
Foundations of Reinforcement Learning

Amir-massoud Farahmand

August 25, 2025

Contents

Preface i

1 Introduction 1
1.1 Setup . 3
1.2 Markov Decision Process (MDP) . 5

1.2.1 Following a Sequence of Policies (†) 11
1.3 From Immediate to Long-Term Reward 12

1.3.1 Finite Horizon Tasks . 14
1.3.2 Episodic Tasks . 17
1.3.3 Continuing Tasks . 18

1.4 Optimal Policy and Optimal Value Function 20
1.5 An Instance of an RL Algorithm: Q-Learning 22
1.6 A Few Remarks on the MDP Assumption 24

1.6.1 On State . 24
1.6.2 On Reward . 26
1.6.3 On Time . 29

1.7 Applications of Reinforcement Learning 29

1

2 CONTENTS

A Mathematical Background 33
A.1 Probability Space . 33
A.2 Norms and Function Spaces . 33
A.3 Functional Analysis: Spaces, Operators, and Contraction Mapping . . 35

A.3.1 Operators . 38
A.3.2 Contraction Mapping . 39

A.4 Matrix Norm and Some of its Properties 42
A.5 Incremental Matrix Inversion . 45
A.6 Concentration Inequalities . 45
A.7 Information Theory . 48
A.8 Algebraic Inequalities . 49

Bibliography 51

Preface

This book, tentatively titled Foundations of Reinforcement Learning, started as lec-
ture notes for a graduate-level Introduction to Reinforcement Learning (RL) course,
taught at the Department of Computer Science, University of Toronto, in Spring
2021. Since many students found the lecture notes very useful for learning a solid
and modern foundation of RL, I decided to further develop and expand it into a
book. What you are reading is its draft, which will gradually evolve into a full book.

This is an introductory book in the sense that I do not assume prior exposure
to RL. It does, however, go beyond providing the high-level intuition or collection of
algorithms, and instead tries to mathematically develop the foundation behind many
important ideas and concepts in RL. Throughout the book, you and I go through
the proof of many many basic, or sometimes not so basic, results in RL. The goal
is to have formal statements and proofs for many major concepts and algorithms in
RL.

This book should be accessible to someone who is mathematically mature and has
the knowledge of probability theory, linear algebra, basics of analysis, and statistics
and supervised machine learning. As a bonus material, you can find the accompanied
video lectures and the course webpage, based on the Spring 2021 course.

The book is a work in progress. I intend to expand the content of existing
chapters, for example by adding more exercises. I would also like to add several
new chapters, including chapters on the important topics of model-based RL and
exploration-exploitation tradeoff. I add a footnote at the beginning of each chapter
showing what stage of maturity the chapter is. The version 0.05 is for the first
full draft, version 0.1 is after its first proofread and possible minor revisions, and the
versions below 0.05 are for incomplete chapters (which means that I have the content
ready, but I haven’t typed it yet). Versions with higher number, such as 0.2, show
significant revisions compared to the first draft. Hopefully the version of all chapters
will eventually converge to 1.

If you find any typos or unclear parts, please send an email to me at amirmas-
soud.farahmand@gmail.com. I would appreciate your feedback.

i

https://youtube.com/playlist?list=PLCveiXxL2xNbiDq51a8iJwPRq2aO0ykrq
https://amfarahmand.github.io/IntroRL/
mailto:amirmassoud.farahmand@gmail.com?subject=[Foundations of RL]
mailto:amirmassoud.farahmand@gmail.com?subject=[Foundations of RL]

ii PREFACE

XXX Before proceeding, I would like to mention that there are very good text-
books on RL, which I encourage you to consult. A very well-known textbook is
by Sutton and Barto [2018]. It provides a good intuition on many of the concepts
and algorithms that we discuss in book. XXX

Amir-massoud Farahmand
March 2025

Chapter 1

Introduction

Chapter Introduction

This chapter introduces the main ideas of the book, including the key concepts
that will be explored in subsequent chapters.

How should an intelligent system act such that some notion of long-term perfor-
mance is maximized? This is the Reinforcement Learning (RL) problem, and is the
main topic of this book.1 To make this more clear and concrete, let us consider some RL Problem
examples.

Consider a robot manipulator in an automobile factory. The robot perceives its
workspace through cameras. It also has sensors that measure its joints angles as well
as force sensors at the tip of its hand. It can send commands to its motors in order
to move the joints to a certain position or velocity, or perhaps exert a certain amount
of force on objects. Its goal is to successfully build a car as fast as possible with the
minimum cost.

As another example, consider a smart HVAC (Heating, Ventilation, and Air Con-
ditioning) system in a large office building. It can observe the temperature of the
room using several thermometers, humidity sensors, and CO2 meters across the of-
fice. It may even have infrared cameras that can measure the temperature on the
surfaces, hence providing a high-resolution temperature profile of the room. It can
act in its world by varying the temperature, humidity, and the airflow rates of the
vents distributed across the building. Its goal is to maximize the long-term comfort
and health of people working at the office, which are measured through occasional
voice feedback (Too hot! or I feel a bit cold!), or perhaps through a smart

1Chapter’s Version: 0.15 (2025 March 12).

1

2 CHAPTER 1. INTRODUCTION

watch that measures their heart rate and blood oxygen level.a

These two were examples of artificial systems. We may also consider an animal,
a cat or dog perhaps, that observes its world through its various sensors (eyes, ears,
nose, whiskers, etc.) and has a musculoskeletal system that allows it to move and
change the world around it. The goal of the animal can be defined at various time
scales: in the short term, it is to find food and water for its next meal, which of
course can be seen as just a part of the longer plan of maximizing its chance of
survival and reproduction.

All these examples can be interpreted as an entity (a robot, an HVAC system, or
a animal) being a nexus of causal pathways. Let us relax the definition of an animal
from a biological one to include certain artificial systems too. So a robot or even a
smart HVAC system are animals too, albeit an artificial ones.

As the animal perceives its environment through its various sensors (cameras;
thermometers; eyes and ears), it collects information about its surrounding. It be-
comes the convergent point, in a non-mathematical sense, of the information around
it. The perceived information has a causal power on the animal, as it affects how the
animal acts. This action is based on the animal processing its perceived information
and making a decision. When the animal acts (moving a joint; blowing hot air;
pouncing on a bird), it becomes the point where the causal pathways diverge from
the animal and affects the world around it (a screw is picked; a corner and gradually
the rest of a room warms up; a bird flies away). Now as time passes, the affected
world offers new information to the animal, and this in turn leads to new decisions
and actions by the animal.b

A central part of this causal convergent and divergent process is how the animal
decides on how to act based on what it perceives. The animal should act such that its
goals are achieved. Successfully achieving an animal’s goals often requires the animal
to consider the long-term consequences of its actions. For example, it is XXX

To have such an animal, one needs to design (or evolve) many components and
processes. It has various sensors and actuators, whose suitability greatly affects the
animal’s chance of successfully achieving its long-term goals. These, we ignore. In
this book, we solely focus on the decision making aspect of the animal. Specifically,
we ask the question of how this animal should act so that some notion of long-term
performance is maximized. This is the RL problem. This is admittedly a very general
objective. One may argue that the computational aspect of solving the AI problem
is equivalent to the RL problem.

It is notable that in addition to the RL problem, we may use RL to refer to a set
of computational methods for solving the RL problem. What kind of computationRL Methods
an agent needs to perform in order to ensure that its actions lead to good (or even

1.1. SETUP 3

optimal) long-term performance? The methods that achieve these are known as RL
methods.

Historically, only a subset of all computational methods that attempt to solve
the RL problem have been known as the RL methods. For example, a method such
as Q-Learning, which we shall soon encounter as Algorithm 1.1 in Section 1.5, is
a well-regarded RL method, but an evolutionary computation method, such as a
genetic algorithm, is not. One can argue that evolutionary computation methods do
not have much of a “learning” component, or that they do not act at the timescale
of an agent’s lifetime, but act at the timescale of generations. While these are true
distinctions, this way of demarcation is somewhat arbitrary. In this book, we focus
on methods that are commonly studied within the “RL Community”, though we
have a short discussion of some of the evolutionary computation methods later in
the book in Section ??.

