CSC 2515: Introduction to Machine Learning Lecture 10: K-Means and EM Algorithm

Amir-massoud Farahmand¹

University of Toronto and Vector Institute

¹Credit for slides goes to many members of the ML Group at the U of T, and beyond, including (recent past): Roger Grosse, Murat Erdogdu, Richard Zemel, Juan Felipe Carrasquilla, Emad Andrews, and myself.

Table of Contents

- Introduction
- 2 Clustering Problem
- **3** K-Means Algorithms
- 4 Generative Approach to Clustering
 - Gaussian Mixture Model
 - Expectation-Maximization

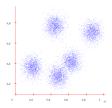
Overview

- We have covered PCA, which was an unsupervised learning algorithm.
 - ▶ Its main purpose was to reduce the dimension of the data.
 - ▶ In practice, even though data is very high dimensional, it can be well represented in low dimensions.
- This method relies on an assumption that data depends on some latent variables, which are not observed. Such models are called latent variable models.
 - ► For PCA, these corresponds to the code vectors (representation).
 - ► Today's lecture: K-means, a simple algorithm for clustering, i.e., grouping data points into clusters
 - ► Today's lecture: Reformulate clustering as a latent variable model, apply the Expectation-Maximization (EM) algorithm

Intro ML (UofT) CSC2515-Lec10 3 / 42

Clustering Problem

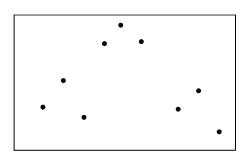
• Sometimes the data form clusters, where samples within a cluster are similar to each other, and samples in different clusters are dissimilar:



- Such a distribution is multimodal, since it has multiple modes, or regions of high probability mass.
- Grouping data points into clusters, with no observed labels, is called clustering. It is an unsupervised learning technique.
- Example: clustering machine learning papers based on topic (deep learning, Bayesian models, etc.)
 - ▶ But topics are never observed (unsupervised).

Intro ML (UofT) CSC2515-Lec10 4 / 42

Clustering Problem



- Assume that the data points $\{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)}\}\$ live in an Euclidean space, i.e., $\mathbf{x}^{(n)} \in \mathbb{R}^D$.
- ullet Assume that each data point belongs to one of the K clusters
- Assume that the data points from the same cluster are similar, i.e., close in Euclidean distance.
- How can we identify those clusters and the data points that belong to each cluster?

Intro ML (UofT) CSC2515-Lec10 5 / 42

K-means Objective

Let's formulate this as an optimization problem

- K-means Objective:
 - Find cluster centres $\{\mathbf{m}_k\}_{k=1}^K$ and assignments $\{\mathbf{r}^{(n)}\}_{n=1}^N$ to minimize the sum of squared distances of data points $\{\mathbf{x}^{(n)}\}$ to their assigned cluster centres
 - ▶ Data samples: $\mathbf{x}^{(n)} \in \mathbb{R}^D$ (n = 1, ..., N) (observed),
 - Cluster centres: $\mathbf{m}_k \in \mathbb{R}^D$ (k = 1, ..., K) (not observed),
 - ▶ Responsibilities: Cluster assignment for sample n: $\mathbf{r}^{(n)} \in \mathbb{R}^K$ 1-of-K encoding (not observed)
- Mathematically:

$$\min_{\{\mathbf{m}_k\}, \{\mathbf{r}^{(n)}\}} J\left(\{\mathbf{m}_k\}, \{\mathbf{r}^{(n)}\}\right) = \min_{\{\mathbf{m}_k\}, \{\mathbf{r}^{(n)}\}} \sum_{n=1}^{N} \sum_{k=1}^{K} r_k^{(n)} \left\|\mathbf{m}_k - \mathbf{x}^{(n)}\right\|^2,$$

where $r_k^{(n)} = \mathbb{I}\{\mathbf{x}^{(n)} \text{ is assigned to cluster } k\}$, that is, $\mathbf{r}^{(n)} = [0, \dots, 1, \dots, 0]^{\top}$.

• Finding an optimal solution is an NP-hard problem!

