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The Gaussian Distribution

q For a 𝐷-dimensional vector 𝑥, the multivariate Gaussian 
distribution takes the form:

𝒩 𝑥|𝜇, Σ =
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" Σ

#
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exp −
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2 𝑥 − 𝜇 $Σ%# 𝑥 − 𝜇

q Motivations:
Ø Maximum of the entropy
Ø Central limit theorem



The Gaussian Distribution: Properties

q The law is a function of the Mahalanobis distance from 𝑥 to 𝜇:

Δ" = 𝑥 − 𝜇 $Σ%# 𝑥 − 𝜇

q The expectation of 𝑥 under the Gaussian distribution is:

𝔼 𝑥 = 𝜇

q The covariance matrix of 𝑥 is:

cov 𝑥 = Σ



The Gaussian Distribution: Properties

q The law (quadratic function) is constant on elliptical surfaces:

Ø 𝜆! are the eigenvalues of Σ
Ø 𝑢! are the associated eigenvectors



The Gaussian Distribution: more examples

q Contours of constant probability density:

a) general form
b) diagonal
c) proportional to the identity matrix



Conditional Law

q Given a Gaussian distribution 𝒩 𝑥|𝜇, Σ with

𝑥 = 𝑥&, 𝑥' $, 𝜇 = 𝜇&, 𝜇' $

Σ = Σ&& Σ&'
Σ'& Σ''

= Λ&& Λ&'
Λ'& Λ''

%#

q What’s the conditional distribution 𝑝(𝑥&|𝑥')?
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Conditional Law

q Using the definition:

−
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2
𝑥 − 𝜇 $Σ%# 𝑥 − 𝜇 = −

1
2
𝑥$Σ%#𝑥 + 𝑥$Σ%#𝜇 + const

q What’s the conditional distribution 𝑝(𝑥&|𝑥')?

Ø Σ%|&#$ = Λ%%
Ø Σ%|&#$ 𝜇%|& = Λ%%𝜇% − Λ%& 𝑥& − 𝜇&

Σ = Σ&& Σ&'
Σ'& Σ''

= Λ&& Λ&'
Λ'& Λ''

%#

Ø Λ%% = Σ%% − Σ%&Σ&&#$Σ&%
#$

Ø Λ%& = − Σ%% − Σ%&Σ&&#$Σ&%
#$Σ%&Σ&&#$

Inverse partition identity:

𝐴 𝐵
𝐶 𝐷

!"
= 𝑀 −𝑀𝐵𝐷!"

−𝐷!"𝐶𝑀 𝐷!" + 𝐷!"𝐶𝑀𝐵𝐷!"
𝑀 = 𝐴 − 𝐵𝐷!"𝐶 !"



Conditional Law

𝜇&|' = 𝜇& + Λ&&Λ&'%# 𝑥' − 𝜇'

q The form using precision matrix:

Λ&|' = Λ&&

𝜇&|' = 𝜇& + Σ&'Σ''%# 𝑥' − 𝜇'

q The conditional distribution 𝑝 𝑥& 𝑥' is a Gaussian with:

Σ&|' = Σ&& − Σ&'Σ''%#Σ'&



Marginal Law

q The marginal distribution is given by:

𝑝 𝑥& = =𝑝 𝑥&, 𝑥' 𝑑𝑥'

q Picking out those terms that involve 𝑥', we have 

−
1
2𝑥&

"Λ&&𝑥& + 𝑥&"𝑚 = −
1
2 𝑥& − Λ&&#$𝑚

"Λ&& 𝑥& − Λ&&#$𝑚 +
1
2𝑚

"Λ&&#$𝑚

𝑚 = Λ&&𝜇& − Λ&% 𝑥% − 𝜇%

q Integrate over 𝑥' (unnormalized Gaussian)

-exp −
1
2 𝑥& − Λ&&#$𝑚

"Λ&& 𝑥& − Λ&&#$𝑚 𝑑𝑥&

ü The integral is equal to the normalization term



Marginal Law

q After integrating over 𝑥', we pick out the remaining terms:

q The marginal distribution is a Gaussian with

𝔼 𝑥& = 𝜇& cov 𝑥& = Σ&&

−
1
2𝑥&

$Λ&&𝑥& + 𝑥&$ Λ&&𝜇& + Λ&'𝜇' +
1
2𝑚

$Λ''%#𝑚 + const

𝑚 = Λ''𝜇' − Λ'& 𝑥& − 𝜇&



Short Summary

q Conditional distribution:

