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Reinforcement Learning 



Examples

• MountainCar 
• CartPole 
• BipedalWalker 
• Atari games 



Reinforcement Learning Task

• Environment is a Markov Decision Process. 
• :   State Space  

• :   Action Space 

• :   State-action transition distribution 

• :   Initial state distribution 

• :   Reward function (can also depend on action) 

•  :   Discount factor 

S
A
F(S′ |S, A)
ρ0(S)
R(S)
γ (0 ≤ γ ≤ 1)



Task Example: CartPole

• Balance a pole attached to a cart by a joint for as long 
as possible.  
• :   position + velocity of cart and pole   

• :   push left or right  

• :   simulated physics (deterministic) 

• :   cart and pole with near 0 velocity (slightly random) 

• :   1 if the pole is still standing 

•  :   1

S
A
F(s′ |s, a)
ρ0(s)
R(s)
γ



Policy

• A policy  is the agent’s behaviour 

• Maps states to actions (or a distr. of actions) 
• Deterministic policy 
• Stochastic policy

π(a |s)



Goal of the Agent

Learn the policy  that maximizes expected discounted reward. 

Expected discounted reward:   

π(a |s)

J(π) = 𝔼st,at,rt∼π,F[∑
t

γtrt]



Approaches to reinforcement learning

• Policy-based RL (focus of the tutorial) 
• Search directly for the optimal policy 
• This is the policy achieving maximum future reward 

• Value-based RL (will be discussed briefly) 
• Estimate the optimal value function Q(s, a) 
• This is the maximum value achievable under any policy 

• Model-based RL (will be discussed briefly) 
• Build a model of environment 
• Plan (e.g. by lookahead) using model 

• State-of-the-art approaches generally combine flavours of all three



Value-based approach (in brief)

• A Q-value function is a prediction of future reward 
• “How much reward will I get from action a in state s?” 

• Q-value function gives expected total reward 
• from state s and action a 
• under policy  
• with discount factor  

• Q-value functions decompose into a Bellman equation:



Optimal value function

• An optimal value function is the maximum achievable value 

• Once we have optimal Q-value function we can act optimally



• Learn a model of the environment 
transitions  and reward  

• Using the model, “imagine” the outcome of 
each action and choose the best one. 

F(s′ |s, a) R(s)

Model-based approach (in brief)



Policy-based Approach (this tutorial)

• Directly search for the best policy  without necessarily modelling 
values or the environment.  

• Represent a stochastic policy  using continuous parameters : 
• In deep learning,  are the neural network weights 

• Can easily handle discrete or continuous states/actions. 

π

πθ θ
θ



Policy-based Approach (Outline)

• Initialize parameters  randomly, write expected return  as simply . 

• Training Loop  
1. Collect data  by running  in the environment. 

2. Estimate  using  

3. Improve the policy by taking a gradient ascent step 

•  

• Effect: increases  (if things go as planned)

θ J(πθ) J(θ)

D πθ

∇θ J(θ) D

θ := θ + η∇θ J(θ)
J(θ)



Details: Deriving ∇θJ(θ)

• Let  be a random episode under  

• Can write  

• Rewrite  

•  

   

τ = (s1, a1, r1, . . . , sT, aT, rT) F, π

p(τ) = ρ(s1)[πθ(a1 |s1)F(s2 |s1, a1) . . . πθ(aT |sT)]
J(θ) = 𝔼τ∼F,π[p(τ)r(τ)]

∇θJ(θ) = 𝔼τ∼F,π[r(τ)∇θlog p(τ)]
∇θJ(θ) = 𝔼τ∼F,π[r(τ)∑

t

∇θlog π(at |st)] (I assume  to simplify  
the derivations a bit)

γ = 1



Details: Estimating∇θJ(θ)
• REINFORCE / Score Function Estimator  

 

• Estimate the gradient by averaging over many   (unbiased!) 

• Intuition:  if  got high reward , “reinforce” the actions on that 
trajectory 

• Issue:  this estimator has very high variance — need lots of  to get an 
accurate gradient estimate

∇θJ(θ) = 𝔼τ∼F,π[r(τ)∑
t

∇θlog π(at |st)]
τ

τ r(τ)

τ



Details: Estimating∇θJ(θ)
• Lower variance, unbiased gradient estimators exist, and are much 

more practical.

REINFORCE / Score Function Estimator  

∇θJ(θ) = 𝔼τ∼F,π[r(τ)∑
t

∇θlog π(at |st)]

           Policy Gradient with Baseline 

∇θJ(θ) = 𝔼τ∼F,π[∑
t

(rt:T(τ) − V(st))∇θlog π(at |st)]
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