
Policy Gradient
Reinforcement Learning

Presented by Andrew Li

CSC2515 Tutorial – Fall 2021

Past slides contributors: Tianshi Cao, Mohammad Firouzi 
 Adapted from slides by Sergey Levine and David Silver

Reinforcement Learning

Examples

• MountainCar

• CartPole

• BipedalWalker

• Atari games

Reinforcement Learning Task

• Environment is a Markov Decision Process.

• : State Space

• : Action Space

• : State-action transition distribution

• : Initial state distribution

• : Reward function (can also depend on action)

• : Discount factor

S
A
F(S′￼|S, A)
ρ0(S)
R(S)
γ (0 ≤ γ ≤ 1)

Task Example: CartPole

• Balance a pole attached to a cart by a joint for as long
as possible.

• : position + velocity of cart and pole

• : push left or right

• : simulated physics (deterministic)

• : cart and pole with near 0 velocity (slightly random)

• : 1 if the pole is still standing

• : 1

S
A
F(s′￼|s, a)
ρ0(s)
R(s)
γ

Policy

• A policy is the agent’s behaviour

• Maps states to actions (or a distr. of actions)

• Deterministic policy

• Stochastic policy

π(a |s)

Goal of the Agent

Learn the policy that maximizes expected discounted reward.

Expected discounted reward:

π(a |s)

J(π) = 𝔼st,at,rt∼π,F[∑
t

γtrt]

Approaches to reinforcement learning

• Policy-based RL (focus of the tutorial)

• Search directly for the optimal policy

• This is the policy achieving maximum future reward

• Value-based RL (will be discussed briefly)

• Estimate the optimal value function Q(s, a)

• This is the maximum value achievable under any policy

• Model-based RL (will be discussed briefly)

• Build a model of environment

• Plan (e.g. by lookahead) using model

• State-of-the-art approaches generally combine flavours of all three

Value-based approach (in brief)

• A Q-value function is a prediction of future reward

• “How much reward will I get from action a in state s?”

• Q-value function gives expected total reward

• from state s and action a

• under policy

• with discount factor

• Q-value functions decompose into a Bellman equation:

Optimal value function

• An optimal value function is the maximum achievable value

• Once we have optimal Q-value function we can act optimally

• Learn a model of the environment
transitions and reward

• Using the model, “imagine” the outcome of
each action and choose the best one.

F(s′￼|s, a) R(s)

Model-based approach (in brief)

Policy-based Approach (this tutorial)

• Directly search for the best policy without necessarily modelling
values or the environment.

• Represent a stochastic policy using continuous parameters :

• In deep learning, are the neural network weights

• Can easily handle discrete or continuous states/actions.

π

πθ θ
θ

Policy-based Approach (Outline)

• Initialize parameters randomly, write expected return as simply .

• Training Loop

1. Collect data by running in the environment.

2. Estimate using

3. Improve the policy by taking a gradient ascent step

•

• Effect: increases (if things go as planned)

θ J(πθ) J(θ)

D πθ

∇θ J(θ) D

θ := θ + η∇θ J(θ)
J(θ)

Details: Deriving ∇θJ(θ)

• Let be a random episode under

• Can write

• Rewrite

•

τ = (s1, a1, r1, . . . , sT, aT, rT) F, π

p(τ) = ρ(s1)[πθ(a1 |s1)F(s2 |s1, a1) . . . πθ(aT |sT)]
J(θ) = 𝔼τ∼F,π[p(τ)r(τ)]

∇θJ(θ) = 𝔼τ∼F,π[r(τ)∇θlog p(τ)]
∇θJ(θ) = 𝔼τ∼F,π[r(τ)∑

t

∇θlog π(at |st)] (I assume to simplify

the derivations a bit)

γ = 1

Details: Estimating∇θJ(θ)
• REINFORCE / Score Function Estimator

• Estimate the gradient by averaging over many (unbiased!)

• Intuition: if got high reward , “reinforce” the actions on that
trajectory

• Issue: this estimator has very high variance — need lots of to get an
accurate gradient estimate

∇θJ(θ) = 𝔼τ∼F,π[r(τ)∑
t

∇θlog π(at |st)]
τ

τ r(τ)

τ

Details: Estimating∇θJ(θ)
• Lower variance, unbiased gradient estimators exist, and are much

more practical.

REINFORCE / Score Function Estimator

∇θJ(θ) = 𝔼τ∼F,π[r(τ)∑
t

∇θlog π(at |st)]

 Policy Gradient with Baseline

∇θJ(θ) = 𝔼τ∼F,π[∑
t

(rt:T(τ) − V(st))∇θlog π(at |st)]

References

• Sergey Levine, "Policy Search", Deep learning summer school slides,
https://dlrlsummerschool.ca/wp-content/uploads/2018/09/levine-
policy-search-rlss-2018.pdf

• David Silver, "Deep Reinforcement Learning", ICML 2016 tutorial,

https://icml.cc/2016/tutorials/deep_rl_tutorial.pdf

• Sutton, Richard S., and Andrew G. Barto. Introduction to reinforcement

learning. Vol. 135. Cambridge: MIT press, 1998.

https://dlrlsummerschool.ca/wp-content/uploads/2018/09/levine-policy-search-rlss-2018.pdf
https://dlrlsummerschool.ca/wp-content/uploads/2018/09/levine-policy-search-rlss-2018.pdf
https://icml.cc/2016/tutorials/deep_rl_tutorial.pdf