Σ = Σ&& Σ&'
Σ'& Σ''

= Λ&& Λ&'
Λ'& Λ''

%#

𝑝 𝑥% 𝑥& = 𝒩 𝑥%|𝜇%|& , Λ%%#$

𝜇%|& = 𝜇% − Λ%%#$Λ%&(𝑥& − 𝜇&)

q Marginal distribution:
𝑝 𝑥% = 𝒩 𝑥%|𝜇% , Σ%%



Bayes’ theorem for Gaussian variables

q Setup:

q What’s the marginal distribution 𝑝 𝑦 and conditional 
distribution 𝑝 𝑥|𝑦 ? 

𝑝 𝑥 = 𝒩 𝑥|𝜇, Λ%#

𝑝 𝑦|𝑥 = 𝒩 𝑦|A𝑥 + 𝑏, L%#

ü How about first compute 𝑝 𝑧 , where 𝑧 = 𝑥, 𝑦 "

ü 𝑝 𝑧 is a Gaussian distribution, consider the log of the 
joint distribution

ln 𝑝 𝑧 = ln 𝑝 𝑥 + ln 𝑝 𝑦 𝑥

= −
1
2 𝑥 − 𝜇 "Λ 𝑥 − 𝜇

−
1
2 𝑦 − A𝑥 + 𝑏 "L 𝑦 − A𝑥 + 𝑏 + const



Bayes’ theorem for Gaussian variables

q The same trick (consider the second order terms), we get

𝔼 𝑧 =
𝜇

A𝜇 + 𝑏

cov 𝑧 = Λ%# Λ%#A
AΛ%# 𝐿%# + AΛ%#A

q We can then get 𝑝 𝑦 and 𝑝 𝑥|𝑦 by marginal and conditional 
laws! 



Maximum likelihood for the Gaussian

q Assume we have X = 𝑥#, … , 𝑥) $ in which the observation 
𝑥* are assumed to be drawn independently from a 

multivariate Gaussian, the log likelihood function is given by

ln 𝑝 X 𝜇, Σ = −
𝑁𝐷
2 ln 2𝜋 −

𝑁
2 ln Σ −

1
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𝑥( − 𝜇 "Σ#$ 𝑥( − 𝜇

q Setting the derivative to zero, we obtain the solution for the 
maximum likelihood estimator:

𝜕
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()$

*

Σ#$ 𝑥( − 𝜇 = 0
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Maximum likelihood for the Gaussian

q The empirical mean is unbiased in the sense

𝔼 𝜇+, = 𝜇

q However, the maximum likelihood estimate for the covariance 
has an expectation that is less that the true value:

𝔼 Σ+, =
𝑁 − 1
𝑁

Σ

ü We can correct it by multiplying Σ+, by the factor *
*#$



Conjugate prior for the Gaussian

ü Introducing prior distributions over the parameters of the 
Gaussian

q The maximum likelihood framework only gives point estimates 
for the parameters, we would like to have uncertainty 
estimation (confidence interval) for the estimation

ü The conjugate prior for 𝜇 is a Gaussian

ü The conjugate prior for precision Λ is a Gamma distribution 

q We would like the posterior 𝑝 𝜃 𝐷 ∝ 𝑝 𝜃 𝑝(𝐷|𝜃) has the 
same form as the prior (Conjugate prior!)



The Gaussian Distribution: limitations

q A lot of parameters to estimate 𝐷 + !!-!
" : structured 

approximation (e.g., diagonal variance matrix)

q Maximum likelihood estimators are not robust to outliers: 
Student’s t-distribution (bottom left)

q Not able to describe periodic data: von Mises distribution

q Unimodel distribution: Mixture of Gaussian (bottom right)



The Gaussian Distribution: frontiers

q Gaussian Process

q Bayesian Neural Networks

q Generative modeling (Variational Autoencoder)

q ……