So far, our explanation has been high-level, not very precise, and perhaps even a
bit philosophical. Next, we discuss the setup of the RL problem in a more concrete
way, before formalizing it precisely in the rest of this chapter.

1.1 Setup

In reinforcement learning, we often talk about an agent and its environment, and
their interaction. Figure 1.1 depicts the schematic of how they are related. The
agent is the decision maker and/or learner, and the environment is anything outside
it with which the agent interacts. For example, an agent can be the decision-maker
part of a robot. Or it can be the decision-maker of a medical diagnosis and treatment
system. For the robot agent, the environment is whatever is outside the robot, i.e.,
the physical system. For the medical agent, the environment is the patient.

The interaction of the agent and its environment follows a specific protocol. The
current discussion is somewhat informal, but may help you understand the concept
before we formalize it. At time t, which we consider to be discrete, the agent observes
its state Xt in the environment. For example, this is the position of the robot
in the environment. Or it can be the vital information of a patient such as their
temperature, blood pressure, EKG signal, etc.

The agent then picks an action At according to an action-selection mechanism.
This mechanism is called a policy π. It usually depends on the agent’s current
state Xt. The policy can be deterministic, which means that π is a function from
the state space to the action space and At = π(Xt), or it can be stochastic (or
randomized), which means that π defines a probability distribution over the action
space that depends on the state variable, i.e., At ∼ π(·|Xt). Here ∼ refers to the

4 CHAPTER 1. INTRODUCTION

Figure 1.1: Reinforcement Learning Agent

random variable (r.v.) At being drawn from the distribution π(·|Xt). For example,
the action can be a “move forward with velocity of 1m/s” command for the robot
problem, or “inject 10mg of Amoxicillin”.

Based on the selected action, the state of the agent in the environment changes
and becomes Xt+1. The state evolves according to the dynamics of the agent in the
environment, which is shown by P in the figure. This means that Xt+1 ∼ P(·|Xt, At).
The conditional distribution P is called transition probability kernel (or distribution).
For the robot example, the dynamics can be described by a set of electromechanical
equations that describe how the position of the robot (including its joints) change
when a certain command is sent to its motor. For the medical agent, the dynamics
is described by how the patient’s physiology changes after the administration of the
treatment. This is a very complex dynamics, which we may not have a set of equation
to describe.

The agent also receives a reward signal Rt. The reward signal is a real number,
and it specifies how “desirable” the choice of action At at state Xt (possibly leading
to state Xt+1) has been. Therefore, Rt ∼ R(·|Xt, At) or Rt ∼ R(·|Xt, At, Xt+1). We
use the former in the rest, as it simplify our notations. All the developed theory and
algorithms also work with the latter form of the reward with minor modifications.
The reward is a measure of the performance of the agent at time t. For example, if

1.2. MARKOV DECISION PROCESS (MDP) 5

our goal is for the robot to go to a specific location and pick up an object, the reward
might be defined as a positive value whenever the robot achieves that goal. And it
can be zero whenever the robot is not doing anything relevant to the goal. It may
even be negative when it does something that ruins achieving the goal, for example
breaks the object. In this case, the negative reward is actually a punishment. For
the medical agent case, the reward might be defined based on the vital signs of the
patient. For example, if the patient at time t had an infection, and the action was
an appropriate choice of antibiotics, and at the next time t+ 1 (maybe a day later),
the infection has subsided, the agent receives a positive reward, say, +10.c

This process repeats and as a result the agent receives a sequence of states,
actions, and rewards:

X1, A1, R1, X2, A2, R2, · · · .

This sequence might terminate after a fixed number of time steps (say, T), or until
the agent gets to a certain region of the state space, or it might continue forever.

The reward is a measure of immediate (or short-term) performance of the agent.
This can be different from the long-term performance. It is possible for an agent to
receive some low (or negative) rewards initially before receiving much larger rewards
later on. What we often care in the RL is the long-term performance. Next we
formalize this description.

1.2 Markov Decision Process (MDP)

In this section, we formally define some of the important concepts that we require
throughout the course. The first important concept is the Markov Decision Process
(MDP). An MDP essentially defines the environment with which the agent interacts
and the problem that it should solve. In other words, an MDP encodes the decision
problem.

In the rest of this book, we denote M(Ω) as the space of all probability distri-
butions defined over the space Ω, and B(Ω) as the space of all bounded functions
defined over Ω. So, for example, M(R) is the space of all probability distribution
over real numbers, and similar for B(R). Refer to Appendix A.1 for more formal
definition. We are ready to formally define elements of MDP.

Definition 1.1. A discounted MDP is a 5-tuple (X ,A,P ,R, γ), where X is a mea-
surable state space, A is the action space, P : X × A → M(X) is the transition

6 CHAPTER 1. INTRODUCTION

probability kernel with domain X ×A, R : X ×A →M(R) is the immediate reward
distribution, and 0 ≤ γ < 1 is the discount factor.2

MDPs encode the temporal evolution of a discrete-time stochastic process con-
trolled by an agent. The dynamical system starts at time t = 1 with random ini-
tial state X1 ∼ ρ where “ ∼ ” denotes that X1 is drawn from the initial state
distribution ρ ∈ M(X).3 At time t, action At ∈ A is selected by the agent con-
trolling the process. As a result, the agent goes to the next state Xt+1, which is
drawn from P(·|Xt, At) The agent also receives an immediate reward drawn from
Rt ∼ R(·|Xt, At).

4 Note that in general Xt+1 and Rt are random, unless the dy-
namics is deterministic. This procedure continues and leads to a random trajectory
ξ = (X1, A1, R1, X2, A2, R2, · · ·). We denote the space of all possible trajectories as
Ξ.

This definition of MDP is quite general. If X is a finite state space, the result
is called a finite MDP. The state space X can be more general. If we consider a
measurable subset of Rd (X ⊆ Rd), such as (0, 1)d, we get the so-called continuous
state-space MDPs. We can talk about other state spaces too, e.g., the binary lattices
{0, 1}d, the space of graphs, the space of strings, the space of distributions, etc. In
this course, we switch back and forth between finite MDPs and continuous MDPs.

Example 1.1. When X is finite (i.e., X = {x1, x2, . . . , xm}), the transition proba-
bility kernel P(·|·, a) is a matrix for any a ∈ A.

As another example, consider a dynamical system described by the following
equation:

xt+1 = f(xt, at), (1.1)

where x ∈ Rm, a ∈ Rn, and f : Rm × Rn → Rm. For example, if

f(x, a) = Mx+Na,

2We do not use measure theoretical arguments in this book, but we use quantifiers such as
measurable in order to make our statements precise and to avoid pathological cases. We can simply
think of a measurable space as stating that the space is “nice enough”. The finite and countable
spaces as well as the usually used subsets of Rd are nice.

3The initial distribution ρ is not a part of the definition of MDPs. When we talk about MDPs
as the descriptor of temporal evolution of dynamical systems, we usually implicitly or explicitly
define the initial state distribution.

4We could slightly modify the interaction protocol, so that the reward Rt depends on Xt and
At as well as Xt+1, i.e., Rt ∼ R(·|Xt, At, Xt+1). This does not change the formalism.

1.2. MARKOV DECISION PROCESS (MDP) 7

withM ∈ Rm×m and N ∈ Rm×n, we have a linear (time-invariant) dynamical system.
Such a general formulation can represent a wide range of deterministic physical
systems. Such dynamical systems are familiar for those with background in control
theory. They can be represented in the MDP framework.

Example 1.2 (Deterministic Dynamics). We can represent deterministic dynamics
such as (1.1) within the MDP framework. If xt+1 = f(xt, at) for f : X × A → X ,
then the transition probability kernel conditioned on a pair of (x, a) puts a probability
mass of 1 at f(x, a). Using Dirac’s delta function’s notation,

P(x′|x, a) = δ(x′ − f(x, a)).

