CSC 2515: Introduction to Machine Learning

Lecture 3: Regression and Classification with Linear Models

Amir-massoud Farahmand ${ }^{1}$

University of Toronto and Vector Institute

[^0]
Table of Contents

(1) Modular Approach to ML
(2) Regression

- Linear Regression
- Basis Expansion
- Regularization
- Probabilistic Interpretation of the Squared Error
(3) Gradient Descent for Optimization
(4) Classification
- Linear Classification
- In Search of Loss Function
- Probabilistic Interpretation of Logistic Regression
- Multiclass Classification
(5) Stochastic Gradient Descent

Modular Approach to ML Algorithm Design

processing on input $f(x)$

Modular Approach to ML Algorithm Design

- So far, we have talked about procedures for learning.
- KNN and decision trees.
- For the remainder of this course, we will take a more modular approach:
- choose a model describing the relationships between variables of interest
- define a loss function quantifying how bad the fit to the data is
- (possibly) choose a regularizer saying how much we prefer different candidate models (or explanations of data), before (prior to) seeing the data
- fit the model that minimizes the loss function and satisfy the constraint/penalty imposed by the regularizer, possibly using an optimization algorithm
- Mixing and matching these modular components gives us a lot of new ML methods.

Skills to Learn

Understanding

- The modular approach to ML
- The role of a model
- Linear models
- How can we make them more powerful and flexible?
- Regularization
- Loss function
- The relation of loss function and the decision problem we want to solve
- Some loss functions suitable for regression and classification
- Maximum Likelihood interpretation
- Optimization using Gradient Descent and Stochastic Gradient Descent

The Supervised Learning Setup

Recall that in supervised learning:

- There is a target $t \in \mathcal{T}$ (also called response, outcome, output, class)
- There are features $\mathbf{x} \in \mathcal{X}$ (also called inputs or covariates)
- The goal is to learn a function $f: \mathcal{X} \rightarrow \mathcal{T}$ such that

$$
t \approx y=f(x)
$$

based on given data $\mathcal{D}=\left\{\left(\mathbf{x}^{(i)}, t^{(i)}\right)\right.$ for $\left.i=1,2, \ldots, N\right\}$.

Linear Regression - Model

- Model: In linear regression, we use linear functions of the inputs $\mathbf{x}=\left(x_{1}, \ldots, x_{D}\right)$ to make predictions y of the target value t :

$$
y=f(\mathbf{x})=\sum_{j} w_{j} x_{j}+b
$$

- y is the prediction
- w is the weights
- b is the bias (or intercept) (do not confuse with the bias-variance tradeoff in the next lecture)
- w and b together are the parameters
- We hope that our prediction is close to the target: $y \approx t$.

What is Linear? 1 Feature vs. D Features

- If we have only 1 feature:
$y=w x+b$ where $w, x, b \in \mathbb{R}$.
- y is linear in x.
- If we have D features:
$y=\mathbf{w}^{\top} \mathbf{x}+b$ where $\mathbf{w}, \mathbf{x} \in \mathbb{R}^{D}$, $b \in \mathbb{R}$
- y is linear in \mathbf{x}.

Relation between the prediction y and inputs \mathbf{x} is linear in both cases.

Weight Space vs. Data Space

Data space

Recall that

$$
y=f(\mathbf{x})=\sum_{j} w_{j} x_{j}+b
$$

Linear Regression

We have a dataset $\mathcal{D}=\left\{\left(\mathbf{x}^{(i)}, t^{(i)}\right)\right\}_{i=1}^{N}$ where,

- $\mathbf{x}^{(i)}=\left(x_{1}^{(i)}, x_{2}^{(i)}, \ldots, x_{D}^{(i)}\right)^{\top} \in \mathbb{R}^{D}$ are the inputs, e.g., age, height,
- $t^{(i)} \in \mathbb{R}$ is the target or response, e.g., income,
- predict $t^{(i)}$ with a linear function of $\mathbf{x}^{(i)}$:

- $t^{(i)} \approx y^{(i)}=\mathbf{w}^{\top} \mathbf{x}^{(i)}+b$
- Find the "best" line ($\mathbf{w}, b)$.
- Q: How should we define the best line?

Linear Regression - Loss Function

- How to quantify the quality of the fit to data?
- A loss function $\mathcal{L}(y, t)$ defines how bad it is if, for some input \mathbf{x}, the algorithm predicts y, but the target is actually t.
- Squared error loss function:

$$
\mathcal{L}(y, t)=\frac{1}{2}(y-t)^{2}
$$

- $y-t$ is the residual, and we want to make its magnitude small
- The $\frac{1}{2}$ factor is just to make the calculations convenient.

Linear Regression - Loss Function

- Cost function: loss function averaged over all training examples

$$
\begin{aligned}
\mathcal{J}(\mathbf{w}, b) & =\frac{1}{N} \sum_{i=1}^{N} \mathcal{L}\left(y^{(i)}, t^{(i)}\right) \\
& =\frac{1}{2 N} \sum_{i=1}^{N}\left(y^{(i)}-t^{(i)}\right)^{2} \\
& =\frac{1}{2 N} \sum_{i=1}^{N}\left(\mathbf{w}^{\top} \mathbf{x}^{(i)}+b-t^{(i)}\right)^{2}
\end{aligned}
$$

- To find the best fit, we find a model (parameterized by its weights \mathbf{w} and b) that minimizes the cost:

$$
\underset{(\mathbf{w}, b)}{\operatorname{minimize}} \mathcal{J}(\mathbf{w}, b)=\frac{1}{N} \sum_{i=1}^{N} \mathcal{L}\left(y^{(i)}, t^{(i)}\right)
$$

- The terminology is not universal. Some might call "loss" pointwise loss and the "cost function" the empirical loss or average loss.

Vector Notation

- We can organize all the training examples into a design matrix \mathbf{X} with one row per training example, and all the targets into the target vector \mathbf{t}.

$$
\begin{aligned}
& \text { one feature across } \\
& \text { all training examples }
\end{aligned}
$$

$$
\mathbf{X}=\left(\begin{array}{l}
\mathbf{x}^{(1) \top} \\
\mathbf{x}^{(2) \top} \\
\mathbf{x}^{(3) \top}
\end{array}\right)=\left(\begin{array}{c|c|cc}
\cline { 2 - 4 } & 0 & 3 & 0 \\
\hline 6 & -1 & 5 & 3 \\
\hline 2 & 5 & -2 & 8
\end{array}\right) \quad \begin{gathered}
\text { one training } \\
\text { example (vector) }
\end{gathered}
$$

- Computing the predictions for the whole dataset:

$$
\mathbf{X} \mathbf{w}+b \mathbf{1}=\left(\begin{array}{c}
\mathbf{w}^{\top} \mathbf{x}^{(1)}+b \\
\vdots \\
\mathbf{w}^{\top} \mathbf{x}^{(N)}+b
\end{array}\right)=\left(\begin{array}{c}
y^{(1)} \\
\vdots \\
y^{(N)}
\end{array}\right)=\mathbf{y}
$$

Vectorization

- Computing the squared error cost across the whole dataset:

$$
\begin{aligned}
& \mathbf{y}=\mathbf{X} \mathbf{w}+b \mathbf{1} \\
& \mathcal{J}=\frac{1}{2 N}\|\mathbf{y}-\mathbf{t}\|^{2}
\end{aligned}
$$

- Note that sometimes we may use $\mathcal{J}=\frac{1}{2}\|\mathbf{y}-\mathbf{t}\|^{2}$, without $\frac{1}{N}$ normalizer. That would correspond to the sum of losses, and not the average loss. That does not matter as the minimizer does not depend on N.
- We can also add a column of 1 s to the design matrix, combine the bias and the weights, and conveniently write

$$
\mathbf{X}=\left[\begin{array}{cc}
1 & {\left[\mathbf{x}^{(1)}\right]^{\top}} \\
1 & {\left[\mathbf{x}^{(2)}\right]^{\top}} \\
1 & \vdots
\end{array}\right] \in \mathbb{R}^{N \times D+1} \quad \text { and } \quad \mathbf{w}=\left[\begin{array}{c}
b \\
w_{1} \\
w_{2} \\
\vdots
\end{array}\right] \in \mathbb{R}^{D+1}
$$

Then, our predictions reduce to $\mathbf{y}=\mathbf{X w}$.