K-means Objective

• Optimization problem:

$$\min_{\substack{\{\mathbf{m}_k\},\{\mathbf{r}^{(n)}\}\\ \text{ and its assigned cluster centre}}} \sum_{n=1}^{N} \underbrace{\sum_{k=1}^{K} r_k^{(n)} \left\| \mathbf{m}_k - \mathbf{x}^{(n)} \right\|^2}_{\text{distance between } \mathbf{x}^{(n)}}$$

- Since $r_k^{(n)} = \mathbb{I}\{\mathbf{x}^{(n)} \text{ is assigned to cluster } k\}$ (e.g., $\mathbf{r}^{(n)} = [0, \dots, 1, \dots, 0]^{\top}$), the inner sum is over K terms but only one of them is non-zero.
- For example, if data point $\mathbf{x}^{(n)}$ is assigned to cluster k = 3, then $\mathbf{r}^n = [0, 0, 1, 0, ...]$ and

$$\sum_{k=1}^{K} r_k^{(n)} \left\| \mathbf{m}_k - \mathbf{x}^{(n)} \right\|^2 = \left\| \mathbf{m}_3 - \mathbf{x}^{(n)} \right\|^2.$$

7 / 42

Intro ML (UofT) CSC2515-Lec10

How to Optimize? Alternating Minimization

Optimization problem:

$$\min_{\{\mathbf{m}_k\}, \{\mathbf{r}^{(n)}\}} \sum_{n=1}^{N} \sum_{k=1}^{K} r_k^{(n)} \left\| \mathbf{m}_k - \mathbf{x}^{(n)} \right\|^2$$

- Problem is hard when minimizing jointly over the parameters $\{\mathbf{m}_k\}, \{\mathbf{r}^{(n)}\}.$
- But if we fix one and minimize over the other, then it becomes easy.
- Idea: We can alternate between optimizing **r** (assignments) and **m** (centres).
- Doesn't guarantee the same solution!

Intro ML (UofT)

Alternating Minimization (Optimizing Assignments)

Optimization problem:

$$\min_{\{\mathbf{m}_k\}, \{\mathbf{r}^{(n)}\}} \sum_{n=1}^{N} \sum_{k=1}^{K} r_k^{(n)} ||\mathbf{m}_k - \mathbf{x}^{(n)}||^2$$

- Note:
 - ▶ If we fix the centres $\{\mathbf{m}_k\}$, we can easily find the optimal assignments $\{\mathbf{r}^{(n)}\}$ for each sample n

$$\min_{\mathbf{r}^{(n)}} \sum_{k=1}^{K} r_k^{(n)} \left\| \mathbf{m}_k - \mathbf{x}^{(n)} \right\|^2.$$

Assign each point to the cluster with the nearest centre

$$r_k^{(n)} = \begin{cases} 1 & \text{if } k = \arg\min_j \|\mathbf{x}^{(n)} - \mathbf{m}_j\|^2 \\ 0 & \text{otherwise} \end{cases}$$

▶ E.g. if $\mathbf{x}^{(n)}$ is assigned to cluster \hat{k} ,

$$\mathbf{r}^{(n)} = \underbrace{[0, 0, ..., 1, ..., 0]}_{\text{Only }\hat{k}\text{-th entry is }1}^{\top}$$

Alternating Minimization (Optimizing Centres)

- If we fix the assignments $\{\mathbf{r}^{(n)}\}$, then we can easily find optimal centres $\{\mathbf{m}_k\}$
 - ▶ Set each cluster's centre to the average of its assigned data points: For l=1,2,...,K

$$0 = \frac{\partial}{\partial \mathbf{m}_l} \sum_{n=1}^{N} \sum_{k=1}^{K} r_k^{(n)} ||\mathbf{m}_k - \mathbf{x}^{(n)}||^2$$
$$= 2 \sum_{n=1}^{N} r_l^{(n)} (\mathbf{m}_l - \mathbf{x}^{(n)}) \quad \Longrightarrow \quad \mathbf{m}_l = \frac{\sum_n r_l^{(n)} \mathbf{x}^{(n)}}{\sum_n r_l^{(n)}}$$

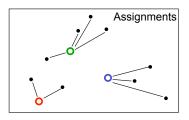
- Let's alternate between minimizing $J(\{\mathbf{m}_k\}, \{\mathbf{r}^{(n)}\})$ with respect to $\{\mathbf{m}_k\}$ and $\{\mathbf{r}^{(n)}\}$
- This is called alternating minimization.

