CSC 2515: Introduction to Machine Learning

Lecture 2: Decision Trees

Amir-massoud Farahmand ${ }^{1}$

University of Toronto and Vector Institute

[^0]
Table of Contents

(1) Decision Trees
(2) Basics of Information Theory
(3) Back to Decision Trees

Today

- KNN: Good method with reasonable theoretical guarantees, but not very explainable.
- Decision Trees
- Simple but powerful learning algorithm
- More explainable; somehow similar to how people make decisions
- One of the most widely used learning algorithms in Kaggle competitions
- Lets us introduce ensembles, a key idea in ML
- Useful Information Theoretic concepts (entropy, mutual information, etc.)

Skills to Learn:

- Basic concepts of information theory
- Decision trees

Decision Trees

- Decision trees make predictions by recursively splitting on different attributes according to a tree structure.
- Example: classifying fruit as an orange or lemon based on height and width

Decision Trees

Test example

Decision Trees

- For continuous attributes, split based on less than or greater than some threshold
- Thus, input space is divided into regions with boundaries parallel to axes
- The decision tree defines a function:

$$
f(\mathbf{x})=\sum_{i=1}^{r} w_{i} \mathbb{I}\left\{\mathbf{x} \in R_{i}\right\}
$$

Example with Discrete Inputs

- What if the attributes are discrete?

Example	Input Attributes										Goal WillWait
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	
x_{1}	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0-10	$y_{1}=$ Yes
x_{2}	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	$y_{2}=N_{0}$
x_{3}	No	Yes	No	No	Some	\$	No	No	Burger	0-10	$y_{3}=Y$ es
x_{4}	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	$y_{4}=Y e s$
x_{5}	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	$y_{5}=N_{0}$
x_{6}	No	Yes	No	Yes	Some	\$	Yes	Yes	Italian	0-10	$y_{6}=Y$ Yes
x_{7}	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	$y_{7}=N_{0}$
x_{8}	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	$y_{8}=Y$ es
x_{9}	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	$y_{9}=N_{0}$
x_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	$y_{10}=N_{o}$
x_{11}	No	No	No	No	None	\$	No	No	Thai	0-10	$y_{11}=N_{0}$
\mathbf{x}_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	$y_{12}=Y e s$

Attributes:

1.	Alternate: whether there is a suitable alternative restaurant nearby.
2.	Bar: whether the restaurant has a comfortable bar area to wait in.
3.	Fri/Sat: true on Fridays and Saturdays.
4.	Hungry: whether we are hungry.
5.	Patrons: how many people are in the restaurant (values are None, Some, and Full).
6.	Price: the restaurant's price range (\$, $\$ \$, \$ \$ \$$).
7.	Raining: whether it is raining outside.
8.	Reservation: whether we made a reservation.
9.	Type: the kind of restaurant (French, Italian, Thai or Burger).
10.	WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).

Decision Tree: Example with Discrete Inputs

- Possible tree to decide whether to wait (T) or not (F)

Decision Trees

- Internal nodes test attributes
- Branching is determined by attribute value
- Leaf nodes are outputs (predictions)

Expressiveness

- Discrete-input, discrete-output case:
- Decision trees can express any function of the input attributes
- Example: For Boolean functions, the truth table row \rightarrow path to leaf

- Q: What is the decision tree for AND and OR?
- Continuous-input, continuous-output case:
- Can approximate any function arbitrarily closely
[Slide credit: S. Russell]

Decision Tree: Classification and Regression

- Each path from root to a leaf defines a region R_{m} of input space
- Let $\left\{\left(\mathbf{x}^{\left(m_{1}\right)}, t^{\left(m_{1}\right)}\right), \ldots,\left(\mathbf{x}^{\left(m_{k}\right)}, t^{\left(m_{k}\right)}\right)\right\}$ be the training examples that fall into R_{m}

- Classification tree:
- discrete output, i.e., $y \in\{1, \ldots, C\}$.
- leaf value y^{m} typically set to the most common value in $\left\{t^{\left(m_{1}\right)}, \ldots, t^{\left(m_{k}\right)}\right\}$, i.e.,

$$
y^{m} \leftarrow \underset{t \in\{1, \ldots, C\}}{\operatorname{argmax}} \sum_{m_{i}} \mathbb{I}\left\{t=t^{\left(m_{i}\right)}\right\} .
$$

Q: Why is this a sensible thing to do?