Solving the Minimization Problem

- We defined a model (linear).
- We defined a loss and the cost function to be minimized.
- Q: How should we solve this minimization problem?

Solving the Minimization Problem

- Recall from your calculus class: minimum of a differentiable function (if it exists) occurs at a critical point, i.e., point where the derivative is zero.
- Multivariate generalization: set the partial derivatives to zero (or equivalently the gradient).
- We would like to find a point where the gradient is (close to) zero. How can we do it?
- Sometimes it is possible to directly find the parameters that make the gradient zero in a closed-form. We call this the direct solution.
- We may also use optimization techniques that iteratively get us closer to the solution. We will get back to this soon.

Direct Solution

- Partial derivatives: derivatives of a multivariate function with respect to (w.r.t.) one of its arguments.

$$
\frac{\partial}{\partial x_{1}} f\left(x_{1}, x_{2}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{1}+h, x_{2}\right)-f\left(x_{1}, x_{2}\right)}{h}
$$

- To compute, take the single variable derivatives, pretending the other arguments are constant.
- Example: partial derivatives of the prediction y with respect to weight w_{j} and bias b :

$$
\begin{aligned}
\frac{\partial y}{\partial w_{j}} & =\frac{\partial}{\partial w_{j}}\left[\sum_{j^{\prime}} w_{j^{\prime}} x_{j^{\prime}}+b\right] \\
& =x_{j} \\
\frac{\partial y}{\partial b} & =\frac{\partial}{\partial b}\left[\sum_{j^{\prime}} w_{j^{\prime}} x_{j^{\prime}}+b\right] \\
& =1
\end{aligned}
$$

Direct Solution

- The derivative of loss: We apply the chain rule: first we take the derivative of the loss \mathcal{L} w.r.t. output y of the model, and then the derivative of the output y w.r.t. a parameter of the model such as w_{j} or b :

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial w_{j}} & =\frac{\mathrm{d} \mathcal{L}}{\mathrm{~d} y} \frac{\partial y}{\partial w_{j}} \\
& =\frac{\mathrm{d}}{\mathrm{~d} y}\left[\frac{1}{2}(y-t)^{2}\right] \cdot x_{j} \\
& =(y-t) x_{j} \\
\frac{\partial \mathcal{L}}{\partial b} & =y-t
\end{aligned}
$$

- Cost derivatives (average over data points):

$$
\begin{aligned}
\frac{\partial \mathcal{J}}{\partial w_{j}} & =\frac{1}{N} \sum_{i=1}^{N}\left(y^{(i)}-t^{(i)}\right) x_{j}^{(i)} \\
\frac{\partial \mathcal{J}}{\partial b} & =\frac{1}{N} \sum_{i=1}^{N}\left(y^{(i)}-t^{(i)}\right)
\end{aligned}
$$

Direct Solution

- Recall that the output y is a function of the parameters as $y=\mathbf{w}^{\top} \mathbf{x}$.
- The minimum of the cost function must occur at a point where the partial derivatives are zero, i.e.,

$$
\nabla_{\mathbf{w}} \mathcal{J}=0 \Leftrightarrow \frac{\partial \mathcal{J}}{\partial w_{j}}=0 \quad(\forall j), \quad \frac{\partial \mathcal{J}}{\partial b}=0
$$

- If $\partial \mathcal{J} / \partial w_{j} \neq 0$, you could reduce the cost by changing w_{j}.

Direct Solution

If we follow this recipe, we get that we have to set the gradient of $\mathcal{J}=\frac{1}{2 N}\|\mathbf{y}-\mathbf{t}\|^{2}$, with $\mathbf{y}=\mathbf{X w}$ (bias absorbed in \mathbf{X}) equal to zero. We have

$$
\mathcal{J}=\frac{1}{2 N}(\mathbf{X} \mathbf{w}-\mathbf{t})^{\top}(\mathbf{X} \mathbf{w}-\mathbf{t}),
$$

so

$$
\nabla_{\mathbf{w}} \mathcal{J}=\frac{1}{N} \mathbf{X}^{\top}(\mathbf{X} \mathbf{w}-\mathbf{t})=0 \Rightarrow\left(\mathbf{X}^{\top} \mathbf{X}\right) \mathbf{w}=\mathbf{X}^{\top} \mathbf{t}
$$

This is a linear system of equations.

- Q: What are the dimensions of each component?

Assuming that $\mathbf{X}^{\top} \mathbf{X}$ is invertible, the optimal weights are

$$
\mathbf{w}^{\mathrm{LS}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{t}
$$

This solution is also called Ordinary Least Squares (OLS) solution.
At an arbitrary point \mathbf{x}, our prediction is $y=\mathbf{w}^{\mathrm{LS}^{\top}} \mathbf{x}$.

- Q: What happens if $\mathbf{X}^{\top} \mathbf{X}$ is not invertible?

Basis Expansion (Feature Mapping)

- The relation between the input and output may not be linear.

- We can still use linear regression by mapping the input feature to another space using basis expansion (or feature mapping) $\boldsymbol{\psi}(\mathbf{x}): \mathbb{R}^{D} \rightarrow \mathbb{R}^{d}$ and treat the mapped feature (in \mathbb{R}^{d}) as the input of a linear regression procedure.
- Let us see how it works when $\mathbf{x} \in \mathbb{R}$ and we use polynomial feature mapping.

Polynomial Feature Mapping

Fit the data using a degree- M polynomial function of the form:

$$
y=w_{0}+w_{1} x+w_{2} x^{2}+\ldots+w_{M} x^{M}=\sum_{i=0}^{M} w_{i} x^{i}
$$

- The feature mapping is $\boldsymbol{\psi}(x)=\left[1, x, x^{2}, \ldots, x^{M}\right]^{\top}$.
- We can still use the linear regression framework with least squares loss to find \mathbf{w} since $y=\boldsymbol{\psi}(x)^{\top} \mathbf{w}$ is linear in w_{0}, w_{1}, \ldots.
- In general, $\boldsymbol{\psi}$ can be any function. Another example: Fourier map $\psi=$
$[1, \sin (2 \pi x), \cos (2 \pi x), \sin (4 \pi x), \cos (4 \pi x), \sin (6 \pi x), \cos (6 \pi x), \cdots]^{\top}$.
- Q: Other examples?

Polynomial Feature Mapping with $M=0$

Image credit: Pattern Recognition and Machine Learning, Christopher Bishop.

Polynomial Feature Mapping with $M=1$

$$
y=w_{0}+w_{1} x
$$

Image credit: Pattern Recognition and Machine Learning, Christopher Bishop.

Polynomial Feature Mapping with $M=3$

$$
y=w_{0}+w_{1} x+w_{2} x^{2}+w_{3} x^{3}
$$

Image credit: Pattern Recognition and Machine Learning, Christopher Bishop.

Polynomial Feature Mapping with $M=9$

$$
y=w_{0}+w_{1} x+w_{2} x^{2}+w_{3} x^{3}+\ldots+w_{9} x^{9}
$$

Image credit: Pattern Recognition and Machine Learning, Christopher Bishop.

Model Complexity and Regularization

L2 regularization

$$
\mathcal{R}=\sum_{i} w_{i}^{2}
$$

L1 regularization

$$
\mathcal{R}=\sum_{i}\left|w_{i}\right|
$$

Model Complexity and Generalization

Underfitting ($\mathrm{M}=0$): model is too simple - does not fit the data. Overfitting ($M=9$): model is too complex - fits perfectly.

Good model $(\mathrm{M}=3)$: Achieves small test error (generalizes well).

Model Complexity and Generalization

- As M increases, the magnitude of coefficients gets larger.
- For $M=9$, the coefficients have become finely tuned to the data.
- Between data points, the function exhibits large oscillations.

Model Complexity and Generalization

As the degree M of the polynomial increases

- the training errors decreases;
- the test error, however, initially decreases, but then increases.

Model Complexity and Generalization

- Training and test error as a function of \# training examples and \# parameters:

Regularization for Controlling the Model Complexity

- The degree of the polynomial M controls the complexity of the model.
- The value of M is a hyperparameter for polynomial expansion, just like K in KNN or the depth of a tree in a decision tree. We can tune it using a validation set.
- Restricting the number of parameters of a model (M here) is a crude approach to control the complexity of the model.
- A better solution: keep the number of parameters of the model large, but enforce "simpler" solutions within the same space of parameters.
- This is done through regularization or penalization.
- Regularizer (or penalty): a function that quantifies how much we prefer one hypothesis vs. another, prior to seeing the data.
- Q: How?!