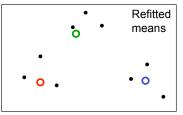
Intro ML (UofT) CSC2515-Lec10 10 / 42

K-means Algorithm

High level overview of algorithm:

- Initialization: randomly initialize cluster centres
- The algorithm iteratively alternates between two steps:
 - ► Assignment step: Assign each data point to the closest cluster
 - ▶ Refitting step: Move each cluster centre to the mean of the data assigned to it





Intro ML (UofT) CSC2515-Lec10 11 / 42

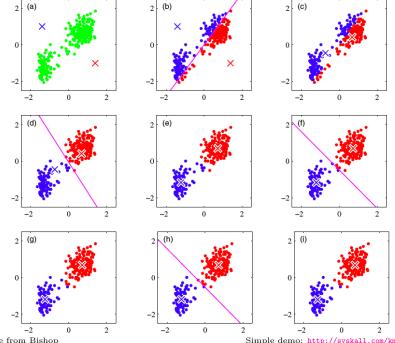


Figure from Bishop Simple demo: http://syskall.com/kmeans.js/

The K-means Algorithm

- Initialization: Set K cluster means $\mathbf{m}_1, \dots, \mathbf{m}_K$ to random values
- Repeat until convergence (until assignments do not change):
 - ▶ Assignment: Optimize J w.r.t. $\{\mathbf{r}\}$: Each data point $\mathbf{x}^{(n)}$ is assigned to nearest centre

$$\hat{k}^{(n)} = \arg\min_{k} ||\mathbf{m}_k - \mathbf{x}^{(n)}||^2$$

and Responsibilities (1-hot or 1-of-K encoding)

$$r_k^{(n)} = \mathbb{I}\{\hat{k}^{(n)} = k\} \text{ for } k = 1, .., K$$

▶ Refitting: Optimize J w.r.t. $\{\mathbf{m}\}$: Each centre is set to mean of data assigned to it

$$\mathbf{m}_k = \frac{\sum_n r_k^{(n)} \mathbf{x}^{(n)}}{\sum_n r_k^{(n)}}.$$

Intro ML (UofT)

K-means for Vector Quantization

Figure from Bishop

- Given image, construct "dataset" of pixels represented by their RGB pixel intensities
- Run K-means, replace each pixel by its cluster centre

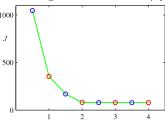
Intro ML (UofT) CSC2515-Lec10 14 / 42

Questions about K-means

- What if we used a different distance measure?
- How can we choose the best distance?
- How to choose K?
- Will it converge?

Why K-means Converges

- K-means algorithm reduces the cost at each iteration.
 - ▶ Whenever an assignment is changed, the sum squared distances *J* of data points from their assigned cluster centres is reduced.
 - \blacktriangleright Whenever a cluster centre is moved, J is reduced.
- Test for convergence: If the assignments do not change in the assignment step, we have converged to a local minimum.
- This will always happen after a finite number of iterations, since the number of possible cluster assignments is finite (Q: How many?)



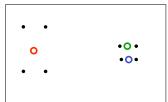
• K-means cost function after each assignment step (blue) and refitting step (red). The algorithm has converged after the third refitting step.