Remark 1.1. We use ‘x’ to denote the state and ‘a’ to denote the action. This is
similar to how Szepesvári [2010] uses it too. These are not the only notation used
in the literature, and definitely not the most commonly used one. Sutton and Barto
[2018] use ‘s’ for the state and ‘a’ for the action. The authors from the control theory
background tend to use ‘u’ for the action, and ‘i’ [Bertsekas and Tsitsiklis, 1996] or
‘x’ for the state [Bertsekas, 2018].

The reason I use ‘x’ for state is partly historical and partly because of the following
justification: I find it more aligned with how the rest of ML, and even applied math,
use x as the input to a function. The fact that the input is an agent’s state does not
mean that we have to use a different notation. I find it slightly more appealing to see
f(x) instead of f(s), though nothing is inherently wrong with the latter usage. The
reason I stick to ‘a’ for the action, instead of ‘u’ commonly used in control theory,
does not have much of a justification other than a nod to the CS/AI roots of RL.

Let us tend to the policy π. Recall from Section 1.1 that the policy is the action-
selection mechanism of the agent. The goal of the RL agent is to find a “good”
policy, to be defined what it exactly means. Let us formally define it.

Definition 1.2 (Definition 8.2 and 9.2 of Bertsekas and Shreve [1978]). A policy is
a sequence π̄ = (π1, π2, . . .) such that for each t,

πt(at|X1, A1, X2, A2, . . . , Xt−1, At−1, Xt)

is a universally measurable stochastic kernel on A given X ×A× · · · × X ×A× X︸ ︷︷ ︸
2t−1 elements

satisfying
πt(A|X1, A1, X2, A2, . . . , Xt−1, At−1, Xt) = 1

for every (X1, A1, X2, A2, . . . , Xt−1, At−1, Xt).

8 CHAPTER 1. INTRODUCTION

If πt is parametrized only by Xt, that is

πt(·|X1, A1, X2, A2, . . . , Xt−1, At−1, Xt) = πt(·|Xt),

π̄ is a Markov policy.
If for each t and (X1, A1, X2, A2, . . . , Xt−1, At−1, Xt), the policy πt assigns mass

one to a single point in A, π̄ is called a deterministic (nonrandomized) policy; if it
assigns a distribution over A, it is called stochastic or randomized policy.

If π̄ is a Markov policy in the form of π̄ = (π, π, . . .), it is called a stationary
policy.

This definition categorizes whether the policy is time-dependent or not, whether
it uses only the current state Xt or looks at the previous state and action pairs too,
and whether it is deterministic or stochastic.

To understand this definition better, let us start from the simplest form of the
policy and gradually get to more general cases. The simplest form of a policy is
a stationary Markov deterministic policy. This is a function from the state space
X to the action space A, that is π : X → A, and we use π(x) to refer to it. This
policy is a function (deterministic property) that does not depend on time (stationary
property). It ignores the past states and actions Xt−1, At−1, Xt−2, · · · and only looks
at the current state Xt (Markov property). A slightly more complex form is when
we allow this policy to be stochastic, instead of deterministic. A stationary Markov
stochastic policy is a conditional distribution over the action space depending on the
state, that is, π(·|x) ∈M(A).

In most of this book, we only focus on stationary Markov policies, and simply
use “policy” to refer to a stationary Markov policy π(·|x), without any adjectives.
It turns out that the class of stationary Markov policies is rich enough to allow the
agent make optimal decisions, under the condition that we have access to the actual
state of the MDP Xt. Neither non-stationarity nor non-Markovity does not bring
any extra performance to the table. As we shall discuss later in Section 1.6, if the
agent does not have access to the state of the MDP and only observe some aspects
of the state, this is not necessarily true, and the use of a non-Markov policy might
be needed for optimal decision making. This means that the policy should look not
only at the most recent observation, but at the past observations too.

We define the following terminology and notations in order to simplify our expo-
sition.

Definition 1.3. We say that an agent is “following” a Markov stationary policy π
whenever At is selected according to the policy π(·|Xt), i.e., At = π(Xt) (determin-
istic) or At ∼ π(·|Xt) (stochastic). The policy π induces two transition probability

1.2. MARKOV DECISION PROCESS (MDP) 9

kernels Pπ : X → M(X) and Pπ : X × A → M(X × A). For a measurable subset
A of X and a measurable subset B of X ×A and a deterministic policy π, denote

(Pπ)(A|x) ≜
∫
X
P(dy|x, π(x))I{y∈A},

(Pπ)(B|x, a) ≜
∫
X
P(dy|x, a)I{(y,π(y))∈B}.

If π is stochastic, we have

(Pπ)(A|x) ≜
∫
X×A

P (dy|x, a)π(da|x)I{y∈A},

(Pπ)(B|x, a) ≜
∫
X×A

P (dy|x, a)π(da′|y)I{(y,a′)∈B}.

The m-step transition probability kernels (Pπ)m : X →M(X) and (Pπ)m : X ×A →
M(X ×A) for m = 2, 3, · · · for a deterministic policy π are inductively defined as5

(Pπ)m(A|x) ≜
∫
X
P(dy|x, π(x))(Pπ)m−1(A|y),

(Pπ)m(B|x, a) ≜
∫
X
P(dy|x, a)(Pπ)m−1(B|y, π(y)).

The difference between the transition probability kernels Pπ : X → M(X) and
Pπ : X × A → M(X × A) is in the way the policy affects the action selection: in
the former, the action of the first step is chosen according to the policy, while in the
latter the first action is pre-chosen and the policy chooses the action in the second
step.

The m-step transition probability kernels (Pπ)m(A|x) is the probability that the
agent starts at state x, chooses actions according to the policy π form steps, and falls
within the set A. Similarly, (Pπ)m(B|x, a) is the probability of the agent starting
from state x, choosing action a at the first step, and for the next m−1 steps, chooses
actions according to the policy π.

We may sometimes use Pπ(A|x;m) and Pπ(B|x, a;m) to refer to (Pπ)m(A|x) and
(Pπ)m(B|x, a), if having a superscript reduces the clutter.

In case thinking about countable space is more intuitive, the definition (Pπ)m(A|x)
for A being a state z (A = {z}) is

(Pπ)m(z|x) ≜
∑
y∈X

P(y|x, π(x))(Pπ)m−1(z|y).

5The definition for the stochastic policy would be similar.

10 CHAPTER 1. INTRODUCTION

If we arrange the probabilities in a matrix, the definition of (Pπ)m takes a perhaps
more familiar form. Consider a state space X = {x1, . . . , x|X |}. Let us identify
(Pπ)(xj|xi) (the probability of starting from xi and going to xj) with an |X | × |X |
matrix P π ∈ R|X |×|X | with its i-th row and j-th

[P π]i,j = (Pπ)(xj | xi). (1.2)

Consider (Pπ)2, the 2-step transition probability kernel (or matrix), and let us cal-
culate the probability of starting from state xi and moving to state xj after 2 steps:

(Pπ)2(xj|xi) =
∑
y∈X

Pπ(y|xi)Pπ)(xj|y =
∑

k∈{1,...,|X |}

P π
i,kP

π
k,j = [P πP π]i,j = [(P π)2]i,j,

where the penultimate equality is due to the definition of matrix multiplication. This
shows that the 2-step transition probability kernel is the same as taking the matrix
P π and raising it to the power of two. This argument can be performed for any
m ≥ 1 to conclude that for countable state spaces, (Pπ)m can be identified with the
matrix P π raised to the power of m, i.e., (P π)m. In the rest of this notes, we do not
use a different font for P and P , and use P for both cases.

A useful, and intuitive, property of following a policy π is that if the agent follows
it for m1 steps and then it continues following it for another m2 steps, from wherever
it landed after the first m1 steps, it is the same as following the agent following π for
m1 +m2 steps. This can be written as

(Pπ)m1(Pπ)m2 = (Pπ)m1+m2 .

We define another notation, which shall be helpful in our discussions.

Definition 1.4. Given the transition probability kernel P and a bounded measurable
function f ∈ B(X), we define Pf : X ×A → R as the function

(Pf)(x, a) ≜
∫
X
P(dy|x, a)f(y), ∀(x, a) ∈ X ×A.

