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Reinforcement Learning 



Examples

• MountainCar

• CartPole

• BipedalWalker

• Atari games 



Reinforcement Learning Task

• Environment is a Markov Decision Process.

• :   State Space 


• :   Action Space


• :   State-action transition distribution


• :   Initial state distribution


• :   Reward function (can also depend on action)


•  :   Discount factor 

S
A
F(S′￼|S, A)
ρ0(S)
R(S)
γ (0 ≤ γ ≤ 1)



Task Example: CartPole

• Balance a pole attached to a cart by a joint for as long 
as possible. 

• :   position + velocity of cart and pole  


• :   push left or right 


• :   simulated physics (deterministic)


• :   cart and pole with near 0 velocity (slightly random)


• :   1 if the pole is still standing


•  :   1

S
A
F(s′￼|s, a)
ρ0(s)
R(s)
γ



Policy

• A policy  is the agent’s behaviour


• Maps states to actions (or a distr. of actions)

• Deterministic policy

• Stochastic policy

π(a |s)



Goal of the Agent

Learn the policy  that maximizes expected discounted reward.


Expected discounted reward:   

π(a |s)

J(π) = 𝔼st,at,rt∼π,F[∑
t

γtrt]



Approaches to reinforcement learning

• Policy-based RL (focus of the tutorial)

• Search directly for the optimal policy

• This is the policy achieving maximum future reward


• Value-based RL (will be discussed briefly)

• Estimate the optimal value function Q(s, a)

• This is the maximum value achievable under any policy


• Model-based RL (will be discussed briefly)

• Build a model of environment

• Plan (e.g. by lookahead) using model


• State-of-the-art approaches generally combine flavours of all three



Value-based approach (in brief)

• A Q-value function is a prediction of future reward

• “How much reward will I get from action a in state s?”


• Q-value function gives expected total reward

• from state s and action a

• under policy 

• with discount factor 


• Q-value functions decompose into a Bellman equation:



Optimal value function

• An optimal value function is the maximum achievable value


• Once we have optimal Q-value function we can act optimally



• Learn a model of the environment 
transitions  and reward 


• Using the model, “imagine” the outcome of 
each action and choose the best one. 

F(s′￼|s, a) R(s)

Model-based approach (in brief)



Policy-based Approach (this tutorial)

• Directly search for the best policy  without necessarily modelling 
values or the environment. 


• Represent a stochastic policy  using continuous parameters :

• In deep learning,  are the neural network weights


• Can easily handle discrete or continuous states/actions. 

π

πθ θ
θ



Policy-based Approach (Outline)

• Initialize parameters  randomly, write expected return  as simply .


• Training Loop 

1. Collect data  by running  in the environment.


2. Estimate  using 


3. Improve the policy by taking a gradient ascent step


• 


• Effect: increases  (if things go as planned)

θ J(πθ) J(θ)

D πθ

∇θ J(θ) D

θ := θ + η∇θ J(θ)
J(θ)



Details: Deriving ∇θJ(θ)

• Let  be a random episode under 


• Can write 


• Rewrite 


• 


   

τ = (s1, a1, r1, . . . , sT, aT, rT) F, π

p(τ) = ρ(s1)[πθ(a1 |s1)F(s2 |s1, a1) . . . πθ(aT |sT)]
J(θ) = 𝔼τ∼F,π[p(τ)r(τ)]

∇θJ(θ) = 𝔼τ∼F,π[r(τ)∇θlog p(τ)]
∇θJ(θ) = 𝔼τ∼F,π[r(τ)∑

t

∇θlog π(at |st)] (I assume  to simplify 

the derivations a bit)

γ = 1



Details: Estimating∇θJ(θ)
• REINFORCE / Score Function Estimator 





• Estimate the gradient by averaging over many   (unbiased!)


• Intuition:  if  got high reward , “reinforce” the actions on that 
trajectory


• Issue:  this estimator has very high variance — need lots of  to get an 
accurate gradient estimate

∇θJ(θ) = 𝔼τ∼F,π[r(τ)∑
t

∇θlog π(at |st)]
τ

τ r(τ)

τ



Details: Estimating∇θJ(θ)
• Lower variance, unbiased gradient estimators exist, and are much 

more practical.

REINFORCE / Score Function Estimator 


∇θJ(θ) = 𝔼τ∼F,π[r(τ)∑
t

∇θlog π(at |st)]

           Policy Gradient with Baseline


∇θJ(θ) = 𝔼τ∼F,π[∑
t

(rt:T(τ) − V(st))∇θlog π(at |st)]
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