Intro ML (UofT) CSC2515-Lec10 16 / 42

Local Minima

- The objective J is non-convex (so coordinate descent on J is not guaranteed to converge to the global minimum)
- There is nothing to prevent K-means getting stuck at local minima.
- We could try many random starting points

A bad local optimum



Intro ML (UofT) CSC2515-Lec10 17 / 42

Soft K-means

- Instead of making hard assignments of data points to clusters, we can make soft assignments. One cluster may have a responsibility of 0.7 for a datapoint and another may have a responsibility of 0.3.
 - ▶ Allows a cluster to use more information about the data in the refitting step.
 - ▶ How do we decide on the soft assignments?
 - ▶ We already saw this in multi-class classification:
 - ightharpoonup 1-of-K encoding vs softmax assignments

Intro ML (UofT) CSC2515-Lec10 18 / 42

Soft K-means Algorithm

- Initialization: Set K means $\{\mathbf{m}_k\}$ to random values
- Repeat until convergence (measured by how much J changes):
 - Assignment: Each data point n given soft "degree of assignment" to each cluster mean k, based on responsibilities

$$r_k^{(n)} = \frac{\exp(-\beta \|\mathbf{m}_k - \mathbf{x}^{(n)}\|^2)}{\sum_{j=1}^K \exp(-\beta \|\mathbf{m}_j - \mathbf{x}^{(n)}\|^2)}$$

$$\implies \mathbf{r}^{(n)} = \operatorname{softmax}(-\beta \{\|\mathbf{m}_k - \mathbf{x}^{(n)}\|^2\}_{k=1}^K)$$

▶ Refitting: Model parameters (i.e., centre means) are adjusted to match sample means of datapoints they are responsible for:

$$\mathbf{m}_k = \frac{\sum_n r_k^{(n)} \mathbf{x}^{(n)}}{\sum_n r_k^{(n)}}$$

CSC2515-Lec10 19 / 42

Questions about Soft K-means

Some remaining issues

- How to set β ?
- Clusters with unequal weight and width?

These aren't straightforward to address with K-means. Instead, in the sequel, we will reformulate clustering using a generative model.

As $\beta \to \infty$, soft k-Means becomes K-Means! (Exercise)

A Generative View of Clustering

- Next: probabilistic formulation of clustering
- We need a sensible measure of what it means to cluster the data well
 - ▶ This makes it possible to judge different methods
 - ▶ It may help us decide on the number of clusters
- An obvious approach is to imagine that the data was produced by a generative model
 - ► Then we adjust the model parameters using maximum likelihood, i.e., to maximize the probability that it would produce exactly the data we observed

Intro ML (UofT) CSC2515-Lec10 21 / 42

The Generative Model

- ullet We will be working with the following generative model for data ${\mathcal D}$
- ullet Assume a datapoint ${f x}$ is generated as follows:
 - Choose a cluster z from $\{1,\ldots,K\}$ such that $p(z=k)=\pi_k$
 - Given z, sample x from a Gaussian distribution $\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_z, \mathbf{I})$
- Can also be written:

$$p(z = k) = \pi_k$$
$$p(\mathbf{x}|z = k) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \mathbf{I})$$

Clusters from Generative Model

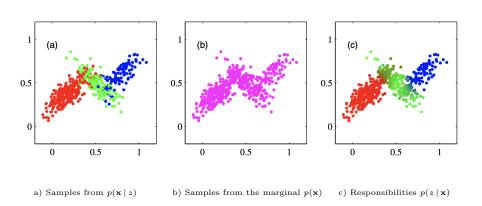
- This defines joint distribution $p(z, \mathbf{x}) = p(z)p(\mathbf{x}|z)$ with parameters $\{(\pi_k, \boldsymbol{\mu}_k)\}_{k=1}^K$
- The marginal of **x** is given by $p(\mathbf{x}) = \sum_{z} p(z, \mathbf{x})$
- $p(z = k|\mathbf{x})$ can be computed using Bayes rule

$$p(z = k | \mathbf{x}) = \frac{p(\mathbf{x} | z = k)p(z = k)}{p(\mathbf{x})}.$$

This tells us the probability that \mathbf{x} comes from the k^{th} cluster.

The Generative Model

• 500 points drawn from a mixture of 3 Gaussians.