Likewise, given the transition probability kernel induced by a policy π, we define
Pπf : X → R as

(Pπf)(x) ≜
∫
X
Pπ(dy|x)f(y), ∀x ∈ X .

1.2. MARKOV DECISION PROCESS (MDP) 11

In other words, Pπf is the function whose value at a state x is the expected value
of function f according to the distribution Pπ(·|x), that is, (Pπf)(x) = EX′∼Pπ(·|x) [f(X

′)].
The interpretation of Pf is similar.

For a countable state space X , we have

(Pπf)(x) ≜
∑
y∈X

Pπ(y|x)f(y), ∀x ∈ X . (1.3)

We may sometimes use P(·|x, a)f or Pπ(·|x)f to refer to the same functions.

Exercise 1.1. Consider a 2-state MDP with a policy that induces

Pπ =

[
0.9 0.1
0.2 0.8

]
.

Assume that the reward at state x1 is zero and the reward at state x2 is equal to 1,
that is, rπ = [0; 1]. Answer the following questions assuming that the agent starts at
state x1:

• What is the immediate reward it receives?

• What is the expected reward it receives after moving 1 step in the environment?
What about 2? And 10? (You probably need to write one or two lines of code
to compute this.)

• What is the expected reward it receives after moving infinite steps in the envi-
ronment?

Now answer the same questions for when the agent start at state x2.

Exercise 1.2. Suppose that f(x) = c for a constant real-valued number c ∈ R. What
is Pπf?

1.2.1 Following a Sequence of Policies (†)

For a sequence of policies π1:m = (π1, . . . , πm), the transition probability kernel of
following them in the order of π1, then π2, etc., is denoted by Pπ1:πm or Pπ1:m and is

Pπ1:m(A|x) ≜
∫
X
Pπ1(dy|x)Pπ2:m(A|y),

Pπ1:πm(B|x, a) ≜
∫
X
P(dy|x, a)Pπ2:πm(A|y),

12 CHAPTER 1. INTRODUCTION

for deterministic policies, and similar for stochastic policies.
The interpretation of Pπ1:m(A|x) is that this is the probability of starting from

a state x, following the sequence of policies π1:m, and ending up in a set A after
exactly m steps (and similar interpretation for Pπ1:πm(B|x)). When the state space
is countable, we can also write it in the matrix form:

Pπ1:2(xj|xi) =
∑
y∈X

Pπ1(y|xi)Pπ2(xj|y) =
∑

k∈{1,...,|X |}

P π1
i,kP

π2
k,j = [P π1P π2]i,j.

As the matrices are not commutative in general P π1P π2 ̸= P π2P π1 , which is intuitive,
as following a policy π1 and then π2 (which induces Pπ1:2) is not the same as following
π2 and then π1 (which induces Pπ2:1).

The value of function Pπ1:mf : X → R at state x is the expected value of f at the
distribution of an agent that starts at x and follows the policy sequence π1, . . . , πm.

1.3 From Immediate to Long-Term Reward

Recall that the RL problem is the problem of how to act so that some notion of
long-term performance is maximized. In this section, we elaborate on the meaning
of “long-term”. Along the way, we learn about important concepts such as return
and value functions. It turns out that we can define long-term in different ways. We
discuss some of them here. Before that, however, let us start with a simpler problem
of maximizing the immediate (or short-term) performance first.

Suppose that an agent starts at stateX1 ∼ ρ ∈M(X), chooses actionA1 = π(X1)
(deterministic policy), and receives a reward of R1 ∼ R(·|X1, A1). This ends one
round of interaction of the agent and its environment. The agent then restarts,
samples another (independent) X1 ∼ ρ ∈ M(X), and repeats as before again and
again. We call each of these rounds an episode. Here the episode only lasts one
time-step.

How should this agent chooses its policy in order to maximize its performance?
To answer this question, we need to specify what performance actually refers too.
There are several sensible ways to define the performance of the agent, one of which
is to talk about the average (expected) reward that the agent receives within one
episode. The meaning of average here is that if the agent repeats this interaction
with the environment for many episodes (infinitely), how much reward it receives in
average. So the averaging is over the episodes.

Answering the question of how the agent should act to maximize this notion of
performance is easy. Let us define expected reward asexpected reward

1.3. FROM IMMEDIATE TO LONG-TERM REWARD 13

r(x, a) ≜ E [R|X = x,A = a] . (1.4)

Here the r.v. R is distributed according toR(·|x, a). Paying attention that this is the
expected reward is important: even if the agent starts at a state x and chooses action
a, the actual reward it receives can be higher or lower than r(x, a). In expectation,
however, it receives r(x, a).

In order to maximize the expected reward, the best action depends on the state
the agent initially starts with. At state x, it should choose an action that maximizes
the average reward r(x, a) at that state. That is,

a∗ ← argmax
a∈A

r(x, a).

This is the best, or optimal, action at state x.6 By the definition of argmax, no choice
of action can gather more rewards in expectation. With this choice, we can define
the optimal policy π∗ : X → A as the function that at each state x returns

π∗(x)← argmax
a∈A

r(x, a). (1.5)

Note that the optimal policy is only a function of the agent’s state x. It does not
depend on the initial distribution ρ.

Exercise 1.3. Describe a similar setup where the optimal policy depends on ρ. The
performance measure should still be the expected reward that the agent receives. But
feel free to change some crucial aspect of the agent.

Exercise 1.4. Explain how a standard supervised learning problem can be formulated
as finding the policy that maximizes the immediate expected reward. To be concrete,
focus on the binary classification problem. What is the state x? What is the action
a? And what is the reward r(x, a)?

Exercise 1.5 (⋆⋆). Come up with a real-world application where the goal is to find
an optimal policy maximizing the immediate reward.

Exercise 1.6 (⋆⋆). We equate the performance as maximizing the expected reward.
What other sensible performance measures can you think of? It should still be related
to the rewards that the agent receives in its episode.

Let us consider some setups where the agent interacts with the environment for
multiple steps.

6If there are more than one action that attains maxa∈A r(x, a), the agent can choose any of
them.

14 CHAPTER 1. INTRODUCTION

1.3.1 Finite Horizon Tasks

The discussion of this section so far has been for when the episode length is T = 1.
When T = 1, as soon as the agent chooses its action A1, it receives a reward R1, and
then the episode terminates. We can extend the setup to when T > 1. In that case,
within each episode, the interaction of the agent following a policy π goes like this:

• The agent starts at X1 ∼ ρ ∈M(X).

• It chooses action A1 = π(X1) (or A1 ∼ π(·|X1) for a stochastic policy).

• The agent goes to the next-state X2 ∼ P(·|X1, A1) and receives reward R1 ∼
R(·|X1, A1).

• The agent chooses A2 = π(X2) (or A2 ∼ π(·|X2) for a stochastic policy).

• The agent goes to the next-state X3 ∼ P(·|X2, A2) and receives reward R2 ∼
R(·|X2, A2).

• This process repeats for several steps until the agent gets to the last state
XT ∼ P(·|XT−1, AT−1), chooses action AT = π(XT) (or AT ∼ π(·|XT) for a
stochastic policy), and receives RT ∼ R(·|XT , AT).

Afterward, the agent starts a new episode.7,8

How should we evaluate the performance of the agent as a function of the reward
sequence (R1, R2, . . . , RT)? A common choice is to compute the sum of rewards:

Gπ ≜ R1 + . . .+RT . (1.6)

The r.v. Gπ is called the return of following policy π. As it is random, its value in eachreturn
new episodes would be different (unless the dynamics and policy are deterministic,
and ρ always selects the same initial state; or other similar cases).

Another choice is to consider the discounted sum of rewards. Given a discount
factor 0 ≤ γ ≤ 1, we define the return as

Gπ ≜ R1 + γR2 + . . .+ γT−1RT . (1.7)

7We could generalize the interaction by allowing P and R to be time-dependent. In that
case, Xt+1 ∼ Pt(·|Xt, At) and Rt ∼ Rt(·|Xt, At). Also the policy might be non-stationary π̄ =
(π1, . . . , πT), so at each time step t, the action is selected according to πt. We comment on this
further in Remark 1.2 at the end of this section.

