### CSC 2515: Introduction to Machine Learning Lecture 2: Decision Trees

### Amir-massoud Farahmand<sup>1</sup>

University of Toronto and Vector Institute

<sup>&</sup>lt;sup>1</sup>Credit for slides goes to many members of the ML Group at the U of T, and beyond, including (recent past): Roger Grosse, Murat Erdogdu, Richard Zemel, Juan Felipe Carrasquilla, Emad Andrews, and myself.







### Today

• KNN: Good method with reasonable theoretical guarantees, but not very explainable.

### • Decision Trees

- ▶ Simple but powerful learning algorithm
- ▶ More explainable; somehow similar to how people make decisions
- One of the most widely used learning algorithms in Kaggle competitions
- ▶ Lets us introduce ensembles, a key idea in ML
- Useful Information Theoretic concepts (entropy, mutual information, etc.)

Skills to Learn:

- Basic concepts of information theory
- Decision trees

- Decision trees make predictions by recursively splitting on different attributes according to a tree structure.
- Example: classifying fruit as an orange or lemon based on height and width





- For continuous attributes, split based on less than or greater than some threshold
- Thus, input space is divided into regions with boundaries parallel to axes
- The decision tree defines a function:

$$f(\mathbf{x}) = \sum_{i=1}^{r} w_i \mathbb{I}\{\mathbf{x} \in R_i\}$$



# Example with Discrete Inputs

| are discrete? |
|---------------|
|               |

| Example           | Input Attributes |     |     |     |      |        |      |     | Goal    |       |                   |
|-------------------|------------------|-----|-----|-----|------|--------|------|-----|---------|-------|-------------------|
| Linumpie          | Alt              | Bar | Fri | Hun | Pat  | Price  | Rain | Res | Type    | Est   | WillWait          |
| $\mathbf{x}_1$    | Yes              | No  | No  | Yes | Some | \$\$\$ | No   | Yes | French  | 0–10  | $y_1 = Yes$       |
| $\mathbf{x}_2$    | Yes              | No  | No  | Yes | Full | \$     | No   | No  | Thai    | 30–60 | $y_2 = No$        |
| $\mathbf{x}_3$    | No               | Yes | No  | No  | Some | \$     | No   | No  | Burger  | 0–10  | $y_3 = Yes$       |
| $\mathbf{x}_4$    | Yes              | No  | Yes | Yes | Full | \$     | Yes  | No  | Thai    | 10–30 | $y_4 = Yes$       |
| $\mathbf{x}_5$    | Yes              | No  | Yes | No  | Full | \$\$\$ | No   | Yes | French  | >60   | $y_5 = No$        |
| $\mathbf{x}_6$    | No               | Yes | No  | Yes | Some | \$\$   | Yes  | Yes | Italian | 0–10  | $y_6 = Yes$       |
| $\mathbf{x}_7$    | No               | Yes | No  | No  | None | \$     | Yes  | No  | Burger  | 0–10  | $y_7 = No$        |
| $\mathbf{x}_8$    | No               | No  | No  | Yes | Some | \$\$   | Yes  | Yes | Thai    | 0–10  | $y_8 = Yes$       |
| $\mathbf{x}_9$    | No               | Yes | Yes | No  | Full | \$     | Yes  | No  | Burger  | >60   | $y_9 = No$        |
| $\mathbf{x}_{10}$ | Yes              | Yes | Yes | Yes | Full | \$\$\$ | No   | Yes | Italian | 10–30 | $y_{10} = No$     |
| $\mathbf{x}_{11}$ | No               | No  | No  | No  | None | \$     | No   | No  | Thai    | 0–10  | $y_{11} = No$     |
| $\mathbf{x}_{12}$ | Yes              | Yes | Yes | Yes | Full | \$     | No   | No  | Burger  | 30–60 | $y_{12} = Y_{es}$ |

| 1.  | Alternate: whether there is a suitable alternative restaurant nearby.             |
|-----|-----------------------------------------------------------------------------------|
| 2.  | Bar: whether the restaurant has a comfortable bar area to wait in.                |
| з.  | Fri/Sat: true on Fridays and Saturdays.                                           |
| 4.  | Hungry: whether we are hungry.                                                    |
| 5.  | Patrons: how many people are in the restaurant (values are None, Some, and Full). |
| 6.  | Price: the restaurant's price range (\$, \$\$, \$\$\$).                           |
| 7.  | Raining: whether it is raining outside.                                           |
| 8.  | Reservation: whether we made a reservation.                                       |
| 9.  | Type: the kind of restaurant (French, Italian, Thai or Burger).                   |
| 10. | WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).   |

#### Attributes:

Intro ML (UofT)

#### CSC2515-Lec2

### Decision Tree: Example with Discrete Inputs

• Possible tree to decide whether to wait (T) or not (F)





- Internal nodes test attributes
- Branching is determined by attribute value
- Leaf nodes are outputs (predictions)

### • Discrete-input, discrete-output case:

- Decision trees can express any function of the input attributes
- $\blacktriangleright$  Example: For Boolean functions, the truth table row  $\rightarrow$  path to leaf



▶ Q: What is the decision tree for AND and OR?

