
Homework #3

CSC2547 – Introduction to Reinforcement Learning
(Spring 2021)

• Deadline: Monday April 19, 2021 at 16:59.

• Submission: You need to submit two files through MarkUs. One is a PDF file
including all your answers and plots. The other is a source file that reproduces
your answers. You can produce the file however you like (e.g. LATEX, Microsoft
Word, etc) as long as it is readable. Points will be deducted if we have a hard
time reading your solutions or understanding the structure of your code. If the
code does not run, you may lose most/all of your points for that question.

• Late Submission: 10% of the marks will be deducted for each day late, up
to a maximum of 3 days. After that, no submissions will be accepted.

• Collaboration: Homework assignments must be done individually, and you
cannot collaborate with others.
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Gradient-based policy search

The goal of this question is to get familiar with the policy gradient methods. In
this question you will experiment with two policy gradient methods, REINFORCE
[Williams, 1992] and Advantage Actor Critic (A2C) [Mnih et al., 2016]. You try
them on two types of environments: one with discrete action space and another with
continuous action space.

The framework for the these methods is setup in main.py and everything that
you need to implement are in files network.py, BaseAgent.py REINFORCE agent.py,
and A2C agent.py. Each file has detailed instructions for each implementation task,
but an overview of the key steps in the algorithm is provided here.

REINFORCE

Recall that the reinforcement learning objective is to find a policy π : X ×A → [0, 1],
that maximizes the expected return J(π) = Eτ∼πθ(τ) [r(τ)] where each rollout τ is of

length T with probability πθ(τ)1

πθ(τ) = p(x0, a0, ..., xT−1, aT−1) = p(x0)πθ(a0|x0)
T−1∏
t=1

p(xt|xt−1, at−1)πθ(at|xt)

and the return

r(τ) = r(x0, a0, ..., xT−1, aT−1) =
T−1∑
t=0

γtr(xt, at).

One way to address this problem is to directly optimize the expected return J(πθ)
by performing stochastic gradient ascent on the parameters θ of a family of policies,
πθ. The policy gradient approach is to directly take the gradient of this objective:

∇θJ(θ) = ∇θ

∫
πθ(τ)r(τ)dτ (1)

= Eτ∼πθ [∇θ log πθ(τ)r(τ)] . (2)

1The notation in the homework is slightly different from the lectures. For example, we often
used G as return. This difference gives you the opportunity to learn about other commonly used
notations.
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In practice, the expectation over trajectories τ can be approximated from a batch
of N sampled trajectories:

∇θJ(θ) ≈ 1

N

N∑
i=1

∇θ log πθ(τi)r(τi) (3)

=
1

N

N∑
i=1

(
T−1∑
t=0

∇θ log πθ(ai,t|xi,t)

)(
T−1∑
t=0

γtr(xi,t, ai,t)

)
. (4)

Notice that in this approximation, we multiply the episode’s return to the gradient
of log πθ. One way to reduce the variance of this approximation is to notice that the
policy at time t cannot affect rewards in the past. This yields the following modified
objective, where the sum of rewards here does not include the rewards achieved prior
to the time step at which the policy is being queried. This sum of rewards is a sample
estimate of the Q function, and is referred to as the reward-to-go.

∇θJ(θ) ≈ 1

N

N∑
i=1

T−1∑
t=0

∇θ log πθ(ai,t|xi,t)

(
T−1∑
t′=t

γt
′−tr(xi,t′ , ai,t′)

)
. (5)

As you might have noticed, REINFORCE relies on an estimated return by Monte-
Carlo methods using episode samples to update the policy. The policy gradient
theorem [Sutton et al., 1999] generalizes this result giving the policy gradient of the
form:

∇θJ(θ) =
∑
x∈X

dπθ(x)
∑
a∈A

∇θπθ(a|x)Qπθ(x, a)

= Ex∼dπθ ,a∼πθ [∇θ log πθ(a|x)Qπθ(x, a)] , (6)

where dπθ(x) is a discounted weighting of states encountered starting at x0 ∼ p(x0)
and then following policy π: dπθ(x) =

∑∞
t=0 γ

tP{xt = x|x0, πθ}.