8If the reward Rt depended on (Xt, At, Xt+1), as opposed to (Xt, At) that we consider here, the
agent would get to XT+1 and terminates; it would not require to choose an action at the last step.

1.3. FROM IMMEDIATE TO LONG-TERM REWARD 15

Whenever γ < 1, the reward that is received earlier in an episode contributes more
to the return. Or similarly, the contribution of later rewards are discounted and
contribute less (when γ = 1, there is no discounting, and all rewards contribute
equality). Intuitively, this means that such a definition of return pays more emphasis
on earlier rewards. An everyday example is that we prefer to get a cookie today
instead of tomorrow, and we prefer a cookie tomorrow to a cookie a week later –
assuming that we like cookies after all. How much exactly your preference changes
depends on the value of γ. This is an example of a delayed gratification, which has
been observed in humans. The Marshmallow test is famous example of it.d

The discount factor has a financial interpretation too and is related to the inflation
rate.The inflation is the rise over time in the average price (usually over a large part
of the market, for example, the consumer goods and services). If the price of a
certain set of goods has changed from $1 to $(1+ rateinflation) next year, the inflation
is rateinflation per year. This means that whenever rateinflation > 0, the value of a
dollar this year is more than a value of dollar next year. So if you have a choice in
receiving a dollar this year or some amount of dollar next year, you need to consider
the inflation rate, and discount the value of dollar next year by γ = 1

1+rateinflation
. Of

course, this is all based on the assumption that you do not have an immediate need
for that dollar, so you can potentially postpone the time you receive it.

The return (1.7) (and (1.6) as a special case) is a random variable. To define a
performance measure that is not random, we compute its expectation. We define

V π(x) ≜ E

[
T∑
t=1

γt−1Rt|X1 = x

]
. (1.8)

This is the expected value of return if the agent starts at state x and follows policy
π. The function V π : X → R is called the value function of π.

More generally, we can define the return from time τ ∈ {1, . . . , T} until the end
of episode, which is time T , as

Gπ
τ ≜

T∑
t=τ

γt−τRt. (1.9)

And likewise, we define the value function at time τ to be

V π
τ (x) ≜ E [Gπ

τ |Xτ = x] . (1.10)

Clearly, V π
1 is the same as V π in (1.8).

16 CHAPTER 1. INTRODUCTION

Comparing the expected reward (1.4) and the value function (1.10) is instructive.
We first focus on T = 1. We get that

V π(x) = E [R1|X1 = x] .

This is similar to r(x, a) = E [R|X = x,A = a] with the difference that r(x, a) is
conditioned on both x and a, whereas V π is conditioned on x. The choice of action
a in V π is governed by the policy π, and is a = π(x) (deterministic) or A ∼ π(·|x)
(stochastic). If we define

rπ(x) ≜ E [R|X = x] (1.11)

with A ∼ π(·|x), we get that
rπ = V π.

Of course, this equality is only true for T = 1. For T > 1, V π captures the long-
term (discounted) average of the rewards, instead of the expected immediate reward
captures by rπ.

For T = 1, finding the optimal policy given r(x, a) is easy because we can simply
find the maximizing action, as in (1.5).9 Finding the optimal policy given V π may
seem less straightforward. We need to search over the space of all deterministic or
stochastic policies. For example, if we denote the space of all stochastic policies by

Π = { π : π(·|x) ∈M(A),∀x ∈ X } , (1.12)

we need to find
π∗ ← argmax

π∈Π
V π.

If we find such a π∗, it is an optimal policy. But how can we solve this optimizatoin
problem when the search is over the large policy space (1.12)?

It turns out that this problem is not too difficult when T = 1. As the values of
V π at two different states x1, x2 ∈ X do not have any interaction with each other,
we find the optimal policy at each state separately. Note that for each x ∈ X ,

V π(x) =

∫
R(dr|x, a)π(da|x) =

∫
π(da|x)

∫
R(dr|x, a) =

∫
π(da|x)r(x, a).

Find a π(·|x) that maximizes V π(x) means that

sup
π(·|x)∈M(A)

∫
π(da|x)r(x, a). (1.13)

9Assuming that finding the maximizer is easy. For a finite (and small) action space, it is. But
for a general action spaces, it is not.

1.3. FROM IMMEDIATE TO LONG-TERM REWARD 17

The maximizing distribution concentrates all its mass at the action a∗ that maximizes
r(x, a), assuming it exists.e Therefore,

π∗(a|x) = δ(a− argmax
a′∈A

r(x, a′)),

or equivalently,

π∗(x) = argmax
a∈A

r(x, a),

is an optimal policy at state x.

When T > 1, this argument does not hold anymore and finding the optimal policy
is more difficult. The reason is that the choice of action at each time step affects
the future states, so we have to be careful in choosing the policy. We spend a great
deal of time on algorithms to solving this problem (though not for the finite horizon
problems, but for another type that we shall introduce next).

Remark 1.2. In this section, we described the finite horizon task when the action
is selected by a stationary policy: At = π(Xt) or At ∼ π(·|Xt). This is only for
simplicity of exposition. More generally, the policy can be non-stationary, so π̄ =
(π1, . . . , πT) (Definition 1.2). The definition of the value function (1.8) would be the
same, with the understanding that the selected action at each time step t comes from
policy πt. We may occasionally use V π̄ to emphasize that we are talking about a
non-stationary policy. We also occasionally use π1 : πT or π1:T to refer to the policy
sequence (π1, · · · , πT) and V π1:πT or V π1:T to its corresponding policy.

1.3.2 Episodic Tasks

In some scenarios, there is a time T that the episode ends (or terminates), but it is
not fixed a priori. For example, think of playing of a board game such as chess (it
ends whenever one side checkmates the other or they reach a draw), moving through
a maze (it ends whenever the agent reaches a goal state), or a robot successfully
picks up an object and places it in another location. For these problems, the episode
terminates whenever the agent reaches a certain state xterminal within the state space,
that is, it terminates whenever XT = xterminal.

10 These are called episodic tasks. In episodic tasks
episodic problems, the length of the episode T is a random variable. We define the

10It might be more intuitive to think about the terminal states Xterminal, instead of a singular
one. Mathematically, it does not matter.

18 CHAPTER 1. INTRODUCTION

return and the value function as before: For 0 ≤ γ ≤ 1, we have

Gπ ≜
T∑
t=1

γt−1Rt, (1.14)

V π(x) ≜ E [Gπ|X1 = x] . (1.15)

If γ < 1, these definitions are always well-defined. If γ = 1, we need to ensure
that the termination time T is finite. Otherwise, the summation might be divergent
(think of the case that that all Rt are equal to 1). We do not get into analysis
of episodic problem with γ = 1, so we do not get into more detail here anymore.
Refer to Section 2.2 (Stochastic Shortest Path Problems) by Bertsekas and Tsitsiklis
[1996].

Exercise 1.7. Describe several real-world applications that are best modelled as an
episodic task.

Exercise 1.8. Suppose that we want to solve a goal reaching task, as an episodic
task with the choice of γ = 1. We formulate it in two different ways. In the first way,
we set the immediate reward −1 whenever we are not at the goal, and 0 whenever
we reach the goal, which is the terminal state too. This encourages the agent to get
to the goal sooner. In the second way, we add a constant reward +1 to the reward
function. So, at all states, the reward is 0, except at the goal/terminal state where
it is +1. This does not encourage getting to the goal state faster, as a later goal
reaching has the same value as an earlier one. This sounds like a contradiction. A
constant change in the reward function should not change the optimal policy, yet the
intuitive argument here indicates that it does. What is happening?

1.3.3 Continuing Tasks

Sometimes the interaction between the agent and its environment does not break into
episodes that terminates. It goes on continually forever. For example, this might
be the case for a life-long robot or a chemical plant that is supposed to work for a
long time. Of course, nothing in real world lasts forever, even the livable universe
itself, so the mathematical framework on continuing tasks is an abstract idealization
of tasks that may take a long time.