Decision Tree: Classification and Regression

- Each path from root to a leaf defines a region R_{m} of input space
- Let $\left\{\left(x^{\left(m_{1}\right)}, t^{\left(m_{1}\right)}\right), \ldots,\left(x^{\left(m_{k}\right)}, t^{\left(m_{k}\right)}\right)\right\}$ be the training examples that fall into R_{m}

- Regression tree:
- continuous output, i.e, $y \in \mathbb{R}$
- leaf value y^{m} typically set to the mean value in $\left\{t^{\left(m_{1}\right)}, \ldots, t^{\left(m_{k}\right)}\right\}$ (Q: Why?)
Note: We will focus on classification.

How do we Learn a DecisionTree?

- How do we construct a useful decision tree?
- We want to find a "simple" tree that explains data well.
- Simple: Minimal number of nodes
- There should be enough samples per region

Learning Decision Trees

Learning the simplest (smallest) decision tree which correctly classifies training set is an NP complete problem (see Hyafil \& Rivest'76).

- Resort to a greedy heuristic!
- Start with empty decision tree and complete training set
- Split (i.e., partition dataset) on the "best" attribute.
- Recurse on subpartitions
- When should we stop?
- Which attribute is the "best"?
- We define a notion of gain of a split
- Gain is defined based on change in some criteria before and after a split.
- Various notions of gain

Learning Decision Trees

Which attribute is the "best"?

- Let us choose the accuracy (i.e., misclassification error (or rate) L - the number of incorrect classifications) as the criteria, and define the accuracy gain.
- Let us define accuracy gain:
- Suppose that we have region R. Denote the loss of that region as $L(R)$.
- We split R to two regions R_{1} and R_{2}.
- What is the accuracy of the split regions?

Learning Decision Trees

- Misclassification loss before the split: $L(R)$
- Misclassification loss after the split:

$$
\frac{\left|R_{1}\right|}{|R|} L\left(R_{1}\right)+\frac{\left|R_{2}\right|}{|R|} L\left(R_{2}\right)
$$

- Accuracy gain is

$$
L(R)-\frac{\left|R_{1}\right| L\left(R_{1}\right)+\left|R_{2}\right| L\left(R_{2}\right)}{|R|}
$$

- Note: Different splits lead to different accuracy gains.

Choosing a Good Split

- Accuracy is not always a good measure to decide the split. Why?

- Is this split good? Accuracy gain is

$$
L(R)-\frac{\left|R_{1}\right| L\left(R_{1}\right)+\left|R_{2}\right| L\left(R_{2}\right)}{\left|R_{1}\right|+\left|R_{2}\right|}=\frac{49}{149}-\frac{50 \times 0+99 \times \frac{49}{99}}{149}=0
$$

- But we have reduced our uncertainty about whether a fruit is a lemon!

Choosing a Good Split

- We can use uncertainty as the criteria, and use gain in the certainty (or gain in the reduction of uncertainty) to decide the split
- How can we quantify uncertainty in prediction for a given leaf node?
- All examples in leaf have the same class: good (low uncertainty)
- Each class has the same number of examples in leaf: bad (high uncertainty)
- Idea: Use counts at leaves to define probability distributions, and use information theory to measure uncertainty

Basics of Information Theory

Flipping Two Different Coins

Q: Which coin is more uncertain?
Sequence 1:
$000100000000000100 \ldots$?
Sequence 2:
$010101110100110101 \ldots$?
16

versus

Quantifying Uncertainty

Entropy is a measure of expected "surprise": How uncertain are we of the value of a draw from this distribution?