Intro ML (UofT)

CSC2515-Lec10

Maximum Likelihood with Latent Variables

- How should we choose the parameters $\{(\pi_k, \boldsymbol{\mu}_k)\}_{k=1}^K$?
- Maximum likelihood principle: choose parameters to maximize the likelihood of observed data
- \bullet We don't observe the cluster assignments z; we only see the data ${\bf x}$
- Given data $\mathcal{D} = \{\mathbf{x}^{(n)}\}_{n=1}^{N}$, choose parameters to maximize:

$$\log p(\mathcal{D}) = \sum_{n=1}^{N} \log p(\mathbf{x}^{(n)})$$

• We can find $p(\mathbf{x})$ by marginalizing out z:

$$p(\mathbf{x}) = \sum_{k=1}^{K} p(z = k, \mathbf{x}) = \sum_{k=1}^{K} p(z = k) p(\mathbf{x}|z = k)$$

Gaussian Mixture Model (GMM)

What is $p(\mathbf{x})$?

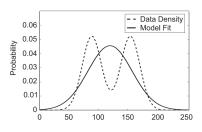
$$p(\mathbf{x}) = \sum_{k=1}^{K} p(z=k)p(\mathbf{x}|z=k) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \mathbf{I})$$

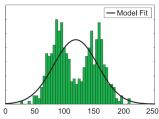
- This distribution is an example of a Gaussian Mixture Model (GMM), and π_k are known as the mixing coefficients
- In general, we would have different covariance for each cluster, i.e., $p(\mathbf{x} | z = k) = \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$. For this lecture, we assume that $\boldsymbol{\Sigma}_k = \mathbf{I}$ for simplicity.
- If we allow arbitrary covariance matrices, GMMs are **universal approximators of densities** (if you have enough Gaussians). Even diagonal GMMs are universal approximators.

Intro ML (UofT) CSC2515-Lec10 26 / 42

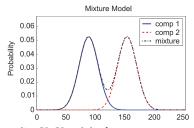
Visualizing a Mixture of Gaussians – 1D Gaussians

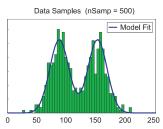
• If you fit one Gaussian distribution to data:





• Now, we are trying to fit a GMM with K=2:

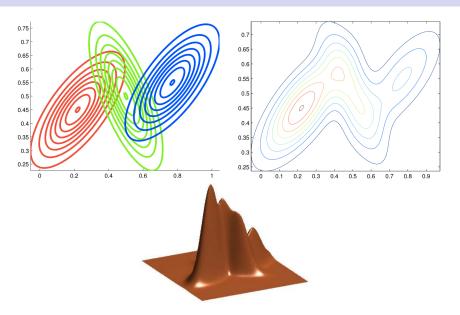




[Slide credit: K. Kutulakos]

Intro ML (UofT)

Visualizing a Mixture of Gaussians – 2D Gaussians



Intro ML (UofT) CSC2515-Lec10 28 / 42

Fitting GMMs: Maximum Likelihood

Maximum likelihood objective:

$$\log p(\mathcal{D} \mid \boldsymbol{\theta}) = \sum_{n=1}^{N} \log p(\mathbf{x}^{(n)} \mid \boldsymbol{\theta}) = \sum_{n=1}^{N} \log \left(\sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}^{(n)} | \boldsymbol{\mu}_k, \mathbf{I}) \right)$$

- How would you optimize this w.r.t. parameters $\theta = \{(\pi_k, \mu_k)\}$?
 - ▶ No closed-form solution when we set derivatives to 0
 - ▶ Difficult because sum inside the log
- One option: gradient ascent. Can we do better?
- Can we have a closed-form update?

• Observation: If we knew $z^{(n)}$ for every $\mathbf{x}^{(n)}$ (i.e., our dataset was $\mathcal{D}_{\text{complete}} = \{(z^{(n)}, \mathbf{x}^{(n)})\}_{n=1}^{N}$), the maximum likelihood problem would be easy:

$$\log p(\mathcal{D}_{\text{complete}} \mid \boldsymbol{\theta}) = \sum_{n=1}^{N} \log p(z^{(n)}, \mathbf{x}^{(n)} \mid \boldsymbol{\theta})$$

$$= \sum_{n=1}^{N} \log p(\mathbf{x}^{(n)} | z^{(n)}, \boldsymbol{\theta}) + \log p(z^{(n)} \mid \boldsymbol{\theta})$$