### • Continuous-input, continuous-output case:

▶ Can approximate any function arbitrarily closely

[Slide credit: S. Russell]

### Decision Tree: Classification and Regression

- Each path from root to a leaf defines a region  $R_m$  of input space
- Let  $\{(\mathbf{x}^{(m_1)}, t^{(m_1)}), \dots, (\mathbf{x}^{(m_k)}, t^{(m_k)})\}$  be the training examples that fall into  $R_m$



### • Classification tree:

- discrete output, i.e.,  $y \in \{1, \ldots, C\}$ .
- leaf value  $y^m$  typically set to the most common value in  $\{t^{(m_1)}, \ldots, t^{(m_k)}\}$ , i.e.,

$$y^m \leftarrow \operatorname*{argmax}_{t \in \{1, \dots, C\}} \sum_{m_i} \mathbb{I}\{t = t^{(m_i)}\}.$$

Q: Why is this a sensible thing to do?

# Decision Tree: Classification and Regression

- Each path from root to a leaf defines a region  $R_m$  of input space
- Let  $\{(x^{(m_1)}, t^{(m_1)}), \dots, (x^{(m_k)}, t^{(m_k)})\}$  be the training examples that fall into  $R_m$



- Regression tree:
  - continuous output, i.e,  $y \in \mathbb{R}$
  - ▶ leaf value  $y^m$  typically set to the mean value in  $\{t^{(m_1)}, \ldots, t^{(m_k)}\}$ (Q: Why?)

Note: We will focus on classification.

- How do we construct a useful decision tree?
- We want to find a "simple" tree that explains data well.
  - ▶ Simple: Minimal number of nodes
  - ▶ There should be enough samples per region

### Learning Decision Trees

Learning the simplest (smallest) decision tree which correctly classifies training set is an NP complete problem (see Hyafil & Rivest'76).

- Resort to a greedy heuristic!
- Start with empty decision tree and complete training set
  - ▶ Split (i.e., partition dataset) on the "best" attribute.
  - Recurse on subpartitions
- When should we stop?
- Which attribute is the "best"?
  - We define a notion of gain of a split
  - Gain is defined based on change in some criteria before and after a split.
    - Various notions of gain

### Learning Decision Trees

Which attribute is the "best"?

- Let us choose the accuracy (i.e., misclassification error (or rate) L - the number of incorrect classifications) as the criteria, and define the accuracy gain.
- Let us define accuracy gain:
  - Suppose that we have region R. Denote the loss of that region as L(R).
  - We split R to two regions  $R_1$  and  $R_2$ .
  - What is the accuracy of the split regions?



Intro ML (UofT)

### Learning Decision Trees

- Misclassification loss before the split: L(R)
- Misclassification loss after the split:

$$\frac{|R_1|}{|R|}L(R_1) + \frac{|R_2|}{|R|}L(R_2)$$

• Accuracy gain is

$$L(R) - \frac{|R_1|L(R_1) + |R_2|L(R_2)|}{|R|}$$

• Note: Different splits lead to different accuracy gains.



# Choosing a Good Split

• Accuracy is not always a good measure to decide the split. Why?



• Is this split good? Accuracy gain is

$$L(R) - \frac{|R_1|L(R_1) + |R_2|L(R_2)|}{|R_1| + |R_2|} = \frac{49}{149} - \frac{50 \times 0 + 99 \times \frac{49}{99}}{149} = 0$$

• But we have reduced our uncertainty about whether a fruit is a lemon!

