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Today

o Closer look at what determines the error of ML algorithm
e Bootstrap Aggregation (Bagging)

e Skills to Learn

» Understanding the bias-variance decomposition
» The concept behind Bagging and why it works
» Random Forests
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Bias-Variance Decomposition
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Bias-Variance Decomposition

@ Recall that overly simple models underfit the data, and overly complex
models overfit.
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@ We quantify this effect in terms of the bias-variance decomposition.
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Bias-Variance Decomposition for the Mean Estimator

@ For the next few slides, we consider the simple problem of estimating the
mean of a random variable (r.v.) using data.

@ Consider a r.v. Y with an unknown distribution p. This random variable
has an (unknown) mean m = E [Y] and variance
o? =Var[Y] =E [(Y —m)?].

o Given: a dataset D = {Y7,...,Y,} with independently sampled Y; ~ p.

@ How can we estimate m using D?
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Bias-Variance Decomposition for the Mean Estimator

o Given: a dataset D = {Y7,...,Y,} with independently sampled Y; ~ p.

@ Consider an algorithm that receives D, does some processing on data,
and outputs a number. The goal of this algorithm is to provide an
estimate of m. Let us denote it by h(D).

@ Some good and bad examples:

» Sample average: h(D) = 13" |V,
» Single-sample estimator: h(D) =Y;
» Zero estimator: h(D) =0

@ How well do they perform?
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Bias-Variance Decomposition for the Mean Estimator

@ How can we assess the performance of a particular h(D)?

Ideally, we want h(D) to be exactly equal to m = E[Y]. But this might
be too much to ask. (Q: Why?)

@ What we can hope for is that h(D) = m.

@ How can we quantify the accuracy of approximation?
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Bias-Variance Decomposition for the Mean Estimator

@ We use the squared error err(D) = |h(D) — m|? as a measure of quality.
This is the familiar squared error loss function in regression.

@ The error err(D) is a r.v. itself. (Q: Why?)

@ For a dataset D = {Y7,...,Y,} the loss err(D) might be small, but for
another D’ = {Y7{,..., Y} (still with Y/ ~ p) the loss err(D’) might be
large. We would like to quantify the average error.

@ We focus on the expectation of err(D), i.e.,
E[err(D)] = Ep [|h(D) - mﬂ :
@ Note that the dataset D is random and this expectation is w.r.t. its

randomness.
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Bias-Variance Decomposition for the Mean Estimator

@ We would like to understand what determines Ep {|h(D) - m|2} b
looking more closely at it.

@ We can decompose Ep {|h(D) - m|2} by adding and subtracting
Ep [h(D)] inside | - | and expanding:

Ep [[A(D) — m|*] =Ep [|(D) ~ Ep [(D)] + Ep [h(D)] ~ m’

)
~Ep [|h(D) — Ep [W(D))I*] + Ep |[Ep [(D)] - m|*] +
2Ep [(M(D) — Ep [M(D)]) (Ep [A(D)] —m)].

@ What is the intuition of term Ep [h(D)]?
@ Let us simplify the right hand side (RHS).
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Bias-Variance Decomposition for the Mean Estimator

Ep [Ih(D) - m’] = +Ep [[Ep [A(D)] - ||+
2

@ Recall that if X is a random variable and f is a function, the quantity
f(X) is a random variable. But its expectation E [f(X)] is not. We can
say that the expectation takes the randomness away. So Ep [h(D)] is not
a random variable anymore.

@ For the second term, we have
Ep |[Ep [(D)] - mf’] = [Ep [(D)] — m/*.

@ Q: Suppose that D = {Y7,...,Y,} with ¥; ~ p with mean m and
variance o2. Define h(D) = 2 37" | V2. What is Ep [h(D)]?
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Bias-Variance Decomposition for the Mean Estimator

Ep [h(D) - m|’] = +Ep [[Ep [1(D)] - m|*|+
2

@ Let us consider Ep [(h(D) — Ep [h(D)]) (Ep [A(D)] — m)].

@ To reduce the clutter, we denote m = Ep [h(D)], i.e., the expected value
of the estimator.