$$
H(X)=-\mathbb{E}_{X \sim p}\left[\log _{2} p(X)\right]=-\sum_{x \in X} p(x) \log _{2} p(x)
$$

$$
-\frac{8}{9} \log _{2} \frac{8}{9}-\frac{1}{9} \log _{2} \frac{1}{9} \approx \frac{1}{2} \quad-\frac{4}{9} \log _{2} \frac{4}{9}-\frac{5}{9} \log _{2} \frac{5}{9} \approx 0.99
$$

- Averages over information content of each observation
- Unit = bits (based on the base of logarithm)
- A fair coin flip has 1 bit of entropy

Entropy

$$
H(X)=-\sum_{x \in \mathcal{X}} p(x) \log _{2} p(x)
$$

- Q: What is the entropy of a uniform distribution over $\mathcal{X}=\{1, \ldots, N\}$?
- Q: What is the entropy of a distribution concentrated on one of the outcomes (that is, $p=(1,0,0, \ldots, 0))$?
- Q: What is the entropy of a Bernoulli random variable with probability of 1 being p (and $1-p$ for 0)?

Entropy

- "High Entropy":
- Variable has a uniform-like distribution
- Flat histogram
- Values sampled from it are less predictable
- "Low Entropy"
- Distribution of variable has peaks and valleys
- Histogram has lows and highs
- Values sampled from it are more predictable
[Slide credit: Vibhav Gogate]

Entropy of a Joint Distribution

- Example: $\mathcal{X}=\{$ Raining, Not raining $\}, \mathcal{Y}=\{$ Cloudy, Not cloudy $\}$

	Cloudy	Not Cloudy
Raining	$24 / 100$	$1 / 100$
Not Raining	$25 / 100$	$50 / 100$

$$
\begin{aligned}
H(X, Y) & =-\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log _{2} p(x, y) \\
& =-\frac{24}{100} \log _{2} \frac{24}{100}-\frac{1}{100} \log _{2} \frac{1}{100}-\frac{25}{100} \log _{2} \frac{25}{100}-\frac{50}{100} \log _{2} \frac{50}{100} \\
& \approx 1.56 \mathrm{bits}
\end{aligned}
$$

Q: What weather condition has 2 bits of information?

Specific Conditional Entropy

- Example: $\mathcal{X}=\{$ Raining, Not raining $\}, \mathcal{Y}=\{$ Cloudy, Not cloudy $\}$

	Cloudy	Not Cloudy
Raining	$24 / 100$	$1 / 100$
Not Raining	$25 / 100$	$50 / 100$

- What is the entropy of cloudiness Y, given that it is raining?

$$
\begin{aligned}
H(Y \mid X=\text { raining }) & =-\sum_{y \in \mathcal{Y}} p(y \mid \text { raining }) \log _{2} p(y \mid \text { raining }) \\
& =-\frac{24}{25} \log _{2} \frac{24}{25}-\frac{1}{25} \log _{2} \frac{1}{25} \\
& \approx 0.24 \mathrm{bits}
\end{aligned}
$$

- We used $p(y \mid x)=\frac{p(x, y)}{p(x)}$ and $p(x)=\sum_{y} p(x, y)$ (sum in a row)

Conditional Entropy

	Cloudy	Not Cloudy
Raining	$24 / 100$	$1 / 100$
Not Raining	$25 / 100$	$50 / 100$

- The expected conditional entropy:

$$
\begin{align*}
H(Y \mid X) & =\mathbb{E}_{X \sim p(x)}[H(Y \mid X)] \tag{1}\\
& =\sum_{x \in \mathcal{X}} p(x) H(Y \mid X=x) \\
& =-\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log _{2} p(y \mid x) \\
& =-\mathbb{E}_{(X, Y) \sim p(x, y)}\left[\log _{2} p(Y \mid X)\right]
\end{align*}
$$

Conditional Entropy

- Example: $\mathcal{X}=\{$ Raining, Not raining $\}, \mathcal{Y}=\{$ Cloudy, Not cloudy $\}$