Intro ML (UofT)

CSC2515-Lec2

- We can use uncertainty as the criteria, and use gain in the certainty (or gain in the reduction of uncertainty) to decide the split
- How can we quantify uncertainty in prediction for a given leaf node?
  - ▶ All examples in leaf have the same class: good (low uncertainty)
  - ► Each class has the same number of examples in leaf: bad (high uncertainty)
- Idea: Use counts at leaves to define probability distributions, and use information theory to measure uncertainty

# Basics of Information Theory

# Flipping Two Different Coins

Q: Which coin is more uncertain?

```
Sequence 1:
000100000000000100...?
Sequence 2:
   0101110100110101...?
 1
0
     16
                            10
                        8
               versus
          2
     0
                        0
          1
                             1
```

# Quantifying Uncertainty

**Entropy** is a measure of expected "surprise": How uncertain are we of the value of a draw from this distribution?

$$H(X) = -\mathbb{E}_{X \sim p}[\log_2 p(X)] = -\sum_{x \in X} p(x) \log_2 p(x)$$



$$-\frac{8}{9}\log_2\frac{8}{9} - \frac{1}{9}\log_2\frac{1}{9} \approx \frac{1}{2} \qquad -\frac{4}{9}\log_2\frac{4}{9} - \frac{5}{9}\log_2\frac{5}{9} \approx 0.99$$

- Averages over information content of each observation
- Unit = **bits** (based on the base of logarithm)
- A fair coin flip has 1 bit of entropy Intro ML (UofT) CSC2515-Lec2

Entropy

$$H(X) = -\sum_{x \in \mathcal{X}} p(x) \log_2 p(x)$$

- Q: What is the entropy of a uniform distribution over  $\mathcal{X} = \{1, \dots, N\}$ ?
- Q: What is the entropy of a distribution concentrated on one of the outcomes (that is, p = (1, 0, 0, ..., 0))?
- Q: What is the entropy of a Bernoulli random variable with probability of 1 being p (and 1 p for 0)?



Intro ML (UofT)

### Entropy

### • "High Entropy":

- ▶ Variable has a uniform-like distribution
- Flat histogram
- ▶ Values sampled from it are less predictable
- "Low Entropy"
  - Distribution of variable has peaks and valleys
  - Histogram has lows and highs
  - ▶ Values sampled from it are more predictable

[Slide credit: Vibhav Gogate]

### Entropy of a Joint Distribution

• Example:  $\mathcal{X} = \{\text{Raining}, \text{Not raining}\}, \mathcal{Y} = \{\text{Cloudy}, \text{Not cloudy}\}$ 

|             | Cloudy | Not Cloudy |
|-------------|--------|------------|
| Raining     | 24/100 | 1/100      |
| Not Raining | 25/100 | 50/100     |

$$H(X,Y) = -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log_2 p(x,y)$$
  
=  $-\frac{24}{100} \log_2 \frac{24}{100} - \frac{1}{100} \log_2 \frac{1}{100} - \frac{25}{100} \log_2 \frac{25}{100} - \frac{50}{100} \log_2 \frac{50}{100}$   
 $\approx 1.56$  bits

Q: What weather condition has 2 bits of information?

Intro ML (UofT)

CSC2515-Lec2

### Specific Conditional Entropy

• Example:  $\mathcal{X} = \{ \text{Raining}, \text{Not raining} \}, \mathcal{Y} = \{ \text{Cloudy}, \text{Not cloudy} \}$ 

|             | Cloudy | Not Cloudy |
|-------------|--------|------------|
| Raining     | 24/100 | 1/100      |
| Not Raining | 25/100 | 50/100     |

• What is the entropy of cloudiness Y, given that it is raining?

$$\begin{split} H(Y|X=\text{raining}) &= -\sum_{y\in\mathcal{Y}} p(y|\text{raining})\log_2 p(y|\text{raining})\\ &= -\frac{24}{25}\log_2\frac{24}{25} - \frac{1}{25}\log_2\frac{1}{25}\\ &\approx 0.24\text{bits} \end{split}$$

$$\bullet \text{ We used } p(y|x) = \frac{p(x,y)}{p(x)} \text{ and } \quad p(x) = \sum_y p(x,y) \text{ (sum in a row)} \end{split}$$

# Conditional Entropy

|             | Cloudy | Not Cloudy |
|-------------|--------|------------|
| Raining     | 24/100 | 1/100      |
| Not Raining | 25/100 | 50/100     |

• The expected conditional entropy:

$$H(Y|X) = \mathbb{E}_{X \sim p(x)}[H(Y|X)]$$
(1)  
$$= \sum_{x \in \mathcal{X}} p(x)H(Y|X = x)$$
  
$$= -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y)\log_2 p(y|x)$$
  
$$= -\mathbb{E}_{(X,Y) \sim p(x,y)}[\log_2 p(Y|X)]$$

### Conditional Entropy

• Example:  $\mathcal{X} = \{\text{Raining}, \text{Not raining}\}, \mathcal{Y} = \{\text{Cloudy}, \text{Not cloudy}\}$ 

|             | Cloudy | Not Cloudy |
|-------------|--------|------------|
| Raining     | 24/100 | 1/100      |
| Not Raining | 25/100 | 50/100     |