@ Note that m is an expectation of a r.v., so it is not random. This means
that E [mh(D)] = mE [h(D)].

@ We have

The third term is zero.
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Bias-Variance Decomposition for the Mean Estimator

Bias-Variance Decomposition

Ep |4(D) = ml’| = [Ep [M(D)] = |’ +Ep |Ih(D) - Ep [W(D)]*] .

bias

variance

@ Bias: The error of the expected estimator (over draws of dataset D)
compared to the mean m = E [Y] of the random variable Y.

@ Variance: The variance of a single estimator h(D) (whose randomness
comes from D).

@ This is for an estimator of a mean of a random variable. We shall extend
this decomposition to more general estimators too.
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Bias-Variance Decomposition for the Mean Estimator:
Examples

Bias-Variance Decomposition

o [Ih(D) ~mf’] = [Ep [h(D)] - m’ +Ep [|h(D) - B [(D)]*] .

bias

variance

@ Let us compute the bias and variance of a few estimators. Recall that
m=E[Y] and 62 = Var{Y} =E [(Y — m)?].
@ Sample average: h(D) = %Z?:l Y;.

> Bias [Ep [(D)] — m|* = [E [1 Y, Y] —m|? =
|%Zi:1]E[Yi] —m|* = |1 Zz 1M = m|?* = 0.
» Variance:

E||h(D) —Ep [W(D)|] =E[1 1, ¥ —E [ 20, Y] ] =
‘]

E [l X —-m)P] = & S5 E (Y - m)
» Ep {|h(D) - m|2} = bias + variance = 0 + £ 7.
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Bias-Variance Decomposition for the Mean Estimator:
Examples

Bias-Variance Decomposition

Ep [|h(D) - ml’] = [Ep [W(D)] = m* +Ep [Ih(D) - Ep (D)) .

bias

variance

@ Single-sample estimator: h(D) =Y;

» The algorithm behind this estimator only looks at the first data
point and ignores the rest.

> Bias [Ep [h(D)] — m|* = [E[Y1] — m[* = [m — m|* = 0.

> Variance: E [[B(D) ~ Ep [W(D))I*]| =E [ - E[i] ] = o*.

» Ep {|h(D) - m|2} = bias + variance = 0 + o2,
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Bias-Variance Decomposition for the Mean Estimator:
Examples

Bias-Variance Decomposition

Ep [[(D) — m*| = [En [1(D)] = mf’ +Ep ||A(D) — Ep [R(D)]*].

bias

variance

@ Zero estimator: h(D) =0

» The algorithm behind this estimator does not look at data and
always outputs zero. (We do not really want to use it in practice.)

> Bias |[Ep [A(D)] — m|* = |0 — m|> = m?.

> Variance: E [|h(D) —Ep [h(D)]ﬂ —E[0-E[0]?] =0.

» Ep [|h(D) - mﬂ = bias + variance = m? + 0.
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Bias-Variance Decomposition for the Mean Estimator:
Examples

@ Summary:

» Sample average: Ep [|h(D) - mﬂ = bias + variance = 0 + %2
» Single-sample estimator:
Ep {|h(D) - m|2} = bias + variance = 0 + o2,

» Zero estimator: Ep [|h(’D) - mﬂ = bias + variance = m? + 0.

@ These estimators show different behaviour of bias and variance.

» The zero estimator has no variance (surprising?), but potentially a
lot of bias (unless we are “lucky” and m is in fact very close to 0).

» The sample average has zero bias, but in general it has a non-zero
variance.

> Q: When does it have a zero variance?
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Bias-Variance Decomposition for the Mean Estimator

@ We could also define error as

Epy [\h(D) - Yﬂ

instead of Ep ||h(D) — m|2}. This measures the expected squared error
of h(D) compared to Y instead of the mean m = E[Y].