	Cloudy	Not Cloudy
Raining	$24 / 100$	$1 / 100$
Not Raining	$25 / 100$	$50 / 100$

- What is the entropy of cloudiness (Y), given the knowledge of whether or not it is raining?

$$
\begin{aligned}
H(Y \mid X) & =\sum_{x \in \mathcal{X}} p(x) H(Y \mid X=x) \\
& =\frac{1}{4} H(Y \mid \text { raining })+\frac{3}{4} H(Y \mid \text { not raining }) \\
& \approx 0.75 \mathrm{bits}
\end{aligned}
$$

Conditional Entropy

- Some useful properties for the discrete case:
- H is always non-negative.
- Chain rule: $H(X, Y)=H(X \mid Y)+H(Y)=H(Y \mid X)+H(X)$.
- If X and Y independent, then X does not tell us anything about Y : $H(Y \mid X)=H(Y)$.
- If X and Y independent, then $H(X, Y)=H(X)+H(Y)$.
- But Y tells us everything about $Y: H(Y \mid Y)=0$.
- By knowing X, we can only decrease uncertainty about Y : $H(Y \mid X) \leq H(Y)$.

Exercise: Verify these!
The figure is reproduced from Fig 8.1 of MacKay, Information Theory, Inference, and

Information Gain

	Cloudy	Not Cloudy
Raining	$24 / 100$	$1 / 100$
Not Raining	$25 / 100$	$50 / 100$

- How much information about cloudiness do we get by discovering whether it is raining?

$$
\begin{aligned}
I(X ; Y)=I G(Y \mid X) & =H(Y)-H(Y \mid X) \\
& \approx 0.25 \mathrm{bits}
\end{aligned}
$$

- This is called the information gain in Y due to X, or the mutual information of Y and X
- If X is completely uninformative about $Y: I G(Y \mid X)=0$
- If X is completely informative about $Y: I G(Y \mid X)=H(Y)$
- Information gain measures the informativeness of a variable, which is exactly what we desire in a decision tree attribute!

Back to Decision Trees

Revisiting Our Original Example

- What is the information gain of this split?

- Let Y be r.v. denoting lemon or orange, B be r.v. denoting whether left or right split taken, and treat counts as probabilities.
- Root entropy: $H(Y)=-\frac{49}{149} \log _{2}\left(\frac{49}{149}\right)-\frac{100}{149} \log _{2}\left(\frac{100}{149}\right) \approx 0.91$
- Leafs entropy: $H(Y \mid B=$ left $)=0, H(Y \mid B=$ right $) \approx 1$.

$$
\begin{aligned}
I G(Y \mid B)= & H(Y)- \\
= & H(Y \mid B)-[H(Y \mid B=\text { left }) \mathbb{P}(B=\text { left })+ \\
& H(Y \mid B=\text { right }) \mathbb{P}(B=\text { right })] \\
\approx & 0.91-\left[0 \cdot \frac{1}{3}+1 \cdot \frac{2}{3}\right] \approx 0.24>0 .
\end{aligned}
$$

Constructing Decision Trees

- At each level, one must choose:

1. which variable to split.
2. possibly where to split it.

- Choose them based on how much information we would gain from the decision! (choose attribute that gives the highest gain)

Decision Tree Construction Algorithm

- Simple, greedy, recursive approach, builds up tree node-by-node
- Start with empty decision tree and complete training set
- Split on the most informative attribute, partitioning dataset
- Recurse on subpartitions
- Possible termination condition: end if all examples in current subpartition share the same class