Consider the sequence of rewards (R1, R2, . . .) generated after the agent starts at
state X1 = x and follows policy π. Given the discount factor 0 ≤ γ < 1, we define

1.3. FROM IMMEDIATE TO LONG-TERM REWARD 19

the return from time τ forward as

Gπ
τ ≜

∑
t≥τ

γt−τRt. (1.16)

We can also define two value functions. One of them is V π and similar to what we
have seen so far. We call it state-value function or simply value function. Another
one is called the action-value function. Since these are the value functions that we action-value

functionwill use for the rest of the book, we define them formally.

Definition 1.5 (Value Functions). The (state-)value function V π and the action-
value function Qπ for a policy π are defined as follows: Let (Rt; t ≥ 1) be the sequence
of rewards when the process is started from a state X1 (or (X1, A1) for the action-
value function) drawn from a positive probability distribution over X (or X ×A) and
follows the policy π for t ≥ 1 (or t ≥ 2 for the action-value function). Then,

V π(x) ≜ E

[
∞∑
t=1

γt−1Rt|X1 = x

]
,

Qπ(x, a) ≜ E

[
∞∑
t=1

γt−1Rt|X1 = x,A1 = a

]
.

In words, the value function V π evaluated at state x is the expected discounted
return of following the policy π from state x. The other value function is called the
action-value function, and is very useful in our further developments. The action-
value Qπ function evaluated at (x, a) is the expected discounted return when the
agent starts at state x, takes action a, and then follows policy π. Note than

V π(x) = E [Gπ
1 |X = x] ,

Qπ = E [Gπ
1 |X = x,A = a] , (1.17)

by definition.
The action-value function Qπ and value function V π are closely related. The

difference is that the first action A1 in V π is selected according to π(·|X1), but the
first action in Qπ(x, a) is the pre-specified action a. So

V π(x) = E [Qπ(x,A)] =

∫
π(da|x)Qπ(x, a). (1.18)

If γ = 0, Qπ = E [R1|X1 = x,A1 = a]. This is the same as the expected immediate
reward r(x, a). The same way that we could easily compute the optimal action using

20 CHAPTER 1. INTRODUCTION

r(x, a) in the finite-horizon problem with T = 1, we shall see that we can use the
action-value function of the optimal policy, which shall be defined soon in Section 1.4,
in order to easily compute the optimal policy.

Note that an episodic task can be seen as a continuing task with a special state
xterminal from which the agent cannot escape and it always gets a reward of zero, i.e.,

P(xterminal|xterminal, a) = 1, ∀a ∈ A
R(r|xterminal, a) = δ(r), ∀a ∈ A.

Exercise 1.9. Describe several real-world applications that are best modelled as a
continuing task.

Exercise 1.10. Consider the MDP in Exercise 1.1. Compute the value function V π

for the discount factors γ = {0, 0.5, 0.9}.

Exercise 1.11. Consider a set of states x1, x2, . . . , xN . The agent has two actions
aLeft and aRight. Whenever the agent chooses action aRight at state xi, it goes to state
xi+1, unless i = N , in which case it stays there. Similarly for aLeft, except that it
moves to xi−1, unless i = 1, in which case it stays there. The reward function is
0 everywhere except at state xN , in which it is r(xN) = +1, and x1, in which it is
r(x1) = −1.

• What are P(·|·; aLeft) and P(·|·; aRight)? The answers should be an N×N matrix.

• Consider πLeft, which always chooses action aLeft. What are V π
Left and Qπ

Left?

• Answer the previous question for πRight.

• Consider policy πUniform, which at each state, chooses each action with the same
probability of 1

2
. What are V π

Uniform and Qπ
Uniform?

1.4 Optimal Policy and Optimal Value Function

What does it mean for an agent to act optimally? To start thinking about this
question, let us first think about how we can compare two policies π and π′. For
the moment, we can assume that they are Markov stationary policies, so the action
selection is based on At ∼ π(·|Xt), and not, for example, At ∼ π(·|Xt, Xt−1, Xt−2, . . .)
or At ∼ πt(·|Xt). We say that π is better than or equal to π′ (i.e., π ≥ π′) iff
V π(x) ≥ V π′

(x) for all states x ∈ X .11 This is shown in Figure 1.2. We also use a
11This is a partial order relationship. It is possible that for two policies, none of them is better

than the other one.

1.4. OPTIMAL POLICY AND OPTIMAL VALUE FUNCTION 21

<latexit sha1_base64="XvoABIzbADcjKGhieJUeaLCwoOg=">AAACPXicdVBLS8NAGNzUV62vVo9eFoviqSQi6LHYi8cW7APaUDabTbt0H2F3I5bQX+BVf4+/wx/gTbx6dZvmYFs68MEw8w0ME8SMauO6n05ha3tnd6+4Xzo4PDo+KVdOO1omCpM2lkyqXoA0YVSQtqGGkV6sCOIBI91g0pj73WeiNJXiyUxj4nM0EjSiGBkrtV6G5apbczPAdeLlpApyNIcV52oQSpxwIgxmSOu+58bGT5EyFDMyKw0STWKEJ2hE+pYKxIn206zpDF5aJYSRVPaEgZn6P5EirvWUB/aTIzPWq95c3OSZMZ8ta2wkFbUyxRuMlbYmuvdTKuLEEIEXZaOEQSPhfDoYUkWwYVNLELZ5iiEeI4WwsQOXBlkwbUjOkQj1zC7rre64Tjo3Nc+tea3bav0h37gIzsEFuAYeuAN18AiaoA0wIOAVvIF358P5cr6dn8VrwckzZ2AJzu8flPKv+g==</latexit>

<latexit sha1_base64="Wdb3C8OMZNxjbGCLrCvxlKaTMEs=">AAACQHicdVBLS8NAGNz4rPXV6tFLsCj1UhIR9FjsxWMF+4A2lM1m0yzdR9jdiCXkL3jV3+O/8B94E6+e3KY52JYOfDDMfAPD+DElSjvOp7WxubW9s1vaK+8fHB4dV6onXSUSiXAHCSpk34cKU8JxRxNNcT+WGDKf4p4/ac383jOWigj+pKcx9hgccxISBPVM6tZfrkaVmtNwctirxC1IDRRoj6rW5TAQKGGYa0ShUgPXibWXQqkJojgrDxOFY4gmcIwHhnLIsPLSvGxmXxglsEMhzXFt5+r/RAqZUlPmm08GdaSWvZm4ztMRyxY1OhaSGJmgNcZSWx3eeSnhcaIxR/OyYUJtLezZenZAJEaaTg2ByOQJslEEJUTabFwe5sG0JRiDPFCZWdZd3nGVdK8brtNwH29qzfti4xI4A+egDlxwC5rgAbRBByAQgVfwBt6tD+vL+rZ+5q8bVpE5BQuwfv8AOxqwvw==</latexit>

<latexit sha1_base64="FpPwJDDzSmlnUwsAtoeOOxu9sMs=">AAACWXicdVDLSsNAFJ3EV62vVpdugkVxVRIRdFnsxqWCrYWmlsn0th2cR5i5EUvIwq9xq58j/ozT2IVWPDBwOOeeO5eTpIJbDMMPz19ZXVvfqGxWt7Z3dvdq9f2u1Zlh0GFaaNNLqAXBFXSQo4BeaoDKRMB98tie+/dPYCzX6g5nKQwknSg+5oyik4a1wxjhGcs9eSIyKPLuQx6nfBgVxbDWCJthieAviRakQRa4Gda9k3ikWSZBIRPU2n4UpjjIqUHOBBTVOLOQUvZIJ9B3VFEJdpCXvxfBsVNGwVgb9xQGpfozkVNp7UwmblJSnNplby7+5+FUFr81MdGGO5mzf4yla3F8Oci5SjMExb6PHWciQB3Maw1G3ABDMXOEMpfnLGBTaihDV341LoN5W0tJ1cjOm42We/xLumfNKGxGt+eN1tWi4wo5JEfklETkgrTINbkhHcLIC3klb+Td+/Q9v+JXv0d9b5E5IL/gH3wBC1a4BA==</latexit>

