{j}\right)\right] \\
& =\mathbb{E}\left[\mathbf{X}_{i} \mathbf{X}_{j}\right]-\mu_{i} \mu_{j} .
\end{aligned}
$$

Notice that the diagonal entries are the variance of each elements. The covariant matrix has the property that it is symmetric and positive-semidefinite (this is useful for whitening).

Inferring Parameters

We have data X and we assume it is sampled from some distribution. How do we figure out the parameters that "best" fit that distribution? Maximum Likelihood Estimation (MLE)

$$
\hat{\theta}_{M L E}=\underset{\theta}{\operatorname{argmax}} P(X \mid \theta)
$$

Maximum A posteriori Probability (MAP)

$$
\hat{\theta}_{M A P}=\underset{\theta}{\operatorname{argmax}} P(\theta \mid X)
$$

MLE for Univariate Gaussian Distribution

We are trying to infer the parameters mean μ and variance σ^{2} of a univariate Gaussian Distribution:

$$
\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right) .
$$

The likelihood that our observations X_{1}, \ldots, X_{N} were generated by a univariate Gaussian with parameters μ and σ^{2} is

Likelihood $=p\left(X_{1}, \ldots, X_{N} \mid \mu, \sigma^{2}\right)=\prod_{i=1}^{N} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}}\left(X_{i}-\mu\right)^{2}\right)$.

MLE for Univariate Gaussian Distribution

For MLE we want to maximize this likelihood, which is difficult because it is represented by a product of terms

$$
\text { Likelihood }=p\left(X_{1}, \ldots, X_{N} \mid \mu, \sigma^{2}\right)=\prod_{i=1}^{N} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}}\left(X_{i}-\mu\right)^{2}\right)
$$

So we take the log of the likelihood so the product becomes a sum

$$
\begin{aligned}
\text { Log Likelihood } & =\log p\left(X_{1}, \ldots, X_{N} \mid \mu, \sigma^{2}\right) \\
& =\sum_{i=1}^{N} \log \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}}\left(X_{i}-\mu\right)^{2}\right)
\end{aligned}
$$

Since \log is monotonically increasing, their maximizers are the same, i.e. $\operatorname{argmax} \theta L(\theta)=\operatorname{argmax} \theta \log L(\theta)$.

MLE for Univariate Gaussian Distribution

The log Likelihood simplifies to

$$
\begin{aligned}
\mathcal{L}(\mu, \sigma) & =\sum_{i=1}^{N} \log \left[\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}}\left(X_{i}-\mu\right)^{2}\right)\right] \\
& =-\frac{1}{2} N \log \left(2 \pi \sigma^{2}\right)-\sum_{i=1}^{N} \frac{\left(X_{i}-\mu\right)^{2}}{2 \sigma^{2}}
\end{aligned}
$$

Which we want to maximize. How?

MLE for Univariate Gaussian Distribution

To maximize we take the derivatives, set equal to 0 , and solve:

$$
\mathcal{L}(\mu, \sigma)=-\frac{1}{2} N \log \left(2 \pi \sigma^{2}\right)-\sum_{i=1}^{N} \frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}
$$

Derivative w.r.t. μ, set equal to 0 , and solve for $\hat{\mu}$

$$
\frac{\partial \mathcal{L}(\mu, \sigma)}{\partial \mu}=0 \Longrightarrow \hat{\mu}=\frac{1}{N} \sum_{i=1}^{N} X_{i}
$$

Therefore the $\hat{\mu}$ that maximizes the likelihood is the average of the data points, which is called the sample average or empirical expectation too. Derivative w.r.t. σ^{2}, set equal to 0 , and solve for $\hat{\sigma}^{2}$

$$
\frac{\partial \mathcal{L}(\mu, \sigma)}{\partial \sigma^{2}}=0 \Longrightarrow \hat{\sigma}^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(X_{i}-\hat{\mu}\right)^{2}
$$

[^0]: ${ }^{1}$ www.probabilitycourse.com/chapter1/1_4_4_conditional_independence. php