Back to Our Example

Example	Input Attributes										Goal WillWait
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	
x_{1}	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0-10	$y_{1}=$ Yes
x_{2}	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	$y_{2}=N o$
x_{3}	No	Yes	No	No	Some	\$	No	No	Burger	0-10	$y_{3}=Y$ es
x_{4}	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	$y_{4}=Y$ es
\mathbf{x}_{5}	Yes	No	Yes	No	Full	\$\$8	No	Yes	French	> 60	$y_{5}=N_{o}$
\mathbf{x}_{6}	No	Yes	No	Yes	Some	\$ $\$$	Yes	Yes	Italian	0-10	$y_{6}=Y$ es
\mathbf{x}_{7}	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	$y_{7}=N_{0}$
x_{8}	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	$y_{8}=Y$ Yes
x_{9}	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	$y_{9}=N_{o}$
x_{10}	Yes	Yes	Yes	Yes	Full	\$\$8	No	Yes	Italian	10-30	$y_{10}=N_{0}$
x_{11}	No	No	No	No	None	\$	No	No	Thai	0-10	$y_{11}=N_{0}$
x_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	$y_{12}=$ Yes

Attributes:

Alternate: whether there is a suitable alternative restaurant nearby.
Bar: whether the restaurant has a comfortable bar area to wait in.
Fri/Sat: true on Fridays and Saturdays.
Hungry: whether we are hungry.
Patrons: how many people are in the restaurant (values are None, Some, and Full).
Price: the restaurant's price range ($\$, \$ \$, \$ \$ \$$).
Raining: whether it is raining outside.
Reservation: whether we made a reservation.
Type: the kind of restaurant (French, Italian, Thai or Burger).
WaitEstimate: the wait estimated by the host ($0-10$ minutes, $10-30,30-60,>60$).

[from: Russell \& Norvig]

Attribute Selection

$$
\begin{gathered}
I G(Y)=H(Y)-H(Y \mid X) \\
I G(\text { type })=1-\left[\frac{2}{12} H(Y \mid \text { Fr. })+\frac{2}{12} H(Y \mid \text { it. })+\frac{4}{12} H(Y \mid \text { Thai })+\frac{4}{12} H(Y \mid \text { Bur. })\right]=0
\end{gathered}
$$

$$
I G(\text { Patrons })=1-\left[\frac{2}{12} H(0,1)+\frac{4}{12} H(1,0)+\frac{6}{12} H\left(\frac{2}{6}, \frac{4}{6}\right)\right] \approx 0.541
$$

Which Tree is Better?

What Makes a Good Tree?

- Not too small: need to handle important but possibly subtle distinctions in data
- Not too big:
- Avoid over-fitting training examples.
- We need enough samples in each region to confidently determine the output.
- Computational efficiency (avoid redundant, spurious attributes)
- Human interpretability
- Occam's Razor: find the simplest hypothesis that fits the observations
- Useful principle, but not obvious how to formalize simplicity.
- Number of nodes in a tree
- We shall encounter some other ways to formalize simplicity.
- We desire small trees with informative nodes near the root

Decision Tree Miscellany

- Problems:
- You have exponentially less data at lower levels
- A large tree can overfit the data
- Greedy algorithms do not necessarily yield the global optimum
- Mistakes at top-level propagate down tree
- Handling continuous attributes
- Split based on a threshold, chosen to maximize information gain
- There are other criteria used to measure the quality of a split, e.g., Gini index
- Trees can be pruned in order to make them less complex
- Decision trees can also be used for regression on real-valued outputs. Choose splits to minimize squared error, rather than maximize information gain.

Comparison to K-NN

Advantages of decision trees over K-NN

- Good with discrete attributes
- Easily deals with missing values (just treat as another value)
- Robust to scale of inputs; only depends on ordering
- Good when there are lots of attributes, but only a few are important
- Fast at test time
- More interpretable

Comparison to K-NN

Advantages of K-NN over decision trees

- Able to handle attributes/features that interact in complex ways
- Can incorporate interesting distance measures, e.g., shape contexts.

Summary

- There are ways to make Decisions Trees much more powerful (using a technique called Bagging (Bootstrap Aggregating), though at the cost of losing some useful properties such as interpretability. We get to them later.
- Next we get to more modular approaches to designing ML methods.

[^0]: ${ }^{1}$ Credit for slides goes to many members of the ML Group at the U of T, and beyond, including (recent past): Roger Grosse, Murat Erdogdu, Richard Zemel, Juan Felipe Carrasquilla, Emad Andrews, and myself.