$$= \sum_{n=1}^{N} \sum_{k=1}^{K} \mathbb{I}\{z^{(n)} = k\} \left(\log \mathcal{N}(\mathbf{x}^{(n)} | \boldsymbol{\mu}_k, \mathbf{I}) + \log \pi_k \right)$$

$$\log p(\mathcal{D}_{\text{complete}} \mid \boldsymbol{\theta}) = \sum_{n=1}^{N} \sum_{k=1}^{K} \mathbb{I}\{z^{(n)} = k\} \left(\log \mathcal{N}(\mathbf{x}^{(n)} | \boldsymbol{\mu}_{k}, \mathbf{I}) + \log \pi_{k} \right)$$

- We have been optimizing something similar for the Naïve Bayes classifiers.
- By maximizing $\log p(\mathcal{D}_{\text{complete}} \mid \boldsymbol{\theta})$, we would get this:

$$\begin{array}{lcl} \hat{\boldsymbol{\mu}}_k & = & \frac{\sum_{n=1}^N \mathbb{I}\{z^{(n)} = k\} \, \mathbf{x}^{(n)}}{\sum_{n=1}^N \mathbb{I}\{z^{(n)} = k\}} = \text{class means} \\ \hat{\pi}_k & = & \frac{1}{N} \sum_{n=1}^N \mathbb{I}\{z^{(n)} = k\} = \text{class proportions} \end{array}$$

- But we haven't observed the cluster assignments $z^{(n)}$.
- We can compute $p(z^{(n)}|\mathbf{x}^{(n)})$ using Bayes rule, given our current estimate $\boldsymbol{\theta}^{\text{old}}$.
- \bullet Conditional probability (using Bayes rule) of z given \mathbf{x}

$$p(z = k|\mathbf{x}) = \frac{p(z = k)p(\mathbf{x}|z = k)}{p(\mathbf{x})}$$

$$= \frac{p(z = k)p(\mathbf{x}|z = k)}{\sum_{j=1}^{K} p(z = j)p(\mathbf{x}|z = j)}$$

$$= \frac{\pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \mathbf{I})}{\sum_{j=1}^{K} \pi_j \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_j, \mathbf{I})}$$

$$\log p(\mathcal{D}_{\text{complete}}) = \sum_{n=1}^{N} \sum_{k=1}^{K} \mathbb{I}\{z^{(n)} = k\} (\log \mathcal{N}(\mathbf{x}^{(n)}|\boldsymbol{\mu}_{k}, \mathbf{I}) + \log \pi_{k})$$

• We don't know the cluster assignments $\mathbb{I}\{z^{(n)}=k\}$ (they are our latent variables), but we know their expectation w.r.t. the current estimate θ^{old} :

$$\mathbb{E}[\mathbb{I}\{z^{(n)} = k\} \mid \mathbf{x}^{(n)}; \boldsymbol{\theta}^{\text{old}}] = p(z^{(n)} = k \mid \mathbf{x}^{(n)}; \boldsymbol{\theta}^{\text{old}}).$$

• So we consider

$$\begin{split} &\sum_{n=1}^{N} \mathbb{E}_{p(z^{(n)}|\mathbf{x}^{(n)};\boldsymbol{\theta}^{\text{old}})} \left[\sum_{k=1}^{K} \mathbb{I}\{z^{(n)} = k\} (\log \mathcal{N}(\mathbf{x}^{(n)}|\boldsymbol{\mu}_k, \mathbf{I}) + \log \pi_k) \right] = \\ &\sum_{n=1}^{N} \sum_{k=1}^{K} r_k^{(n)} (\log \mathcal{N}(\mathbf{x}^{(n)}|\boldsymbol{\mu}_k, \mathbf{I}) + \log \pi_k), \end{split}$$

with
$$r_k^{(n)} = p(z^{(n)} = k | \mathbf{x}^{(n)}; \boldsymbol{\theta}^{\text{old}}).$$