Advantage Actor Critic

Actor-Critic methods use bootstapping to find a better estimate of the action-value
function and use that estimated action-value function Qπθ

w to find the gradient of
expected return in the policy gradient theorem:

∇θJ(θ) = E [∇θ log πθ(a|x)Qπθ
w (x, a)] . (7)
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The policy gradient theorem can be generalized to include a comparison of the
action-value to an arbitrary baseline b(x):

∇θJ(θ) = E [∇θ log πθ(a|x)(Qπθ
w (x, a)− b(x)] . (8)

An intuitive choice for baseline is the state-value function V πθ . This new critic
is called Advantage function and is defined as: Aπθ(x, a) = Qπθ(x, a) − V πθ(x).
When using Advantage function as the critic in the Actor-Critic method it is called
Advantage Actor Critic (A2C). Algorithm 1 from Sutton and Barto [2018] shows
the complete pseudocode for A2C algorithm when using one step bootstraping for
learning state-value function.

Algorithm 1: One-step Actor-Critic for estimating πθ ≈ π∗

Input: a differentiable policy parameterization π(a|x, θ)
Input: a differentiable state-value function parameterization v̂(x,w)
Algorithm parameter: step size αθ > 0, αw > 0
Initialize policy parameter θ ∈ Rd′ and state-value weights w ∈ Rd

for each episode do
Initialize X (first state of episode)
I ← 1
for each time step t do

A ∼ π(·|X, θ)
Take action A, observe X ′, R
δ ← R + γv̂(X ′, w)− v̂(X,w) (if X ′ is terminal, then v̂(X ′, w)

.
= 0)

w ← w + αwδ∇wv̂(X,w)
θ ← θ + αθIδ∇θ log π(A|X, θ)
I ← γI
X ← X ′

end

end
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1 Writeup Questions (40 pts)

(a) [10pts] To compute the REINFORCE estimator, you will need to calculate
the values (Gt)

T
t=1, where

Gt =
T∑
t′=t

γt
′−trt′ .

Computing all these values naively takes O(T 2) time. Describe how to compute
them in O(T ) time.

(b) [15pts] Assuming that our gradient estimate will be:

∇̂θJ(θ) = (Qπθ(x, a)− b(x))∇θ log πθ(a|x) (9)

where x ∼ dπθ(x) and a ∼ πθ(·|x).

1. [5pts] Prove this estimate is unbiased estimate of the true gradient.

2. [10pts] Find b(x) that leads to the minimum variance estimate of the
true gradient.

(c) [5pts] Prove that δt(xt, at) = rt + γV̂ (xt+1)− V̂ (xt) is an unbiased estimate of
Aπ(xt, at) when V̂ = V π

(d) [10pts] Why do we have I ← γI step in the Algorithm 1? Most policy gradient
methods drop the discount factor (as well as the methods we implement here).
What happens if we remove it?
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2 Coding Questions (60 pts)

The functions that you need to implement in network.py, REINFORCE agent.py,
A2C agent.py and BaseAgent.py are enumerated here. Detailed instructions for
each function can be found in the comments in each of these files.

(a) [30pts] We will implement a simple version of REINFORCE using equation
5 to approximate the gradient of policy for the both case of continuous and
discrete action spaces.

1. [20pts] Implement the following functions in the provided code:

• In component/network.py: GaussianPolicyNet.forward(),
CategoricalPolicyNet.forward()

• In agent/REINFORCE agent.py: step()

• In agent/BaseAgent.py: eval episode()

2. [10pts] Report training return, policy loss and the final policy’s evaluation
return on CartPole-v0 and Pendulum-v0 (you can set the environment
in main.py). The hyperparameters given in main.py are not tuned to be
optimal and you may experiment with these to get better performance.
Test your code with multiple random seeds to make sure the performance
is consistent (you can set the random seed using set seed in main.py).

(b) [30pts] Algorithm 1 shows the Pseudocode code for one-step Advantage Actor-
Critic. In this question we will implement the extension of this algorithm when
using n-step bootstraping.

1. [20pts] Implement the following functions in the provided code:

• In component/network.py: GaussianActorCriticNet.forward(),
CategoricalActorCriticNet.forward()

• In agent/A2C agent.py: step()

2. [10pts] Report training return, policy loss, value loss and the final policy’s
evaluation return on CartPole-v0 and Pendulum-v0. The hyperparame-
ters given in main.py are not tuned to be optimal and you may experiment
with these to get better performance. Test your code with multiple ran-
dom seeds to make sure the performance is consistent across them. Do
you notice a difference between REINFORCE and A2C?
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