$\ell_{2}\left(\right.$ or $\left.L^{2}\right)$ Regularization

- We can encourage the weights to be small by choosing the ℓ_{2} (or L^{2}) of the weights as our regularizer or penalty:

$$
\mathcal{R}(\mathbf{w})=\frac{1}{2}\|\mathbf{w}\|_{2}^{2}=\frac{1}{2} \sum_{j} w_{j}^{2} .
$$

- Note: To be precise, we are regularizing the squared ℓ_{2} norm.
- The regularized cost function makes a tradeoff between fit to the data and the norm of the weights:

$$
\mathcal{J}_{\text {reg }}(\mathbf{w})=\mathcal{J}(\mathbf{w})+\lambda \mathcal{R}(\mathbf{w})=\mathcal{J}(\mathbf{w})+\frac{\lambda}{2} \sum_{j} w_{j}^{2}
$$

$\ell_{2}\left(\right.$ or $\left.L^{2}\right)$ Regularization

- The regularized cost function:

$$
\mathcal{J}_{\mathrm{reg}}(\mathbf{w})=\mathcal{J}(\mathbf{w})+\lambda \mathcal{R}(\mathbf{w})=\mathcal{J}(\mathbf{w})+\frac{\lambda}{2} \sum_{j} w_{j}^{2} .
$$

- The basic idea is that "simpler" functions have weights \mathbf{w} with smaller ℓ_{2}-norm and we prefer them to functions with larger ℓ_{2}-norms.
- Intuition: Large weights makes the function f have more abrupt changes as a function of the input \mathbf{x}; it will be less smooth.
- If you fit training data poorly, \mathcal{J} is large. If the fitted weights have high values, \mathcal{R} is large.
- Large λ penalizes weight values more.
- Here, λ is a hyperparameter that we can tune with a validation set.

ℓ_{2} Regularized Least Squares: Ridge Regression

For the least squares problem, we have $\mathcal{J}(\mathbf{w})=\frac{1}{2 N}\|\mathbf{X w}-\mathbf{t}\|^{2}$.

- When $\lambda>0$ (with regularization), regularized cost gives

$$
\begin{aligned}
\mathbf{w}_{\lambda}^{\text {Ridge }}=\underset{\mathbf{w}}{\operatorname{argmin}} \mathcal{J}_{\mathrm{reg}}(\mathbf{w}) & =\underset{\mathbf{w}}{\operatorname{argmin}} \frac{1}{2 N}\|\mathbf{X} \mathbf{w}-\mathbf{t}\|_{2}^{2}+\frac{\lambda}{2}\|\mathbf{w}\|_{2}^{2} \\
& =\left(\mathbf{X}^{T} \mathbf{X}+\lambda N \mathbf{I}\right)^{-1} \mathbf{X}^{T} \mathbf{t} .
\end{aligned}
$$

- The case of $\lambda=0$ (no regularization) reduces to the least squares solution!
- Q: What happens when $\lambda \rightarrow \infty$?
- Note that it is also common to formulate this problem as $\operatorname{argmin}_{\mathbf{w}}\|\mathbf{X w}-\mathbf{t}\|_{2}^{2}+\frac{\lambda}{2}\|\mathbf{w}\|_{2}^{2}$ in which case the solution is $\mathbf{w}_{\lambda}^{\text {Ridge }}=\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{\top} \mathbf{t}$.

Lasso and the ℓ_{1} Regularization

- The ℓ_{1} norm, or sum of absolute values, is another regularizer:

$$
\mathcal{R}(\mathbf{w})=\|\mathbf{w}\|_{1}=\sum_{j}\left|w_{j}\right| .
$$

- The Lasso (Least Absolute Shrinkage and Selection Operator) is

$$
\min _{\mathbf{w}}\|\mathbf{X w}-\mathbf{t}\|_{2}^{2}+\lambda\|\mathbf{w}\|_{1} .
$$

- It can be shown that Lasso encourages weights to be exactly zero.
- Q: When is this helpful?

Ridge vs. Lasso - Geometric Viewpoint

- We presented regularization as a penalty on the weights, in which we solve

$$
\min _{\mathbf{w}} \mathcal{J}(\mathbf{w})+\lambda \mathcal{R}(\mathbf{w})
$$

- We can also write an equivalent form as a constraint optimization:

$$
\begin{aligned}
\underset{\mathbf{w}}{\operatorname{argmin}} & \mathcal{J}(\mathbf{w}) \\
\quad \text { s.t. } & \mathcal{R}(\mathbf{w}) \leq \mu,
\end{aligned}
$$

for a corresponding value of μ.

- The Ridge regression and the Lasso can then be written as

$$
\begin{aligned}
& \underset{\mathbf{w}}{\operatorname{argmin}}\|\mathbf{X w}-\mathbf{t}\|_{2}^{2} \\
& \text { s.t. } \left.\|\mathbf{w}\|_{p} \leq \mu \quad \text { (Lasso: } p=1 \text {; Ridge: } p=2\right)
\end{aligned}
$$

Ridge vs. Lasso - Geometric Viewpoint

L2 regularization

$$
\mathcal{R}=\sum_{i} w_{i}^{2}
$$

L1 regularization

$$
\mathcal{R}=\sum_{i}\left|w_{i}\right|
$$

- The set $\left\{\mathbf{w}:\|\mathbf{X w}-\mathbf{t}\|_{2}^{2} \leq \varepsilon\right\}$ defines ellipsoids of ε cost in the weights space.
- The set $\left\{\mathbf{w}:\|\mathbf{w}\|_{p} \leq \mu\right\}$ defines the constraint on weights defined by the regularizer.
- The solution would be the smallest ε for which these two sets intersects.
- For $p=1$, the diamond-shaped constraint set has corners. When the intersection happens at a corner, some of the weights are zero.
- For $p=2$, the disk-shaped constraint set does not have corners. It does not induce any zero weights.

Probabilistic Interpretation of the Squared Error

For the least squares: we minimize the sum of the squares of the errors between the predictions for each data point $\mathbf{x}^{(i)}$ and the corresponding target values $t^{(i)}$, i.e.,

$$
\begin{aligned}
\underset{\left(\mathbf{w}, \mathbf{w}_{0}\right)}{\operatorname{minimize}} & \sum_{i=1}^{n}\left(\mathbf{w}^{\top} \mathbf{x}^{(i)}+b-t^{(i)}\right)^{2} \\
\bullet & t \approx \mathbf{x}^{\top} \mathbf{w}+b,(\mathbf{w}, b) \in \mathbb{R}^{D} \times \mathbb{R}
\end{aligned}
$$

- We measure the quality of the fit using the squared error loss. Why?
- Even though the squared error loss is intuitive, we did not justify it.
- We provide a probabilistic perspective here.
- There are other justifications too; we get to them in the Bias-Variance decomposition lecture.

Probabilistic Interpretation of the Squared Error

- Suppose that our model arose from a statistical model ($b=0$ for simplicity):

$$
y^{(i)}=\mathbf{w}^{\top} \mathbf{x}^{(i)}+\epsilon^{(i)},
$$

where $\epsilon^{(i)} \sim \mathcal{N}\left(0, \sigma^{2}\right)$ is independent of the input $\mathbf{x}^{(i)}$.

- Thus, $y^{(i)} \mid \mathbf{x}^{(i)} \sim p\left(y \mid \mathbf{x}^{(i)}, \mathbf{w}\right)=\mathcal{N}\left(\mathbf{w}^{\top} \mathbf{x}^{(i)}, \sigma^{2}\right)$.