Intro ML (UofT) CSC2515-Lec10 33 / 42

$$\sum_{n=1}^{N} \sum_{k=1}^{K} r_k^{(n)} (\log \mathcal{N}(\mathbf{x}^{(n)} | \boldsymbol{\mu}_k, \mathbf{I}) + \log \pi_k)$$

• This is still easy to optimize! Solution is similar to what we have seen:

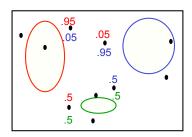
$$\hat{\boldsymbol{\mu}}_k = \frac{\sum_{n=1}^N r_k^{(n)} \mathbf{x}^{(n)}}{\sum_{n=1}^N r_k^{(n)}} \qquad \hat{\boldsymbol{\pi}}_k = \frac{\sum_{n=1}^N r_k^{(n)}}{N}$$

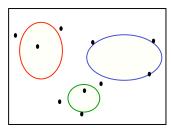
• Note: this only works if we treat $r_k^{(n)} = \frac{\pi_k \mathcal{N}(\mathbf{x}^{(n)}|\boldsymbol{\mu}_k, \mathbf{I})}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}^{(n)}|\boldsymbol{\mu}_j, \mathbf{I})}$ as fixed, i.e., depending on $\boldsymbol{\theta}^{\text{old}}$.

Intro ML (UofT)

How Can We Fit a Mixture of Gaussians?

- This motivates the Expectation-Maximization algorithm, which alternates between two steps:
 - 1. E-step: Compute the posterior probabilities $r_k^{(n)} = p(z^{(n)} = k|\mathbf{x}^{(n)})$ given our current model, i.e., how much do we think a cluster is responsible for generating a datapoint.
 - 2. M-step: Use the equations on the last slide to update the parameters, assuming $r_k^{(n)}$ are held fixed change the parameters of each Gaussian to maximize the probability that it would generate the data it is currently responsible for.





Intro ML (UofT) CSC2515-Lec10 35 / 42

EM Algorithm for GMM

- ullet Initialize the means $\hat{oldsymbol{\mu}}_k$ and mixing coefficients $\hat{\pi}_k$
- Iterate until convergence:
 - **E-step:** Evaluate the responsibilities $r_k^{(n)}$ given current parameters

$$r_k^{(n)} = p(z^{(n)} = k | \mathbf{x}^{(n)}) = \frac{\hat{\pi}_k \mathcal{N}(\mathbf{x}^{(n)} | \hat{\boldsymbol{\mu}}_k, \mathbf{I})}{\sum_{j=1}^K \hat{\pi}_j \mathcal{N}(\mathbf{x}^{(n)} | \hat{\boldsymbol{\mu}}_j, \mathbf{I})} = \frac{\hat{\pi}_k \exp(-\frac{1}{2} \| \mathbf{x}^{(n)} - \hat{\boldsymbol{\mu}}_k \|^2)}{\sum_{j=1}^K \hat{\pi}_j \exp(-\frac{1}{2} \| \mathbf{x}^{(n)} - \hat{\boldsymbol{\mu}}_j \|^2)}$$

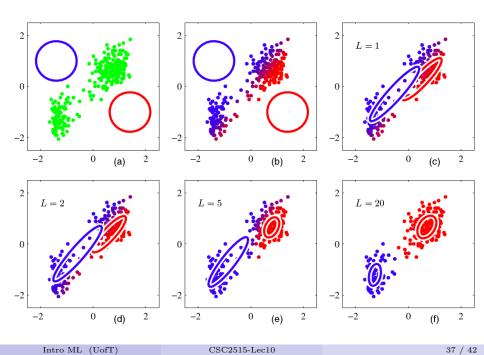
▶ M-step: Re-estimate the parameters given current responsibilities

$$\hat{\boldsymbol{\mu}}_k = \frac{1}{N_k} \sum_{n=1}^N r_k^{(n)} \mathbf{x}^{(n)}$$

$$\hat{\boldsymbol{\pi}}_k = \frac{N_k}{N} \text{ with } N_k = \sum_{n=1}^N r_k^{(n)}$$