@ We have a similar decomposition:
E [|h(D) - Y|2] —E [|h(D) —mtm— Yﬂ
—E [|(D) — m|*]| +E[m - YI'] +
2E [(h(D) — m) (m — Y)] .
@ The last term is zero because

E[(h(D) =m) (m = Y)] = E[E[(h(D) —m) (m —Y) | D]]
=E[(A(D) —m)E[m Y | D]] = 0.
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Bias-Variance Decomposition for the Mean Estimator

Bias-Variance Decomposition

E [|A(D) - Y|?] = |Ep [2(D)] — m|* + Ep [|h(D) — Ep [R(D)]]*] +E [|Y — m|*] .

bias variance Bayes error

@ We have an additional term of E [|m — Y|?] = ¢2. This is the variance of
Y. This comes from the randomness of the r.v. Y and cannot be
avoided. This is called the Bayes error.
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Bias-Variance Decomposition for the General Case

@ What about the bias-variance decomposition for a machine learning
algorithm such as a regression estimator or a classifier?

@ Two importance issues to be addressed:

» We are not trying to estimate a single real-valued number
(h(D) € R) anymore, but a function over input x. How can we
measure the error in this case?

» When we only wanted to estimate the mean, the “best” solution
was m = E[Y]. What is the best solution here?
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Bias-Variance Decomposition for the General Case

e Suppose that the training set D consists of N pairs (x(?), ()
sampled independent and identically distributed (i.i.d.) from a
sample generating distribution psample, i-€., (x(i),t(i)) ~ Dsample-

e We consider the marginal distributions px and the distribution of ¢
conditioned on x by p(t|x):

> px fpsample(x t)dt
sample (X,
. p<t|x> = Demmpeled)

o Let pgataset denote the induced distribution over training sets, i.e.

D~ Pdataset -
» We have that

Paataset ((X(l)a t(l))v EERE ( ™ it N) ) HpS%mple t(z)))
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Bias-Variance Decomposition for the General Case

e Pick a fixed query point x (denoted with a green ).

e Consider an experiment where we sample lots of training datasets
i.id. from pgataset-
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Bias-Variance Decomposition for the General Case

@ Let us run our learning algorithm on each training set D,
producing a regressor or classifier h(D): X — T.

e As D is random, and h(D) is a function of D, the function h(D) is
a random function.

e Fix a query point x. We use h(D) to predict the output at x, i.e.,
y = h(x; D).

@ y is a random variable, where the randomness comes from the
choice of training set

» Disrandom = h(:;D) is random = h(x;D) is random

LY | . Tl .
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Bias-Variance Decomposition for the General Case

Here is the analogous setup for regression:

fit to dataset 1 fit to dataset 2 fit to dataset 3

query location

lots of fits histogram of y

Since y = h(x; D) is a random variable, we can talk about its expectation,
variance, etc. over the distribution of training sets Pgataset
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Bias-Variance Decomposition for the General Case

@ Recap of the setup:

Hypothesis
Learning

Prediction

Test query Loss

@ When x is fixed, this is very similar to the mean estimator case.
» Recall that we had Ep {|h(D) - m|2}. In the mean estimator, h(D)
was a scalar r.v., but here we have h(D) : X — 7.
@ Can we have a bias-variance decomposition for a h(D) : X — T7?

@ Two questions:

» What should replace m in the error decomposition?
» How should we evaluate the performance when x is random?
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Bayes Optimal Prediction

Proposition: For a fixed x, the best estimator is the conditional expectation of
the target value y.(x) = E [t|x] (Distribution of ¢ ~ p(t|x)), i.e.,

y.(x) = argmin E[(y — )% | .
@ Proof: Start by conditioning (fn (a fixed) x. For any fixed y, we have
El(y —t)*|x] = Ely* — 2yt +t* | x]
=y* — 2yE[t |x] + E[t* | x]
=y? — 2E[t|x] + E[t | x]? + Var[t|x]
=y = 2yy. (%) + y. (%) + Var[t | x]
= (y — y«(x))? + Var[t | x].
@ The first term is nonnegative, and can be made 0 by setting y = y.(x).

@ The second term does not depend on y. It corresponds to the inherent
unpredictability, or noise, of the targets, and is called the Bayes error or
irreducible error.

» This is the best we can ever hope to do with any learning
algorithm. An algorithm that achieves it is Bayes optimal.
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Bias-Variance Decomposition for the General Case

@ For each query point x, the expected loss is different. We are interested
in quantifying how well our estimator performs over the distribution
Dsample- Lhat is, the error measure is

err(D) = Exp, [|h(X;'D) = Yx (X)ﬂ
- / [h(; D) — g () p (x)dx.