Probabilistic Interpretation of the Squared Error: Maximum Likelihood Estimation

- Suppose that the input data $\left\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \ldots, \mathbf{x}^{(N)}\right\}$ are given and the outputs are independently drawn from

$$
t^{(i)} \sim p\left(y \mid \mathbf{x}^{(i)}, \mathbf{w}\right)
$$

with an unknown parameter \mathbf{w}. So the dataset is

$$
\mathcal{D}=\left\{\left(\mathbf{x}^{(1)}, t^{(1)}\right), \ldots,\left(\mathbf{x}^{(N)}, t^{(N)}\right)\right\}
$$

- The likelihood function is $\operatorname{Pr}(\mathcal{D} \mid \mathbf{w})$.
- The maximum likelihood estimation (MLE) is based on the "principle" suggesting that we have to find a parameter $\hat{\mathbf{w}}$ that maximizes the likelihood, i.e.,

$$
\hat{\mathbf{w}} \leftarrow \underset{\mathbf{w}}{\operatorname{argmax}} \operatorname{Pr}(\mathcal{D} \mid \mathbf{w}) .
$$

Maximum likelihood estimation: after observing the data samples $\left(\mathbf{x}^{(i)}, t^{(i)}\right)$ for $i=1,2, \ldots, N$, we should choose \mathbf{w} that maximizes the likelihood.

Probabilistic Interpretation of the Squared Error: Maximum Likelihood Estimation

- For independent samples, the likelihood function of samples \mathcal{D} is the product of their likelihoods

$$
p\left(t^{(1)}, t^{(2)}, \ldots, t^{(N)} \mid \mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \ldots, \mathbf{x}^{(N)}, \mathbf{w}\right)=\prod_{i=1}^{N} p\left(t^{(i)} \mid \mathbf{x}^{(i)}, \mathbf{w}\right)=L(\mathbf{w})
$$

- Product of N terms is not easy to minimize.
- Taking log reduces it to a sum. Two objectives are equivalent since log is strictly increasing.
- Maximizing the likelihood is equivalent to minimizing the negative log-likelihood:

$$
\ell(\mathbf{w})=-\log L(\mathbf{w})=-\log \prod_{i=1}^{N} p\left(t^{(i)} \mid \mathbf{x}^{(i)} ; \mathbf{w}\right)=-\sum_{i=1}^{n} \log p\left(t^{(i)} \mid \mathbf{x}^{(i)} ; \mathbf{w}\right)
$$

Probabilistic Interpretation of the Squared Error: Maximum Likelihood Estimation

Maximum Likelihood Estimator (MLE)

After observing $z^{(i)}=\left(\mathbf{x}^{(i)}, t^{(i)}\right)$ for $i=1, \ldots, N$ independent and identically distributed (i.i.d.) samples from $p(z, \mathbf{w})$, MLE is

$$
\mathbf{w}^{\mathrm{MLE}}=\underset{\mathbf{w}}{\operatorname{argmin}} l(\mathbf{w})=-\sum_{i=1}^{N} \log p\left(t^{(i)} \mid \mathbf{x}^{(i)} ; \mathbf{w}\right) .
$$

Probabilistic Interpretation of the Squared Error: From MLE to Squared Error

- Suppose that our model arose from a statistical model:

$$
y^{(i)}=\mathbf{w}^{\top} \mathbf{x}^{(i)}+\epsilon^{(i)}
$$

where $\epsilon^{(i)} \sim \mathcal{N}\left(0, \sigma^{2}\right)$ is independent of anything else.

- $p\left(y^{(i)} \mid \mathbf{x}^{(i)}, \mathbf{w}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(y^{(i)}-\mathbf{w}^{\top} \mathbf{x}^{(i)}\right)^{2}\right\}$
- $\log p\left(y^{(i)} \mid \mathbf{x}^{(i)}, \mathbf{w}\right)=-\frac{1}{2 \sigma^{2}}\left(y^{(i)}-\mathbf{w}^{\top} \mathbf{x}^{(i)}\right)^{2}-\log \left(\sqrt{2 \pi \sigma^{2}}\right)$
- The MLE solution is

$$
\mathbf{w}^{\mathrm{MLE}}=\underset{\mathbf{w}}{\operatorname{argmin}} \mathcal{L}(\mathbf{w})=\frac{1}{2 \sigma^{2}} \sum_{i=1}^{N}\left(t^{(i)}-\mathbf{w}^{\top} \mathbf{x}^{(i)}\right)^{2}+C .
$$

- As C and σ do not depend on \mathbf{w}, they do not contribute to the minimization.
$\mathbf{w}^{\mathrm{MLE}}=\mathbf{w}^{\mathrm{LS}}$ when we work with Gaussian densities.

Probabilistic Interpretation of the Squared Error: From MLE to Squared Error

- Suppose that our model arose from a statistical model:

$$
y^{(i)}=\mathbf{w}^{\top} \mathbf{x}^{(i)}+\epsilon^{(i)}
$$

where $\epsilon^{(i)}$ comes from the Laplace distribution, that is, the distribution of $\epsilon^{(i)}$ has density

$$
\frac{1}{2 b} \exp \left(\frac{\left|y^{(i)}-\mathbf{w}^{\top} \mathbf{x}^{(i)}\right|}{2 b}\right)
$$

- Q: What is the loss in the MLE?
- Choice 1: $\frac{1}{N} \sum_{i=1}^{N}\left|t^{(i)}-w^{\top} x^{(i)}\right|^{1 / 2}$
- Choice 2: $\frac{1}{N} \sum_{i=1}^{N}\left(t^{(i)}-w^{\top} x^{(i)}\right)$
- Choice 3: $\frac{1}{N} \sum_{i=1}^{N}\left|t^{(i)}-w^{\top} x^{(i)}\right|$
- Choice 4: $\frac{1}{N}\left|\sum_{i=1}^{N}\left(t^{(i)}-w^{\top} x^{(i)}\right)\right|$
- Q: Can you think of an application area with non-Gaussian probabilistic model?

Gradient Descent for Optimization

Gradient Descent

- Now let's see a second way to minimize the cost function which is more broadly applicable: gradient descent.
- Gradient descent is an iterative algorithm, which means we apply an update repeatedly until some criterion is met.
- We initialize the weights to something reasonable (e.g., all zeros) and repeatedly adjust them in the direction of steepest descent.

Gradient Descent

- Observe:
- if $\partial \mathcal{J} / \partial w_{j}>0$, then increasing w_{j} increases \mathcal{J}.
- if $\partial \mathcal{J} / \partial w_{j}<0$, then increasing w_{j} decreases \mathcal{J}.
- The following update decreases the cost function:

$$
\begin{aligned}
w_{j} & \leftarrow w_{j}-\alpha \frac{\partial \mathcal{J}}{\partial w_{j}} \\
& =w_{j}-\frac{\alpha}{N} \sum_{i=1}^{N}\left(y^{(i)}-t^{(i)}\right) x_{j}^{(i)}
\end{aligned}
$$

- α is the learning rate or step size. The larger it is, the faster \mathbf{w} changes.
- We'll see later how to tune the learning rate, but values are typically small, e.g., 0.1 or 0.001 .

Gradient Descent

- The method gets its name from the gradient:

$$
\nabla_{\mathbf{w}} \mathcal{J}=\frac{\partial \mathcal{J}}{\partial \mathbf{w}}=\left(\begin{array}{c}
\frac{\partial \mathcal{J}}{\partial w_{1}} \\
\vdots \\
\frac{\partial \mathcal{J}}{\partial w_{D}}
\end{array}\right)
$$

- This is the direction of fastest increase in \mathcal{J}. (Q: Why?)
- Update rule in vector form:

$$
\begin{aligned}
\mathbf{w} & \leftarrow \mathbf{w}-\alpha \frac{\partial \mathcal{J}}{\partial \mathbf{w}} \\
& =\mathbf{w}-\frac{\alpha}{N} \sum_{i=1}^{N}\left(y^{(i)}-t^{(i)}\right) \mathbf{x}^{(i)}
\end{aligned}
$$

- Hence, gradient descent updates the weights in the direction of fastest decrease.
- Observe that once it converges, we get a critical point: $\frac{\partial \mathcal{J}}{\partial \mathbf{w}}=0$.