• What is the entropy of cloudiness (Y), given the knowledge of whether or not it is raining?

$$\begin{split} H(Y|X) &= \sum_{x \in \mathcal{X}} p(x) H(Y|X=x) \\ &= \frac{1}{4} H(Y|\text{raining}) + \frac{3}{4} H(Y|\text{not raining}) \\ &\approx 0.75 \text{ bits} \end{split}$$

Intro ML (UofT)

# Conditional Entropy



• Some useful properties for the discrete case:

- ► *H* is always non-negative.
- Chain rule: H(X, Y) = H(X|Y) + H(Y) = H(Y|X) + H(X).
- If X and Y independent, then X does not tell us anything about Y: H(Y|X) = H(Y).
- If X and Y independent, then H(X, Y) = H(X) + H(Y).
- But Y tells us everything about Y: H(Y|Y) = 0.
- ▶ By knowing X, we can only decrease uncertainty about Y:  $H(Y|X) \le H(Y).$

Exercise: Verify these!

The figure is reproduced from Fig 8.1 of MacKay, Information Theory, Inference, and  $\ldots$  .

Intro ML (UofT)

CSC2515-Lec2

### Information Gain

|             | Cloudy | Not Cloudy |
|-------------|--------|------------|
| Raining     | 24/100 | 1/100      |
| Not Raining | 25/100 | 50/100     |

• How much information about cloudiness do we get by discovering whether it is raining?

$$I(X;Y) = IG(Y|X) = H(Y) - H(Y|X)$$
  

$$\approx 0.25 \text{ bits}$$

- This is called the information gain in Y due to X, or the mutual information of Y and X
- If X is completely uninformative about Y: IG(Y|X) = 0
- If X is completely informative about Y: IG(Y|X) = H(Y)
- Information gain measures the informativeness of a variable, which is exactly what we desire in a decision tree attribute!

Intro ML (UofT)

# Back to Decision Trees

## Revisiting Our Original Example

• What is the information gain of this split?



- Let Y be r.v. denoting lemon or orange, B be r.v. denoting whether left or right split taken, and treat counts as probabilities.
- Root entropy:  $H(Y) = -\frac{49}{149} \log_2(\frac{49}{149}) \frac{100}{149} \log_2(\frac{100}{149}) \approx 0.91$
- Leafs entropy:  $H(Y|B = \text{left}) = 0, H(Y|B = \text{right}) \approx 1.$

$$\begin{split} HG(Y|B) &= H(Y) - H(Y|B) \\ &= H(Y) - \left[H(Y|B = \operatorname{left})\mathbb{P}(B = \operatorname{left}) + \\ &\quad H(Y|B = \operatorname{right})\mathbb{P}(B = \operatorname{right})\right] \\ &\approx 0.91 - \left[0 \cdot \frac{1}{3} + 1 \cdot \frac{2}{3}\right] \approx 0.24 > 0. \end{split}$$

### Constructing Decision Trees



- At each level, one must choose:
  - 1. which variable to split.
  - 2. possibly where to split it.
- Choose them based on how much information we would gain from the decision! (choose attribute that gives the highest gain)

- Simple, greedy, recursive approach, builds up tree node-by-node
- Start with empty decision tree and complete training set
  - ▶ Split on the most informative attribute, partitioning dataset
  - Recurse on subpartitions
- Possible termination condition: end if all examples in current subpartition share the same class

