Homework #2

CSC2547 — Introduction to Reinforcement Learning
(Spring 2021)

Deadline: Friday, March 26, 2021 at 16:59.

Submission: You need to submit two files through MarkUs. One is a PDF
file including all your answers and plots. The other is a source file (potentially
Zipped) that reproduces your answers. You can produce the file however you
like (e.g. IXTEX, Microsoft Word, etc) as long as it is readable. Points will be
deducted if we have a hard time reading your solutions or understanding the
structure of your code. If the code does not run, you may lose most/all of your
points for that question.

Late Submission: 10% of the marks will be deducted for each day late, up
to a maximum of 3 days. After that, no submissions will be accepted.

Collaboration: Homework assignments must be done individually, and you
cannot collaborate with others.



1 Short Questions [10 pts]

(a) [6pt] Consider the Stochastic Approximation conditions:

o o
E Qy = 00, E af < oo.
t=0

t=0

e [2pt] Does oy = a (constant) satisfy these conditions?

e [2pt] Verify that the sequence oy = t-%l satisfies these conditions.

e [2pt] Let oy = 5. For what range of p these conditions are satisfied?

(b) [2pt] What is the difference between an on-policy and off-policy sampling sce-
nario?

(¢) [2pt] Is Q-Learning an on-policy or an off-policy algorithm? Why?



2

Overestimation bias in Q-Learning [10 pts]

In Q-Learning, we encounter the issue of overestimation bias. This issue comes from
the fact that to calculate our targets, we take a maximum of Q over actions. We
use a maximum over estimated values (Q) as an estimate of the maximum value
(max, Q(z,a)), which can lead to significant positive bias.

(a)

[5pt] Assume that our estimated Q function is an unbiased estimator of Q,
the true @ function, i.e. E [Q(x, a)} = Q(z,a) Vz,a (here the expectation is

w.r.t. runs of experiments and data used to estimate Q) Show that even in
this simplified setting, the overestimation issue occurs, i.e.

Ve, E [max@(a:,a)] > max Q(z,a)

[5pt] Suppose that we use “double Q-Learning”. Here, we learn two Q func-
tions, Ql and Qg, and we use one estimate to determine the maximizing ac-
tion, A* = argmax, Ql(x,a), and the other to estimate the action’s value,
QQ(LE,A*) = Qz(x, argmax, Ql(x,a)). We assume that both Q; and Q, are
unbiased estimates of (). Show that this estimate is unbiased in the sense that

E [QQ@,A*)} = Q(z, A").

(Note that we also repeat the process with the role of the two estimates reversed
to obtain a second estimate Qi (z, argmax, Q2(z,a))).



3 Convergence of TD [20 pts]

We have proved the convergence of the Q-Learning algorithm (Theorem 4.3 in the
Lecture Notes on RL). In this exercise, you prove that the TD learning, used for
policy evaluation, generates a sequence of value functions V; that convergences to
V™. We focus on finite state-action MDPs. You can simply follow the result and the
proof in the lecture notes and modify them accordingly. Your solution should have
the following parts:

e [5pt] A clear statement of the theorem. The theorem should have all the
required conditions, i.e., it should be a standalone mathematical statement.

e [15pt] A complete proof (it should closely follow the proof for the Q-Learning
algorithm).



4 TImplementing DQN [60 pts]

In this question, you will implement a simplified version of the Deep Q-Network
by Mnih et al. [2015]. To allow us to run this code on our local machines without
taking too much time, we will learn directly from the state representations rather
than visual observations as Mnih et al. [2015] do. All other elements, however, will
be the same. We will be learning a )y function with parameters 6 using stochastic
gradient descent (SGD) and nonlinear function approximation (i.e. neural nets).
DQN is a practical implementation of FQI covered in lecture, but with a couple of
modifications to make it suitable for a DNN.

We will implement a replay buffer and a target network. A replay buffer, D,
is used to store transitions observed while interacting with the environment. The
replay buffer is sampled during training to update the @) function.