Gradient Descent for Linear regression

- Even for linear regression, where there is a direct solution, we sometimes need to use GD.
- Why gradient descent, if we can find the optimum directly?
- GD can be applied to a much broader set of models
- GD can be easier to implement than direct solutions
- For regression in high-dimensional spaces, GD is more efficient than direct solution
- Linear regression solution: $\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{t}$
- matrix inversion is an $\mathcal{O}\left(D^{3}\right)$ algorithm
- each GD update costs $O(N D)$
- Huge difference if $D \gg 1$

Gradient Descent under the ℓ_{2} Regularization

- Recall the gradient descent update:

$$
\mathbf{w} \leftarrow \mathbf{w}-\alpha \frac{\partial \mathcal{J}}{\partial \mathbf{w}}
$$

- The gradient descent update of the regularized $\operatorname{cost} \mathcal{J}+\lambda \mathcal{R}$ has an interesting interpretation as weight decay (for the ℓ_{2} regularizer):

$$
\begin{aligned}
\mathbf{w} & \leftarrow \mathbf{w}-\alpha\left(\frac{\partial \mathcal{J}}{\partial \mathbf{w}}+\lambda \frac{\partial \mathcal{R}}{\partial \mathbf{w}}\right) \\
& =\mathbf{w}-\alpha\left(\frac{\partial \mathcal{J}}{\partial \mathbf{w}}+\lambda \mathbf{w}\right) \\
& =(1-\alpha \lambda) \mathbf{w}-\alpha \frac{\partial \mathcal{J}}{\partial \mathbf{w}}
\end{aligned}
$$

Learning Rate (Step Size)

- In gradient descent, the learning rate α is a hyperparameter we need to tune. If we do not choose it right, the procedure may have undesirable convergence properties:

α too small: slow progress

α too large: oscillations

α much too large: instability
- Good values are typically between 0.001 and 0.1 . You should do a grid search if you want good performance, i.e., try $0.1,0.03,0.01, \ldots$.

Training Curves

- To diagnose optimization problems, it is useful to look at training curves: plot the training cost as a function of iteration.

Brief Matrix and Vector Calculus

- For a function $f: \mathbb{R}^{p} \rightarrow \mathbb{R}, \nabla f(z)$ denotes the gradient at z which points in the direction of the greatest rate of increase.
- $\nabla f(x) \in \mathbb{R}^{p}$ is a vector with $[\nabla f(x)]_{i}=\frac{\partial}{\partial x_{i}} f(x)$.
- $\nabla^{2} f(x) \in \mathbb{R}^{p \times p}$ is a matrix with $\left[\nabla^{2} f(x)\right]_{i j}=\frac{\partial^{2}}{\partial x_{i} \partial x_{j}} f(x)$
- At any minimum of a function f, we have $\nabla f(\mathbf{w})=0$, $\nabla^{2} f(\mathbf{w}) \succeq 0$.
- Consider the problem $\underset{\mathbf{w}}{\operatorname{minimize}} \ell(\mathbf{w})=\frac{1}{2}\|y-X \mathbf{w}\|_{2}^{2}$,
- $\nabla \ell(\mathbf{w})=X^{\top}(X \mathbf{w}-y)=0 \Longrightarrow \hat{\mathbf{w}}=\left(X^{\top} X\right)^{-1} X^{\top} y$ (assuming $X^{\top} X$ is invertible)

Vectorization

- Computing the prediction using a for loop:

$$
\begin{aligned}
& y=b \\
& \text { for } j \text { in range(M): } \\
& \qquad y+=w[j]^{*} \times[j]
\end{aligned}
$$

- For-loops in Python are slow, so we vectorize algorithms by expressing them in terms of vectors and matrices.

$$
\begin{gathered}
\mathbf{w}=\left(w_{1}, \ldots, w_{D}\right)^{T} \quad \mathbf{x}=\left(x_{1}, \ldots, x_{D}\right)^{T} \\
y=\mathbf{w}^{T} \mathbf{x}+b
\end{gathered}
$$

- This is simpler and much faster: $\mathrm{y}=\mathrm{np} \cdot \operatorname{dot}(\mathrm{w}, \mathrm{x})+\mathrm{b}$

Vectorization

Why vectorize?

- The equations, and the code, will be simpler and more readable. Gets rid of dummy variables/indices!
- Vectorized code is much faster
- Cut down on Python interpreter overhead
- Use highly optimized linear algebra libraries
- Matrix multiplication is very fast on a Graphics Processing Unit (GPU)

Classification with Linear Models

Classification Problem

- Classification: predicting a discrete-valued target
- Binary classification: predicting a binary-valued target
- Examples
- predict whether a patient has a disease, given the presence or absence of various symptoms
- classify e-mails as spam or non-spam
- predict whether a financial transaction is fraudulent
- find out whether a picture is a cat or dog

Binary Linear Classification

- classification: predict a discrete-valued target
- binary: predict a binary target $t \in\{0,1\}$
- Training examples with $t=1$ are called positive examples, and training examples with $t=0$ are called negative examples.
- $t \in\{0,1\}$ or $t \in\{-1,+1\}$ is for computational convenience.
- linear: model is a linear function of \mathbf{x}, followed by a threshold r :

$$
\begin{aligned}
& z=\mathbf{w}^{T} \mathbf{x}+b \\
& y= \begin{cases}1 & \text { if } z \geq r \\
0 & \text { if } z<r\end{cases}
\end{aligned}
$$

Some Simplifications

Eliminating the threshold

- We can assume without loss of generality (w.l.o.g.) that the threshold is $r=0$:

$$
\mathbf{w}^{T} \mathbf{x}+b \geq r \quad \Longleftrightarrow \quad \mathbf{w}^{T} \mathbf{x}+\underbrace{b-r}_{\triangleq w_{0}} \geq 0
$$

Eliminating the bias

- Add a dummy feature x_{0} which always takes the value 1 . The weight $w_{0}=b$ is equivalent to a bias (same as linear regression)

Simplified model

$$
\begin{aligned}
& z=\mathbf{w}^{T} \mathbf{x} \\
& y= \begin{cases}1 & \text { if } z \geq 0 \\
0 & \text { if } z<0\end{cases}
\end{aligned}
$$

Examples

- Let us consider some simple examples to examine the properties of our model
- Forget about generalization and suppose we just want to learn Boolean functions

Examples

NOT

x_{0}	x_{1}	t
1	0	1
1	1	0

- This is our "training set"
- What conditions are needed on w_{0}, w_{1} to classify all examples?
- When $x_{1}=0$, need: $z=w_{0} x_{0}+w_{1} x_{1}>0 \Longleftrightarrow w_{0}>0$
- When $x_{1}=1$, need: $z=w_{0} x_{0}+w_{1} x_{1}<0 \Longleftrightarrow w_{0}+w_{1}<0$
- Example solution: $w_{0}=1, w_{1}=-2$
- Is this the only solution?

Examples

AND

$$
\begin{array}{ccc|cr}
x_{0} & x_{1} & x_{2} & \mathrm{t} & z=w_{0} x_{0}+w_{1} x_{1}+w_{2} x_{2} \\
\hline 1 & 0 & 0 & 0 & \text { need: } w_{0}<0 \\
1 & 0 & 1 & 0 & \text { need: } w_{0}+w_{2}<0 \\
1 & 1 & 0 & 0 & \text { need: } w_{0}+w_{1}<0 \\
1 & 1 & 1 & 1 & \text { need: } w_{0}+w_{1}+w_{2}>0
\end{array}
$$

Example solution: $w_{0}=-1.5, w_{1}=1, w_{2}=1$

Geometric Picture

Input Space, or Data Space for NOT example

- This is the input space. Training examples are points in that space.
- Any weight (hypothesis) w defines half-spaces
- $H_{+}=\left\{\mathbf{x}: \mathbf{w}^{T} \mathbf{x} \geq 0\right\}$
- $H_{-}=\left\{\mathbf{x}: \mathbf{w}^{T} \mathbf{x}<0\right\}$
in the input space.
- The boundaries of these half-spaces pass through the origin (why?)
- The boundary is the decision boundary: $\left\{\mathbf{x}: \mathbf{w}^{T} \mathbf{x}=0\right\}$
- In 2-D, it is a line, but think of it as a hyperplane in general.
- If the training examples can be perfectly separated by a linear decision rule, we say that the data is linearly separable.