<latexit sha1_base64="cQCJlwXcZX1ZzHrek4qrBIwN28o=">AAACWnicdVDLSsNAFJ3GZ+urVXe6CBbFVUmKoEvRjUsFWwVTy2R62w7OI8zciCVk49e41b8R/BgnaRda8cDA4Zx77lxOnAhuMQg+K97C4tLyymq1tra+sblVb2x3rU4Ngw7TQpv7mFoQXEEHOQq4TwxQGQu4i58uC//uGYzlWt3iJIGepCPFh5xRdFK/vh8hvGC5JxsZAJVn3ccsSni/nef9ejNoBSX8vySckSaZ4brfqBxFA81SCQqZoNY+hEGCvYwa5ExAXotSCwllT3QED44qKsH2svL73D90ysAfauOeQr9UfyYyKq2dyNhNSopjO+8V4n8ejmX+WxMjbbiTOfvHmLsWh2e9jKskRVBseuwwFT5qv+jVH3ADDMXEEcpcnjOfjamhDF37tagMZpdaSqoGtmg2nO/xL+m2W2HQCm9OmucXs45XyR45IMckJKfknFyRa9IhjLySN/JOPipfnudVvbXpqFeZZXbIL3i73wAiuHg=</latexit>

<latexit sha1_base64="kS2ePU7GIAMbttWkwh2wKWUw1Ig=">AAACe3icdVHLSiNBFK204yu+oi7dFIaBKBK6RVEQQXTjUsFEwY6hunKTFNajqbothqZ/Yb5mtjP/MR8zYKWThYl4oeDUOffcupxKUikchuG/SrDwY3FpeWW1ura+sblV295pO5NZDi1upLFPCXMghYYWCpTwlFpgKpHwmLzejPXHN7BOGP2AoxQ6ig206AvO0FPdWiNGeMdyTv4mjAQs8rhtUqSNS9p+yeNU+EtxUHRr9bAZlkW/gmgK6mRad93tykXcMzxToJFL5txzFKbYyZlFwSUU1ThzkDL+ygbw7KFmClwnL1cp6E/P9GjfWH800pL97MiZcm6kEt+pGA7dvDYmv9NwqIpZTg6MFZ4W/Bthblvsn3dyodMMQfPJsv1MUjR0nDHtCQsc5cgDxr1fcMqHzDKO/ieqcWnMb4xSTPdcUZ158n0SgI87mg/3K2gfN6OwGd2f1K+up8GvkD2yTxokImfkitySO9IinPwiv8kf8rfyP6gHh8HRpDWoTD27ZKaC0w+d8MWd</latexit>

Figure 1.2: For any policy π, we have that V π∗ ≥ V π. Here the values V π1 and V π2

of two sub-optimal policies π1 and π2 are shown.

strict inequality π > π′ if V π(x) ≥ V π′
(x) for all states x ∈ X and there exists at

least a single state x′ ∈ X such that the inequality is strict, that is V π(x′) > V π′
(x′).

If we can find a policy π∗ that satisfies π∗ ≥ π for any π, we call it an optimal
policy. There may be more than one optimal policy. Despite that, their values should
be the same, i.e., if we have two different π∗

1 and π∗
2, we have V π∗

1 (x) ≥ V π∗
2 (x) and

V π∗
1 (x) ≤ V π∗

2 (x) for all x ∈ X , which entails that V π∗
1 = V π∗

2 .
If we denote Π as the space of all stationary Markov polices, the goal of finding

an optimal policy can be written down as the following optimization problem:

π∗ ← argmax
π∈Π

V π, (1.19)

where one of the maximizers is selected in an arbitrary way. The value function of
this policy is the called the optimal value function, and is denoted by V π∗

or simply
V ∗. We can also define the optimal policy based on Qπ, i.e.,

π∗ ← argmax
π∈Π

Qπ. (1.20)

The optimal action-value function is denoted by Qπ∗
or Q∗.

For the immediate reward maximization problem (or equivalently, when T = 1
for a finite horizon problem), the solution was easy to find, see (1.5) and (1.13). It is
not obvious, however, that such a policy exists for the continuing discounted tasks.
It might be the case that no single policy can dominate (that is, being better than)
all others for all states. For example, it is imaginable that at best we can only hope
to find a π∗ that is better than any other policy π only on a proper subset of X ,
which perhaps depends on π, but not at all states in X .

22 CHAPTER 1. INTRODUCTION

It is also not obvious why we should focus on stationary policies. Isn’t it possible
to have a policy π̄ = {π1, π2, . . .} that depends on the time step and acts better than
any stationary policy π̄ = {π, π, . . .}?

Even if we find satisfactory answers to these questions, a more pragmatic question
remains: Suppose that we know the MDP, which means that we know P and R?
How can we can compute π∗?

And even more interesting question is how we can learn π∗, or a close approxima-
tion thereof, without actually knowing the MDP, but only by using samples coming
from the interaction of the agent with the MDP. This is the RL problem.

And even more interesting is the question of how we can learn π∗, or a close
approximation thereof, without actually knowing the MDP, but only have samples
coming from interacting with the MDP.

We study the question about the existence and properties of the optimal policy
in Chapter ??. The short answer is that for continuing discounted problems, the
optimal policy is indeed a stationary Markov policy. Moreover, we can always find
a deterministic optimal policy too.

Chapter ?? introduces several methods for computing the optimal policy given
a known model P and R. We study some of their properties, and prove their con-
vergence to the optimal policy. We call the setting when the model is known as the
planning setting, and the corresponding methods are called Planning algorithms.planning

When we do not know P or R, we are in the reinforcement learning setting. In
that setting, we do not have a direct access to the model, but instead we can only
interact with the MDP by selecting action At at state Xt, and getting a reward Rt ∼
R(·|Xt, At) and going to the next state Xt+1 according to the transition probability
kernel. It turns out that many of the planning algorithms can be modified to become
a learning algorithm. Therefore, it is good to get a good grasp of planning algorithms
first instead of delving into RL from the beginning. We introduce and analyze some
methods for solving RL problems in Chapter ??. The focus of that chapter is on the
RL problems with finite state and action spaces. We turn to problems with large
state and action spaces (e.g., when X is a subset of Rd) in Chapter ??. 12

1.5 An Instance of an RL Algorithm: Q-Learning

It takes a while before we get into the detail of any RL algorithm, so it is good to see
an example of such an algorithm before starting our excursion into the properties of

12The detail of chapter information will be determined later.

1.5. AN INSTANCE OF AN RL ALGORITHM: Q-LEARNING 23

Algorithm 1.1 Q-Learning (Simplified)

Require: Step size update rule α ∈ (0, 1]
1: Initialize Q : X×A → R arbitrary, except that for xterminal, set Q(xterminal, ·) = 0.
2: for each episode do
3: Initialize X1 ∼ ρ
4: for each step t of episode do
5: At ∼ π(·|Xt), ▷ Action selection
6: Take action At, observe Xt+1 and Rt ▷ The environment chooses

Xt+1 ∼ P(·|Xt, At) and
Rt ∼ R(·|Xt, At).

7: Q(Xt, At)← Q(Xt, At) + α [Rt + γmaxa′∈AQ(Xt+1, a
′)−Q(Xt, At)]. ▷

Q-Learning Update Rule
8: end for
9: end for

MDPs (Chapter ??) and the planning methods (Chapter ??) until we finally get to
RL algorithms in Chapter ??.

Q-Learning (Algorithm 1.1) is the quintessential RL algorithm, introduced by
Christopher Watkins [Watkins, 1989, Chapter 7 – Primitive Learning]. Q-Learning
itself is an example of the Temporal Difference (TD) learning [Sutton, 1988].