Evaluate log likelihood and check for convergence

$$\log p(\mathcal{D}) = \sum_{n=1}^{N} \log \left(\sum_{k=1}^{K} \hat{\pi}_k \mathcal{N}(\mathbf{x}^{(n)} | \hat{\boldsymbol{\mu}}_k, \mathbf{I}) \right)$$



What Just Happened: A Review

- The maximum likelihood objective $\sum_{n=1}^{N} \log p(\mathbf{x}^{(n)})$ was hard to optimize
- The complete data likelihood objective was easy to optimize:

$$\sum_{n=1}^{N} \log p(z^{(n)}, \mathbf{x}^{(n)}) = \sum_{n=1}^{N} \sum_{k=1}^{K} \mathbb{I}\{z^{(n)} = k\} (\log \mathcal{N}(\mathbf{x}^{(n)} | \boldsymbol{\mu}_k, \mathbf{I}) + \log \pi_k)$$

• We don't know $z^{(n)}$ s (they are latent), so we replaced $\mathbb{I}\{z^{(n)}=k\}$ with responsibilities $r_k^{(n)}=p(z^{(n)}=k|\mathbf{x}^{(n)})$.

38 / 42

• That is: we replaced $\mathbb{I}\{z^{(n)} = k\}$ with its expectation under $p(z^{(n)}|\mathbf{x}^{(n)})$ (E-step).

Intro ML (UofT) CSC2515-Lec10

What Just Happened: A Review

• We ended up with the expected complete data log-likelihood:

$$\sum_{n=1}^{N} \mathbb{E}_{p(z^{(n)}|\mathbf{x}^{(n)})}[\log p(z^{(n)},\mathbf{x}^{(n)})] = \sum_{n=1}^{N} \sum_{k=1}^{K} r_k^{(n)} \left(\log \mathcal{N}(\mathbf{x}^{(n)}|\boldsymbol{\mu}_k,\mathbf{I}) + \log \pi_k\right),$$

which we maximized over parameters $\{(\pi_k, \mu_k)\}_k$ (M-step)

- The EM algorithm alternates between:
 - ▶ The E-step: computing the $r_k^{(n)} = p(z^{(n)} = k|\mathbf{x}^{(n)})$ (i.e. expectations $\mathbb{E}[\mathbb{I}\{z^{(n)}=k\}|\mathbf{x}^{(n)}])$ given the current model parameters $(\pi_k, \boldsymbol{\mu}_k)$
 - ▶ The M-step: update the model parameters (π_k, μ_k) to optimize the expected complete data log-likelihood

Intro ML (UofT) CSC2515-Lec10 39 / 42

Relation to K-Means

- The K-Means Algorithm:
 - 1. Assignment step: Assign each data point to the closest cluster
 - 2. Refitting step: Move each cluster centre to the average of the data assigned to it
- The EM Algorithm:
 - 1. E-step: Compute the posterior probability over z given our current model
 - 2. M-step: Maximize the probability that it would generate the data it is currently responsible for.
- Can you find the similarities between the soft K-Means algorithm and EM algorithm with shared covariance $\frac{1}{\beta}$ **I**?
- Both rely on alternating optimization methods and can suffer from bad local optima.

Intro ML (UofT) CSC2515-Lec10 40 / 42

Further Discussion

- We assumed that the covariance of each Gaussian was I to simplify the math. This assumption can be removed, allowing clusters to have different spatial spreads. The resulting algorithm is still very simple.
- Possible problems with maximum likelihood objective:
 - ► Singularities: Arbitrarily large likelihood when a Gaussian explains a single point with variance shrinking to zero
 - Non-convex
- EM is more general than what was covered in this lecture. Here, EM algorithm is used to find the optimal parameters under the GMMs.

Intro ML (UofT) CSC2515-Lec10 41 / 42

GMM Recap

- A probabilistic view of clustering. Each cluster corresponds to a different Gaussian.
- Model using latent variables.
- General approach. We can replace Gaussian with other distributions (continuous or discrete)
- More generally, mixture models are very powerful models, i.e., universal distribution approximators
- Optimization is done using the EM algorithm.

Intro ML (UofT) CSC2515-Lec10 42 / 42