Geometric Picture

Weight Space

$$
\begin{aligned}
w_{0} & >0 \\
w_{0}+w_{1} & <0
\end{aligned}
$$

- The left figure is the input space; the right figure is the weight (hypothesis) space.
- To correctly classify each training example \mathbf{x}, weights \mathbf{w} should belong to a particular half-space in the weight space such that $\mathbf{w}^{T} \mathbf{x}>0$ if $t=1\left(\right.$ and $\mathbf{w}^{T} \mathbf{x}<0$ if $\left.t=0\right)$.
- For NOT example:
- $x_{0}=1, x_{1}=0, t=1 \Longrightarrow\left(w_{0}, w_{1}\right) \in\left\{\mathbf{w}: w_{0}>0\right\}$
- $x_{0}=1, x_{1}=1, t=0 \Longrightarrow\left(w_{0}, w_{1}\right) \in\left\{\mathbf{w}: w_{0}+w_{1}<0\right\}$
- The region satisfying all the constraints is the feasible region; if this region is nonempty, the problem is feasible, otherwise it is infeasible.

Geometric Picture

- The AND example requires three dimensions, including the dummy one.
- To visualize data space and weight space for a 3-D example, we can look at a 2-D slice.
- The visualizations are similar.
- Feasible set will always have a corner at the origin.

Geometric Picture

Visualizations of the AND example

- Slice for $x_{0}=1$
- example sol: $w_{0}=-1.5, w_{1}=1$, $w_{2}=1$
- decision boundary:
$w_{0} x_{0}+w_{1} x_{1}+w_{2} x_{2}=0$
$\Longrightarrow-1.5+x_{1}+x_{2}=0$

Weight Space

- Slice for $w_{0}=-1.5$ for the constraints
- $w_{0}<0$
$-w_{0}+w_{2}<0$
$-w_{0}+w_{1}<0$
$-w_{0}+w_{1}+w_{2}>0$

Geometric Picture

Some datasets are not linearly separable, e.g. XOR

Finding the Weight Vector

- Recall: binary linear classifiers. Targets $t \in\{0,1\}$

$$
\begin{aligned}
& z=\mathbf{w}^{T} \mathbf{x}+b \\
& y= \begin{cases}1 & \text { if } z \geq 0 \\
0 & \text { if } z<0\end{cases}
\end{aligned}
$$

- How can we find good values for \mathbf{w}, b ?
- If training set is separable, we can solve for \mathbf{w}, b using Linear Programming (Q: How?).
- If it is not separable, the problem is harder
- data is almost never separable in real life.

Loss Functions for Classification

- Define loss function, then try to minimize the resulting cost function
- Recall: cost is loss averaged (or summed) over the training set
- What loss function is suitable for classification?
- Seemingly obvious loss function: 0-1 loss

$$
\begin{aligned}
\mathcal{L}_{0-1}(y, t) & = \begin{cases}0 & \text { if } y=t \\
1 & \text { if } y \neq t\end{cases} \\
& =\mathbb{I}\{y \neq t\}
\end{aligned}
$$

Attempt 1: $0-1$ Loss

- Usually, the cost \mathcal{J} is the averaged loss over training examples; for $0-1$ loss, this is the misclassification rate/error:

$$
\begin{aligned}
\mathcal{J} & =\frac{1}{N} \sum_{i=1}^{N} \mathcal{L}_{0-1}\left(y^{(i)}, t^{(i)}\right) \\
& =\frac{1}{N} \sum_{i=1}^{N} \mathbb{I}\left\{y^{(i)} \neq t^{(i)}\right\}
\end{aligned}
$$

Attempt 1: $0-1$ Loss

- Challenge: How to optimize?
- In general, a hard problem (can be NP-hard)
- This is due to the step function (0-1 loss) not being nice (continuous/smooth/convex etc)

Attempt 1: 0-1 Loss

- Minimum of a function will be at its critical points.
- Let's try to find the critical point of 0-1 loss.
- Consider $\mathcal{L}_{0-1}(y, t=0)$. Recall that $y=y(\mathbf{w})=\mathbb{I}\{z(w) \geq 0\}$ with $z=\mathbf{w}^{T} x$. By the chain rule:

$$
\frac{\partial \mathcal{L}_{0-1}(y, 0)}{\partial w_{j}}=\frac{\partial \mathcal{L}_{0-1}}{\partial z} \frac{\partial z}{\partial w_{j}}
$$

- But $\partial \mathcal{L}_{0-1} / \partial z$ is zero everywhere it is defined!

- $\partial \mathcal{L}_{0-1} / \partial w_{j}=0$ means that changing the weights by a very small amount has no effect on the loss.
- Almost any point has 0 gradient!

Attempt 2: Linear Regression

- Sometimes we can replace the loss function we care about with another that is easier to optimize. This is known as relaxation with a smooth surrogate loss function.
- A problem with \mathcal{L}_{0-1} is that it is defined in terms of final prediction (that is, after thresholding), which inherently involves a discontinuity
- Instead, define loss in terms of value of $\mathbf{w}^{T} \mathbf{x}+b$ (that is, before thresholding) directly
- Redo notation for convenience: $z=\mathbf{w}^{T} \mathbf{x}+b$

Attempt 2: Linear Regression

- We already know how to fit a linear regression model using the squared error loss. Can we use the same squared error loss instead?

$$
\begin{aligned}
z & =\mathbf{w}^{\top} \mathbf{x}+b \\
\mathcal{L}_{\mathrm{SE}}(z, t) & =\frac{1}{2}(z-t)^{2}
\end{aligned}
$$

- Doesn't matter that the targets are actually binary. Treat them as continuous values.
- For this loss function, it makes sense to make final predictions by thresholding z at $\frac{1}{2}$ (Q: Why?)

Attempt 2: Linear Regression

The problem:

- The loss function penalizes you when you make correct predictions with high confidence!
- If $t=1$, the loss is larger when $z=10$ than when $z=0$.

Attempt 3: Logistic Activation Function with Squared Error

- There is no reason to predict values outside $[0,1]$. Let's squash y into this interval.
- The logistic function is a kind of sigmoid, or S-shaped function:

$$
\sigma(z)=\frac{1}{1+e^{-z}}
$$

- $\sigma^{-1}(y)=\log (y /(1-y))$ is called the logit.

- A linear model with a logistic nonlinearity is known as log-linear:

$$
\begin{aligned}
z & =\mathbf{w}^{\top} \mathbf{x}+b \\
y & =\sigma(z) \\
\mathcal{L}_{\mathrm{SE}}(y, t) & =\frac{1}{2}(y-t)^{2} .
\end{aligned}
$$

- Used in this way, σ is called an activation function.

Attempt 3: Logistic Activation Function with Squared Error

$$
\frac{\partial \mathcal{L}}{\partial w_{j}}=\frac{\partial \mathcal{L}}{\partial z} \frac{\partial z}{\partial w_{j}}
$$

Plot of $\mathcal{L}_{\text {SE }}$ as a function of z with $t=$ 1.

- When $z \gg 0$, the prediction $\sigma(z)=\frac{1}{1+e^{-z}} \approx 1$, which is the correct prediction.
- When $z \ll 0$, we have $\sigma(z) \approx 0$. This is an incorrect prediction.
- To fix it, we would like to use the gradient to update the weights.

Attempt 3: Logistic Activation Function with Squared Error

$$
\frac{\partial \mathcal{L}}{\partial w_{j}}=\frac{\partial \mathcal{L}}{\partial z} \frac{\partial z}{\partial w_{j}}
$$

Plot of $\mathcal{L}_{\text {SE }}$ as a function of z with $t=$ 1.

- But $\frac{\partial \mathcal{L}}{\partial z} \approx 0$ (check!) $\Longrightarrow \frac{\partial \mathcal{L}}{\partial w_{j}} \approx 0 \Longrightarrow$ derivative w.r.t. w_{j} is small $\Longrightarrow w_{j}$ is like a critical point
- If the prediction is really wrong, you should be far from a critical point and the gradient should show that.
- The gradient of this loss, however, does not indicate that.

Attempt 4: Logistic Regression

- Because $y \in[0,1]$, we can interpret it as the estimated probability that $t=1$.
- The pundits who were 99% confident Clinton would win were much more wrong than the ones who were only 90% confident.
- Cross-entropy loss (aka log loss) captures this intuition:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{CE}}(y, t) & = \begin{cases}-\log y & \text { if } t=1 \\
-\log (1-y) & \text { if } t=0\end{cases} \\
& =-t \log y-(1-t) \log (1-y)
\end{aligned}
$$

Logistic Regression

$$
\begin{aligned}
z & =\mathbf{w}^{\top} \mathbf{x}+b \\
y & =\sigma(z) \\
& =\frac{1}{1+e^{-z}}
\end{aligned}
$$

$$
\mathcal{L}_{\mathrm{CE}}=-t \log y-(1-t) \log (1-y)
$$

The plot is for target $t=1$.