@ This is similar to err(D) = |h(D) — m|? of the Mean Estimator case,
except that

» The ideal estimator is y.(x) and not m.
» We take average over x according to the probability distribution py.

@ As before, err(D) is random due to the randomness of D ~ pgataset-

@ We focus on the expectation of err(D), i.e.,

E [err(D)] = ED paarases, x~px |h(x; D) — ya (X)|2 .
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Bias-Variance Decomposition for the General Case

@ To obtain the bias-variance decomposition of
2
E [e1(D)] = Epnpayyuua mpe || D) = 3 (0[]

we add and subtract Ep [h(x; D) | x| inside | - | (similar to before):

Epx [[h(x D) - . (x)]] =
Epx ||h(x; D) = Ep [h(x; D) | X] + Ep [h(x; D) | x] - ()| =

Epx [[h(x; D) — Ep [h(x; D) | x|’ + Epx [[Ep [h(x; D) | x] - ()] +
2B, [(h(x; D) ~ Ep [h(x; D) | x]) (Ep [A(x; D) | X] - . (x))] =

Ep.x [[(x: D) ~Ep [h(x: D) | x]I°| +Ex |[Ep [h(x: D) | ] - ()

)

@ Try to convince yourself that the inner product term is zero.

@ This is the bias and variance decomposition for the general estimator
(with the squared error loss).
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Bias-Variance Decomposition for the General Estimator

Bias-Variance Decomposition

Epx [Ih(X;D) - y*(X)ﬂ =Ex [IJED [h(x;D) | x] - y*(x)ﬂ n
bias

Ep,x [|h(x; D) — Ep [h(x; D) | x]?]

~~
variance

e Bias: The squared error between the average estimator (averaged
over dataset D) and the best predictor y.(x) = E [t|x], averaged

over X ~ .
e Variance: The variance of a single estimator h(x; D) (whose
randomness comes from D).

> Note that Epx [|h(x; D) — Ep [h(x; D) | x]|’| =
Ex [Ep [|h(6 D) — Ep [h(x; D) | ][] | = Ex [Varp[a(x; D) x]).
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Bias-Variance Decomposition for the General Case

Bias-Variance Decomposition

Ep 11 D) — 8] =Ex [|Ep [h(x; D) | 1] — ()] +

bias

Epx [[h(x D) — Ep [h(x; D) | X]I°| +E [Jyn (x) - 7]

Bayes error

variance

@ We have an additional term of E [|y.(x) — ¢|?] = Ex [Var[t | x]] (Why?!).

@ This is due to the the variance of ¢ at each fixed x, averaged over x ~ px.
As before, this comes from the randomness of the r.v. ¢ and cannot be
avoided. This is the Bayes error.
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Bias-Variance Decomposition: A Visualization

e Throwing darts = predictions for each draw of a dataset

Low Variance High Vasiance

Low Bias

High Bias

o What doesn’t this capture?

e We average over points x from the data distribution
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Bias-Variance Decomposition: Another Visualization

e We can visualize this decomposition in the output space, where
the axes correspond to predictions on the test examples.
e Consider two test query inputs x( and x®. The outputs are
» The Bayes optimal prediction
ye = [y (x), 5 (xP)] = [E [t1xV] L E [t1x®]].
» The prediction of the model h(x;D):
y =y, y®] = [h(xD; D), h(x*); D).
o We can visualize the outputs as follows:

y from one
contours of training set
expected loss
residual )Z
——“"'._—_— X, / E[y}
blas_,__,——?(x
X X
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Bias-Variance Decomposition: Another Visualization

o If we have an overly simple model (e.g., K-NN with large K), it
might have
» high bias (because it is too simplistic to capture the structure in the
data)
» low variance (because there is enough data to get a stable estimate
of the decision boundary)

y from one
contours of training set
expected loss
residual_______%
"'—__—‘_——_ x\ // E[y}
blas__,__——?(x><
9 -7 X
Iy( )
1
y
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Bias-Variance Decomposition: Another Visualization

e If you have an overly complex model (e.g., K-NN with K = 1), it
might have
» low bias (since it learns all the relevant structure)
» high variance (it fits the quirks of the data you happened to sample)

X
/
/

contours of
expected loss
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Ensemble Methods — Part I: Bagging

Intro ML (UofT) CSC2515-Lec4 35 / 43



Ensemble Methods: Brief Overview

@ An ensemble of predictors is a set of predictors whose individual
decisions are combined in some way to predict new examples, for
example by (weighted) majority vote.