### Back to Our Example

| Example           | Input Attributes |     |     |     |      |        |      |     | Goal    |       |                   |
|-------------------|------------------|-----|-----|-----|------|--------|------|-----|---------|-------|-------------------|
|                   | Alt              | Bar | Fri | Hun | Pat  | Price  | Rain | Res | Type    | Est   | WillWait          |
| $\mathbf{x}_1$    | Yes              | No  | No  | Yes | Some | \$\$\$ | No   | Yes | French  | 0–10  | $y_1 = Yes$       |
| $\mathbf{x}_2$    | Yes              | No  | No  | Yes | Full | \$     | No   | No  | Thai    | 30–60 | $y_2 = No$        |
| $\mathbf{x}_3$    | No               | Yes | No  | No  | Some | \$     | No   | No  | Burger  | 0–10  | $y_3 = Yes$       |
| $\mathbf{x}_4$    | Yes              | No  | Yes | Yes | Full | \$     | Yes  | No  | Thai    | 10–30 | $y_4 = Yes$       |
| $\mathbf{x}_5$    | Yes              | No  | Yes | No  | Full | \$\$\$ | No   | Yes | French  | >60   | $y_5 = No$        |
| $\mathbf{x}_6$    | No               | Yes | No  | Yes | Some | \$\$   | Yes  | Yes | Italian | 0–10  | $y_6 = Yes$       |
| $\mathbf{x}_7$    | No               | Yes | No  | No  | None | \$     | Yes  | No  | Burger  | 0–10  | $y_7 = No$        |
| $\mathbf{x}_8$    | No               | No  | No  | Yes | Some | \$\$   | Yes  | Yes | Thai    | 0–10  | $y_8 = Yes$       |
| $\mathbf{x}_9$    | No               | Yes | Yes | No  | Full | \$     | Yes  | No  | Burger  | >60   | $y_9 = No$        |
| $\mathbf{x}_{10}$ | Yes              | Yes | Yes | Yes | Full | \$\$\$ | No   | Yes | Italian | 10–30 | $y_{10} = No$     |
| $\mathbf{x}_{11}$ | No               | No  | No  | No  | None | \$     | No   | No  | Thai    | 0–10  | $y_{11} = No$     |
| $\mathbf{x}_{12}$ | Yes              | Yes | Yes | Yes | Full | \$     | No   | No  | Burger  | 30–60 | $y_{12} = Y_{es}$ |

Alternate: whether there is a suitable alternative restaurant nearby. 2. Bar: whether the restaurant has a comfortable bar area to wait in. 3. Fri/Sat: true on Fridays and Saturdays. 4. Hungry: whether we are hungry. 5. Patrons: how many people are in the restaurant (values are None, Some, and Full). 6. Price: the restaurant's price range (\$, \$\$, \$\$\$). Raining: whether it is raining outside. 8. Reservation: whether we made a reservation. 9. Type: the kind of restaurant (French, Italian, Thai or Burger). 10. WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).

Attributes:

[from: Russell & Norvig]

Intro ML (UofT)

CSC2515-Lec2

### Attribute Selection



$$\begin{split} IG(Y) &= H(Y) - H(Y|X) \\ IG(type) &= 1 - \left[\frac{2}{12}H(Y|\text{Fr.}) + \frac{2}{12}H(Y|\text{It.}) + \frac{4}{12}H(Y|\text{Thai}) + \frac{4}{12}H(Y|\text{Bur.})\right] = 0 \\ IG(Patrons) &= 1 - \left[\frac{2}{12}H(0,1) + \frac{4}{12}H(1,0) + \frac{6}{12}H(\frac{2}{6},\frac{4}{6})\right] \approx 0.541 \\ \\ \hline \text{Intro ML (UofT)} & \text{CSC2515-Lec2} & 35 / 41 \end{split}$$

### Which Tree is Better?



- Not too small: need to handle important but possibly subtle distinctions in data
- Not too big:
  - Avoid over-fitting training examples.
    - ▶ We need enough samples in each region to confidently determine the output.
  - ▶ Computational efficiency (avoid redundant, spurious attributes)
  - Human interpretability
- Occam's Razor: find the simplest hypothesis that fits the observations
  - ▶ Useful principle, but not obvious how to formalize simplicity.
    - ▶ Number of nodes in a tree
  - ▶ We shall encounter some other ways to formalize simplicity.
- We desire small trees with informative nodes near the root

### Decision Tree Miscellany

- Problems:
  - ▶ You have exponentially less data at lower levels
  - ▶ A large tree can overfit the data
  - Greedy algorithms do not necessarily yield the global optimum
  - ▶ Mistakes at top-level propagate down tree
- Handling continuous attributes
  - ▶ Split based on a threshold, chosen to maximize information gain
- There are other criteria used to measure the quality of a split, e.g., Gini index
- Trees can be pruned in order to make them less complex
- Decision trees can also be used for regression on real-valued outputs. Choose splits to minimize squared error, rather than maximize information gain.

Intro ML (UofT)

Advantages of decision trees over K-NN

- Good with discrete attributes
- Easily deals with missing values (just treat as another value)
- Robust to scale of inputs; only depends on ordering
- Good when there are lots of attributes, but only a few are important
- Fast at test time
- More interpretable

Advantages of K-NN over decision trees

- Able to handle attributes/features that interact in complex ways
- Can incorporate interesting distance measures, e.g., shape contexts.

- There are ways to make Decisions Trees much more powerful (using a technique called Bagging (Bootstrap Aggregating), though at the cost of losing some useful properties such as interpretability. We get to them later.
- Next we get to more modular approaches to designing ML methods.