Logistic Regression

- Problem: what if $t=1$ but you're really confident it's a negative example $(z \ll 0)$?
- If y is small enough, it may be numerically zero. This can cause very subtle and hard-to-find bugs.

$$
\begin{array}{rlr}
y & =\sigma(z) & \Rightarrow y \approx 0 \\
\mathcal{L}_{\mathrm{CE}} & =-t \log y-(1-t) \log (1-y) & \Rightarrow \text { computes } \log 0
\end{array}
$$

- Instead, we combine the activation function and the loss into a single logistic-cross-entropy function.

$$
\mathcal{L}_{\mathrm{LCE}}(z, t)=\mathcal{L}_{\mathrm{CE}}(\sigma(z), t)=t \log \left(1+e^{-z}\right)+(1-t) \log \left(1+e^{z}\right)
$$

Q: Why do we get $\log \left(1+e^{z}\right)$?

- Numerically stable computation:
$\mathrm{E}=\mathrm{t} * \mathrm{np} . \operatorname{logaddexp}(0,-\mathrm{z})+(1-\mathrm{t}) * \mathrm{np} . \operatorname{logaddexp}(0, \mathrm{z})$

Logistic Regression

Comparison of loss functions (for $t=1$):

Probabilistic Interpretation of the Logistic Regression

- Suppose that our model arose from the statistical model

$$
p(t=1 \mid \mathbf{x} ; \mathbf{w})=\frac{1}{1+e^{-\mathbf{w}^{\top} x}}
$$

$$
\text { and } p(t=0 \mid \mathbf{x} ; \mathbf{w})=1-p(t=1 \mid \mathbf{x} ; \mathbf{w})=\frac{e^{-\mathbf{w}^{\top} x}}{1+e^{-\mathbf{w}^{\top} x}}
$$

- Consider the dataset $\mathcal{D}=\left\{\left(\mathbf{x}^{(1)}, t^{(1)}\right), \ldots,\left(\mathbf{x}^{(N)}, t^{(N)}\right)\right\}$.
- The MLE is based on finding \mathbf{w} that maximizes $\operatorname{Pr}(\mathcal{D} \mid \mathbf{w})$.
- Assume that the inputs are independent. So

$$
p\left(t^{(1)}, \ldots, t^{(N)} \mid \mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(N)}, \mathbf{w}\right)=\prod_{i=1}^{N} p\left(t^{(i)} \mid \mathbf{x}^{(i)}, \mathbf{w}\right)=L(\mathbf{w})
$$

- Maximizing the likelihood is equivalent to minimizing the negative log-likelihood:

$$
\ell(\mathbf{w})=-\log L(\mathbf{w})=-\log \prod_{i=1}^{N} p\left(t^{(i)} \mid \mathbf{x}^{(i)} ; \mathbf{w}\right)=-\sum_{i=1}^{N} \log p\left(t^{(i)} \mid \mathbf{x}^{(i)} ; \mathbf{w}\right)
$$

Probabilistic Interpretation of the Logistic Regression

- So the MLE solves

$$
\min _{\mathbf{w}}-\sum_{i=1}^{N} \log p\left(t^{(i)} \mid \mathbf{x}^{(i)} ; \mathbf{w}\right)=-\sum_{i: t^{(i)}=1} \log \frac{1}{1+e^{-\mathbf{w}^{\top} \mathbf{x}^{(i)}}}-\sum_{i: t} \operatorname{liz}=0 .
$$

- The output of a linear model with logistic activation is $y(\mathbf{x} ; \mathbf{w})=\sigma(\mathbf{x} ; \mathbf{w})=\frac{1}{1+e^{-\mathbf{w}^{\top} \mathbf{x}}}$.
- We can substitute the terms with $\log \frac{1}{1+e^{-\mathbf{w}^{\top} \mathbf{x}^{(i)}}}$ with $\log y\left(\mathbf{x}^{(i)} ; \mathbf{w}\right)$ and the terms with $\log \frac{e^{-\mathbf{w}^{\top} \mathbf{x}^{(i)}}}{1+e^{-\mathbf{w}^{\top} \mathbf{x}^{(i)}}}$ with $\log \left(1-y\left(\mathbf{x}^{(i)} ; \mathbf{w}\right)\right)$.
- The MLE would be

$$
\begin{aligned}
& \min _{\mathbf{w}}-\sum_{i: t^{(i)}=1} \log y\left(\mathbf{x}^{(i)} ; \mathbf{w}\right)-\sum_{i: t^{(i)}=0} \log \left(1-y\left(\mathbf{x}^{(i)} ; \mathbf{w}\right)\right)= \\
& \min _{\mathbf{w}}-\sum_{i=1}^{N} t^{(i)} \log y\left(\mathbf{x}^{(i)} ; \mathbf{w}\right)+\left(1-t^{(i)}\right) \log \left(1-y\left(\mathbf{x}^{(i)} ; \mathbf{w}\right)\right) .
\end{aligned}
$$

- This is the same loss that we got for logistic regression.
- So LR is MLE with a particular probabilistic model.

Gradient Descent

- How do we minimize the cost \mathcal{J} in this case? No direct solution.
- Taking derivatives of \mathcal{J} w.r.t. w and setting them to 0 doesn't have an explicit solution.
- We can use the gradient descent instead.

Gradient Descent for Logistic Regression

Back to logistic regression:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{CE}}(y, t) & =-t \log (y)-(1-t) \log (1-y) \\
y & =1 /\left(1+e^{-z}\right) \text { and } z=\mathbf{w}^{T} \mathbf{x}+b
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\frac{\partial \mathcal{L}_{\mathrm{CE}}}{\partial w_{j}}=\frac{\partial \mathcal{L}_{\mathrm{CE}}}{\partial y} \cdot \frac{\partial y}{\partial z} \cdot \frac{\partial z}{\partial w_{j}} & =\left(-\frac{t}{y}+\frac{1-t}{1-y}\right) \cdot y(1-y) \cdot x_{j} \\
& =(y-t) x_{j}
\end{aligned}
$$

Exercise: Verify this!
Gradient descent update to find the weights of logistic regression (expressed only for the w_{j} term):

$$
\begin{aligned}
w_{j} & \leftarrow w_{j}-\alpha \frac{\partial \mathcal{J}}{\partial w_{j}} \\
& =w_{j}-\frac{\alpha}{N} \sum_{i=1}^{N}\left(y^{(i)}-t^{(i)}\right) x_{j}^{(i)}
\end{aligned}
$$

Gradient Descent for Logistic Regression vs Linear Regression

Comparison of gradient descent updates:

- Linear regression (verify!):

$$
\mathbf{w} \leftarrow \mathbf{w}-\frac{\alpha}{N} \sum_{i=1}^{N}\left(y^{(i)}-t^{(i)}\right) \mathbf{x}^{(i)}
$$

- Logistic regression:

$$
\mathbf{w} \leftarrow \mathbf{w}-\frac{\alpha}{N} \sum_{i=1}^{N}\left(y^{(i)}-t^{(i)}\right) \mathbf{x}^{(i)}
$$

- Not a coincidence! These are both examples of generalized linear models. But we won't go in further detail.
- Notice $\frac{1}{N}$ in front of sums due to averaged losses. This is why you need smaller learning rate when we optimize the sum of losses $\left(\alpha^{\prime}=\alpha / N\right)$.