@ For the result to be nontrivial, the learned hypotheses must differ
somehow, for example because of

» Trained on different data sets

» Trained with different weighting of the training examples
Different algorithms

» Different choices of hyperparameters

v

@ Ensembles are usually easy to implement. The hard part is deciding
what kind of ensemble you want, based on your goals.

@ Two major types of ensembles methods:

» Bagging
» Boosting
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Bagging: Motivation

@ Suppose that we could somehow sample m independent training
sets {D;}I", from pgataset-
o We could then learn a predictor h; £ h(-; D;) based on each

dataset, and take the average h(x) = L 3" h(x).
e How does this affect the terms of the expected loss?
» Bias: Unchanged, since the averaged prediction has the same

expectation

By oy 0OI= D Epp ((0)
i=1

Di,...;Dm '~ 'Pdataset
= EDdiatasct [h(X; D)] .

» Variance: Reduced, since we are averaging over independent

samples

1 — 1
DX% . [h(x)] = — ; i3] = — Vgr[hp(x)].
o Q: What if m — o0?
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Bagging

In practice, we do not have access to the underlying data
generating distribution psampie-

It is expensive to collect many i.i.d. datasets from pgataset-

Solution: bootstrap aggregation, or bagging.

» Take a single dataset D with n examples.

» Generate m new datasets, each by sampling n training examples
from D, with replacement.

» Average the predictions of models trained on each of these datasets.

Bagging works well for low-bias / high-variance estimators.

Intro ML (UofT) CSC2515-Lec4 38 / 43



Bagging

e Problem: the datasets are not independent, so we do not get the
% variance reduction.

e Possible to show that if the sampled predictions have variance o2

and correlation p, then
Var [ LS 0| = o+ L1
ar | — i(x) | =po”+ —(1—p)o~.
m — ‘ P m P

» Exercise: Prove this! (See next slide)

o By increasing m, the second term decreases.

o The first term, however, remains the same. It limits the benefit of
bagging.

o If we can make correlation p as small as possible, we benefit more
from bagging.
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Some Properties of Variance

e Covariance:
Cov(X,)Y)=E[(X -E[X)(Y -E[Y])].

o Correlation:

e Covariance of linear combination:

Var Zm:Zi = ?Zn: Cov (Z;, Z;)
i=1 ij=1
= zm:Var[Zi] + i Cov (Z;, Z;) .
i=1 i,j=13i#j
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Bagging

1 1
Var - ZE 1 (x) po” + 'm( p)o

e It can be advantageous to introduce additional variability into your
algorithm, as long as it reduces the correlation between samples.
» Intuition: you want to invest in a diversified portfolio, not just one
stock.
» Can help to use average over multiple algorithms, or multiple
configurations (i.e., hyperparameters) of the same algorithm.
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Random Forests

e Random forests: bagged decision trees, with one extra trick to
decorrelate the predictions

e When choosing each node of the decision tree, choose a random
set of p input attributes (e.g., p = \/&), and only consider splits on
those features.

» Smaller p reduces the correlation between trees.

e Random forests improve the variance reduction of bagging by
reducing the correlation between the trees (p).

o For regression, we take the average output of the ensemble; for
classification, we perform a majority vote.

e Random forests are probably one of the best black-box machine
learning algorithm. They often work well with no tuning
whatsoever.

» One of the most widely used algorithms in Kaggle competitions.
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Conclusion

e Bias-Variance Decomposition
» The error of a machine learning algorithm can be decomposed to a
bias term and a variance term.
» Hyperparameters of an algorithm might allow us to tradeoff
between these two.

o Ensemble Methods

» Bagging as a simple way to reduce the variance of an estimation
method
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