The target network, QQy with parameters 0’ is used to compute the target values
in our loss. In DQN, the target network is held fixed for £ number of steps and then
updated to have the same weights as (Qy by copying ¢’ < 6.

The loss function we use for training the value function is:

L(0) = E(x,, A0, Re. X0 41)~D

Y

2
(Rt +ymax Qo (Xis1,d) — Qo(Xe, At))

with (X, Ay, Ry, Xi41) ~ D meaning that the tuple is samples from the replay buffer
D.

(a) [10pt] Answer these short questions. We will look at some implementation
details for the original work. Our implementation will have some differences.

1. [2pt] What are the similarities and differences between DQN and the
AVI/FQI framework introduced in the class? Briefly discuss.
2. [2pt] What are some benefits of using a replay buffer?

3. [2pt] Write the gradient of this objective with respect to 6 (one line).
Note that we do not take gradients through the parameters of the target
network, Qg .

4. [2pt] Recall that we update the target network every k number of steps
and then copy the weights of @, 8 < 6. What are the tradeoffs of
updating too quickly or too slowly?

5. [2pt] In the original paper, visual observations from Atari are prepro-
cessed by stacking the last n = 4 observations to produce the input. Why

5



would we do this? What are the tradeoffs of having a larger or smaller n?
(we won't be doing this for this assignment)

(b) [30pt] We will now implement a simple version of DQN and test it on some
easy environments. The experiments in this assignment should take around 2
minutes each.

1. [20pt] Implement the following functions in the provided code:

e (functions to implement in learn.py) compute DQN_loss, update target

e (In model.py)
QModel. This sets the architecture of ()y. Choose a simple archi-
tecture that allows you to get good results without taking too much
time. The environments we will be using will be solvable with simple
architectures.

e (In schedule.py)
LinearSchedule.update(.), ExplorationSchedule.get_action(.).
These functions set up our learning rate scheduler, as well as a sched-
uler for annealing the € in e-greedy action selection (which means
that with probability €, we choose a random action, and with proba-
bility (1 — €) we choose the greedy action according to Qp. We want
to start with a large value for € to encourage exploration (note that
in the code, we explore for learning start number of steps before
starting updates on @Jy). We then gradually reduce exploration as
our policy improves to stabilize training.

2. [10pt] Report Training rewards, Evaluation rewards, max @, and Loss
from the logged plots in results/ on Acrobot-v1 and CartPole-vO0 (you
can set the environment in main.py.) (8 plots) The hyperparameters
given in config are not tuned to be optimal and you may experiment
with these to get better performance. Make sure to test your code with
multiple random seeds to make sure the performance is consistent (you
can set the random seed using seed_all() in main.py).

(¢) [20pt] Double DQN (DDQN) [Van Hasselt et al., 2016] is a variation of DQN
to deal with the maximization bias issue of DQN. DDQN is the adaptation of
Double Q-Learning to DQN. Instead of learning a separate () network however,
we simply take advantage of the fact that we have two networks already: Qg
and the target QQy.. Our targets become:

y=r+7Q¢ <X/, argmax Qg (X', a’))

a’'eA



1. [10pt] Implement DDQN by filling in the function compute DoubleDQN_loss
in learn.py. Note that you can test this function by setting double =
True in main.py.

2. [10pt] Produce and report the learning curves (Training rewards, Eval
rewards, max Q, Loss) on Acrobot-v1l and CartPole-v0 for DDQN (8
plots). Do you notice a difference between DQN and DDQN? (It’s fine if
you don’t!)



References

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep reinforcement learning. nature,
518(7540):529-533, 2015. 5

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning
with double g-learning. In Proceedings of the AAAI Conference on Artificial In-
telligence, volume 30, 2016. 6



	Short Questions [10 pts]
	Overestimation bias in Q-Learning [10 pts]
	Convergence of TD [20 pts]
	Implementing DQN [60 pts]