Multiclass Classification

- Classification: predicting a discrete-valued target
- Binary classification: predicting a binary-valued target
- Multiclass classification: predicting a discrete(>2)-valued target
- Examples of multi-class classification
- predict the value of a handwritten digit
- classify e-mails as spam, travel, work, personal
- find out whether a picture is a cat, dog, coyote, or fox

Multiclass Classification

- Classification tasks with more than two categories:
0001111112
2×20227323
3444445535
$4<77771888$
888894999

Multiclass Classification

- Targets form a discrete set $\{1, \ldots, K\}$.
- It's often more convenient to represent them as one-hot vectors, or a one-of-K encoding:

$$
\mathbf{t}=\underbrace{(0, \ldots, 0,1,0, \ldots, 0)}_{\text {entry } k \text { is } 1} \in \mathbb{R}^{K}
$$

Multiclass Classification

- There are D input dimensions and K output dimensions, so we need $K \times D$ weights, which we arrange as a weight matrix \mathbf{W}.
- We have a K-dimensional vector \mathbf{b} of biases too.
- Linear predictions:

$$
z_{k}=\sum_{j=1}^{D} w_{k j} x_{j}+b_{k} \text { for } k=1,2, \ldots, K
$$

- Vectorized:

$$
\mathbf{z}=\mathbf{W} \mathbf{x}+\mathbf{b}
$$

Multiclass Classification

- Predictions are like probabilities: we want them to satisfy $0 \leq y_{k} \leq 1$ and $\sum_{k} y_{k}=1$
- A suitable activation function is the softmax function, a multivariable generalization of the logistic function:

$$
y_{k}=\operatorname{softmax}\left(z_{1}, \ldots, z_{K}\right)_{k}=\frac{e^{z_{k}}}{\sum_{k^{\prime}} e^{z_{k^{\prime}}}}
$$

- The inputs z_{k} are called the logits.
- Properties:
- Outputs are positive and sum to 1 . So they can be interpreted as probabilities.
- If one of the z_{k} is much larger than the others, $\operatorname{softmax}(\mathbf{z})_{k} \approx 1$. It approximately behaves like argmax.
- Exercise: how does the case of $K=2$ relate to the logistic function?
- Note: sometimes $\sigma(\mathbf{z})$ is used to denote the softmax function; in this class, it will denote the logistic function applied element-wise.

Multiclass Classification

- If a model outputs a vector of class probabilities, we can use cross-entropy as the loss function:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{CE}}(\mathbf{y}, \mathbf{t}) & =-\sum_{k=1}^{K} t_{k} \log y_{k} \\
& =-\mathbf{t}^{\top}(\log \mathbf{y})
\end{aligned}
$$

where the \log is applied elementwise.

- Just like with logistic regression, we typically combine the softmax and cross-entropy into a softmax-cross-entropy function.

Multiclass Classification

- Softmax regression:

$$
\begin{aligned}
\mathbf{z} & =\mathbf{W} \mathbf{x}+\mathbf{b} \\
\mathbf{y} & =\operatorname{softmax}(\mathbf{z}) \\
\mathcal{L}_{\mathrm{CE}} & =-\mathbf{t}^{\top}(\log \mathbf{y})
\end{aligned}
$$

- Gradient descent updates can be derived for each row of \mathbf{W} :

$$
\begin{aligned}
\frac{\partial \mathcal{L}_{\mathrm{CE}}}{\partial \mathbf{w}_{k}} & =\frac{\partial \mathcal{L}_{\mathrm{CE}}}{\partial z_{k}} \cdot \frac{\partial z_{k}}{\partial \mathbf{w}_{k}}=\left(y_{k}-t_{k}\right) \cdot \mathbf{x} \\
\mathbf{w}_{k} & \leftarrow \mathbf{w}_{k}-\alpha \frac{1}{N} \sum_{i=1}^{N}\left(y_{k}^{(i)}-t_{k}^{(i)}\right) \mathbf{x}^{(i)}
\end{aligned}
$$

- Similar to linear/logistic regression.
- Verify the update.

Stochastic Gradient Descent

Stochastic Gradient Descent

- So far, the cost function \mathcal{J} has been the average loss over the training examples:

$$
\mathcal{J}(\mathbf{w})=\frac{1}{N} \sum_{i=1}^{N} \mathcal{L}^{(i)}=\frac{1}{N} \sum_{i=1}^{N} \mathcal{L}\left(y\left(\mathbf{x}^{(i)}, \mathbf{w}\right), t^{(i)}\right)
$$

- By linearity,

$$
\frac{\partial \mathcal{J}}{\partial \mathbf{w}}=\frac{1}{N} \sum_{i=1}^{N} \frac{\partial \mathcal{L}^{(i)}}{\partial \mathbf{w}}
$$

- Computing the gradient requires summing over all of the training examples. This is known as batch training.
- Batch training is impractical if you have a large dataset $N \gg 1$ (think about millions of training examples)!

Stochastic Gradient Descent

- Stochastic gradient descent (SGD): update the parameters based on the gradient for a single training example,

1. Choose i uniformly at random
2. $\mathbf{w} \leftarrow \mathbf{w}-\alpha \frac{\partial \mathcal{L}^{(i)}}{\partial \mathbf{w}}$

- Cost of each SGD update is independent of N.
- SGD can make significant progress before even seeing all the data!
- Mathematical justification: if you sample a training example uniformly at random, the stochastic gradient is an unbiased estimate of the batch gradient:

$$
\mathbb{E}\left[\frac{\partial \mathcal{L}^{(i)}}{\partial \mathbf{w}}\right]=\frac{1}{N} \sum_{i=1}^{N} \frac{\partial \mathcal{L}^{(i)}}{\partial \mathbf{w}}=\frac{\partial \mathcal{J}}{\partial \mathbf{w}}
$$

- Problems:
- Variance in this estimate may be high
- If we only look at one training example at a time, we can't exploit efficient vectorized operations.

Stochastic Gradient Descent

- Compromise approach: compute the gradients on a randomly chosen medium-sized set of training examples $\mathcal{M} \subset\{1, \ldots, N\}$, called a mini-batch.
- Stochastic gradients computed on larger mini-batches have smaller variance.
$\operatorname{Var}\left[\frac{1}{|\mathcal{M}|} \sum_{i \in \mathcal{M}} \frac{\partial \mathcal{L}^{(i)}}{\partial \mathbf{w}_{j}}\right]=\frac{1}{|\mathcal{M}|^{2}} \sum_{i \in \mathcal{M}} \operatorname{Var}\left[\frac{\partial \mathcal{L}^{(i)}}{\partial \mathbf{w}_{j}}\right]=\frac{1}{|\mathcal{M}|} \operatorname{Var}\left[\frac{\partial \mathcal{L}^{(1)}}{\partial \mathbf{w}_{j}}\right]$
- Here we used the independence of data points in the first equality, and their having identical distribution in the second equality.
- The mini-batch size $|\mathcal{M}|$ is a hyperparameter that needs to be set.
- Too large: takes more computation, i.e. takes more memory to store the activations, and longer to compute each gradient update
- Too small: can't exploit vectorization; has high variance
- A reasonable value might be $|\mathcal{M}|=100$.

Stochastic Gradient Descent

- Batch gradient descent moves directly downhill. SGD takes steps in a noisy direction, but moves downhill on average.

batch gradient descent

stochastic gradient descent

SGD Learning Rate

- In stochastic training, the learning rate also influences the fluctuations due to the stochasticity of the gradients.
small learning rate

large learning rate

- Typical strategy:
- Use a large learning rate early in training so you can get close to the optimum
- Gradually decay the learning rate to reduce the fluctuations

SGD Learning Rate

- Warning: by reducing the learning rate, you reduce the fluctuations, which can appear to make the loss drop suddenly. But this can come at the expense of long-run performance.

SGD and Non-convex optimization

- Stochastic methods have a chance of escaping from bad minima.
- Gradient descent with small step-size converges to first minimum it finds.

Conclusion

- A modular approach to ML
- choose a model
- choose a loss function suitable for the problem
- formulate an optimization problem
- solve the minimization problem

Conclusion

- Regression with linear models:
- Solution method: direct solution or gradient descent
- vectorize the algorithm, i.e., use vectors and matrices instead of summations
- make a linear model more powerful using feature mapping (or basis expansion)
- improve the generalization by adding a regularizer
- Probabilistic Interpretation as MLE with Gaussian noise model
- Classification with linear models:
- $0-1$ loss is the difficult to work with
- Use of surrogate loss functions such as the cross-entropy loss lead to computationally feasible solutions
- Logistic regression as the result of using cross-entropy loss with a linear model going through logistic nonlinearity
- No direct solution, but gradient descent can be used to minimize it
- Probabilistic interpretation as MLE
- Gradient Descent and Stochastic Gradient Descent (SGD)

[^0]: ${ }^{1}$ Credit for slides goes to many members of the ML Group at the U of T, and beyond, including (recent past): Roger Grosse, Murat Erdogdu, Richard Zemel, Juan Felipe Carrasquilla, Emad Andrews, and myself.