The choice of policy π in Line 1.1.5 is not specified. The Q-Learning algorithm
can work with variety of choices for π. A common choice is to use the ε-greedy policy.
The ε-greedy policy πε(Q) for an 0 ≤ ε ≤ 1 chooses the action as follows: Given the
current estimate of the action-value function Q, it chooses the action that maximizes
the action-value function at the current state Xt with probability 1− ε, and chooses
a (possibly uniformly) random action with probability ε. Mathematically,

At =

{
argmaxa∈AQ(Xt, a) w.p. 1− ε

uniform(A) w.p. ε
(1.21)

Usually the value of ε is small and may go to zero as the agent learns more about
its environment. This occasional random choice of actions ensures that the agent
explores its environment. Studying exploration is the subject of Chapter ??.

The update rule for Q-Learning is Line 1.1.7. We notice that it does not directly
use the model P or R, but uses the tuple (Xt, At, Rt, Xt+1) in order to update the
action-value function Q.

Under certain conditions, the Q-Learning algorithm is guaranteed to converge to

24 CHAPTER 1. INTRODUCTION

the optimal action-value function Q∗.13 As we shall see later, we can use Q∗ to find
the optimal policy π∗. We shall try to understand why this is the case in the next
few chapters.

Exercise 1.12 (Programming). Implement the Q-Learning algorithm (Algorithm 1.1),
and try it for the deterministic MDP described in Exercise 1.11. As that is a continu-
ing task, the episode does not end. You can let the algorithm run for different number
of steps, for example, 1000, 10000, and 100000. Answer the following questions for
each different number of steps.

• Plot Q(·, aLeft) and Q(·, aRight).

• For which states Q(·, aLeft) is larger than Q(·, aRight)? How do you interpret it?

1.6 A Few Remarks on the MDP Assumption

Before finishing this chapter, we have several remarks about the MDP assumption.
Specifically, we ask the following questions:

• What is the state variable?

• Where does the reward signal come from?

Although most of our focus in this book will be on methods to design an RL agent,
assuming that the MDP is given to us, thinking about these questions is nonetheless
important for any RL practitioner and researcher.14

1.6.1 On State

Perhaps the most crucial remark on the MDP assumption is the definition of state.
What is a state? Is any variable that the agent observes a state? The way we useWhat is a state

variable? the state here is that the state of the agent at time t is a variable that summarizes
whatever has happened to the agent up to that time step, that is, its history. Knowing
the state is enough to know (probabilistically) what will happen to the agent in the
future. In other words, the state is a sufficient statistic of the history.

13For convergence of the Q-Learning algorithm, the step size should gradually converge to zero.
We skip these detail here.

14And perhaps we expand on these in a future edition of this book.

1.6. A FEW REMARKS ON THE MDP ASSUMPTION 25

To make this more clear, let us introduce another concept called observation.
An observation Ot is the variable that the agent actually observes using its various
sensors. For example, it might be the camera input for the robot agent, or the tem-
perature and blood pressure for the medical agent. The observation alone may not
be sufficient to know “everything” that we could know about the agent given the
information so far. For example, by only having an access to the current camera im-
age, we do not know whether the robot is moving forward or backward or something
is getting close or far from it (as the velocity information cannot be inferred from the
position information alone). Or as another example, if the agent can only observe the
blood pressure and heart rate at the moment, we cannot know everything that could
be known about the patient, for example, whether the heart rate and blood pressure
is suddenly spiking up or they have been up for a long time. The information might
be there, if we looked at the previous observations.

Whatever has happened to the agent up to time t is in its history Ht variable history

Ht = (O1, A1, R1, . . . , Ot−1, At−1, Rt−1, Ot).

The history Ht summarizes whatever has happened to the agent up to time t.
Given Ht, we can inquire about the probability distribution

P {Ot+1|Ht, At} .

This is all we can hope to know about the future, given the information that we
have. Now, if we do not look at Ht, but only look at the current observation Ot, we
can still form P {Ot+1|Ot, At}, but it has more “uncertainty” about the probability
of Ot+1. We are losing information by not looking at Ht.

The variable Ht is a state of the agent at time t. But it is not a compact one,
as its size gradually increases.15 If it happens that we can find another variable Xt,
which is a function of Ht but perhaps of a compact form, that satisfies

P {Ot+1|Ht, At} = P {Ot+1|Xt, At} ,

we can replace Ht with Xt. This Xt is the state of the system in the sense described
above. In the rest of the book, we assume that the agent has access to such a state
variable.

Finding such a summary is not always complicated. Consider a dynamical system
described by equation

zt+1 = f(zt, at),

15We do not use “compact” in the formal sense used in topology, but in an informal sense
meaning being concise.

26 CHAPTER 1. INTRODUCTION

where z ∈ Rm, a ∈ Rn, and f : Rm × Rn → Rm. This is the same dynamics we
encountered before (1.1).

Suppose that the observation is ot = zt. In this case, we do not need to keep
ht = (z1, a1, . . . , zt−1, at−1, zt) as a state of the system; the observation ot alone
is enough to know whatever has happened to the system up to time t. We can
disregard zt−1, at−1, zt−2, etc. Now suppose that the observation is ot = g(zt) with
g : Rm → Rd. In this case, depending on the function g, the observation ot may or
may not be a state. For example, if g is not a bijection (one-to-one correspondence),
it is likely that we lose o having a property of being a state. However it may be
possible that we can still process ht and find a compact representation xt that is a
state of the agent.

Most (all?) physical systems can be written by an equation similar to (1.1).16 If
we have such a description of the dynamics, the state is often clear as long as we
observe the right variable.

Exercise 1.13. A ball is free falling under the Earth’s gravity. The state is the
vector described by its location x(t) and velocity v(t) = ẋ(t). If we only observe x(t),
that is not enough to know the (physical) state of the ball. How can you estimate the
state using only the location information?

Exercise 1.14. In Atari games, a single frame is not a state of the agent. Explain
why.

Exercise 1.15. We just claimed that P {Ot+1|Ot, At} has more uncertainty than
P {Ot+1|Ht, At}.

• Formalize this claim. (Hint: Take a look at Appendix A.7.)

• Prove it.

1.6.2 On Reward

How do we determine the reward signal Rt? The reward signal encodes the desire ofWhere does re-
ward come from? the problem designer, so it is a part of the problem specification. Therefore, how to

come up with a reward signal is a separate question from how to solve the planning
or learning problem. In practice, however, when an agent designer wants to design
the whole system, they have to both choose the learning algorithm as well as design a

16To be more accurate, almost all physical systems are written in the form of a differential
equation, so we have dz

dt (t) = f(zt, at) instead. But this is not a crucial difference here.

1.6. A FEW REMARKS ON THE MDP ASSUMPTION 27

good reward signal to specify the task. Depending on the task, designing the reward
signal can be easy or difficult. Let us briefly comment on it.

In some tasks, the reward function is relatively easy to define. For example, in
control engineering, one is often interested in ensuring that the state of a system,
described by a dynamical system such as (1.1), reaches a predefined state as quick
as possible. For example, if the desired state is state x = 0, the reward might be
defined as

Rt = −∥Xt∥22 .
This, however, ignores the cost associated with the choice of actions. To incorporate
that cost, we can define the reward as

Rt = −
[
∥Xt∥22 + ca ∥At∥22

]
,

for some ca > 0. This is known as the quadratic cost model in control engineering.
For some other problems, the reward might be defined at a higher and more ab-

stract level. For instance, in the robot manipulator in an automobile factor example
mentioned earlier in this chapter, the reward might be defined as successfully build-
ing a car according to the desired specifications. Whenever such a car is successfully
built, the agent receives a reward of +1, and at other times, it receives a reward
of 0. This is a valid definition for the reward, but since the reward is extremely
sparse, in the sense that the agent does not receive a non-zero reward very often,
the RL agent might have difficulty learning how to the problem. To see this, when
the agent has just begun learning, the chance of successfully solving the task, and
receiving a non-zero reward, is very slim. When the agent only receives zero reward,
it cannot learn much. More concretely, consider what happens to an agent using
the Q-Learning algorithm (Algorithm 1.1) when the reward Rt is equal to zero. The
update rule for the action-value function would be

Q(Xt, At)←Q(Xt, At) + α

[
0 + γmax

a′∈A
Q(Xt+1, a

′)−Q(Xt, At)

]
= (1− α)Q(Xt, At) + αγmax

a′∈A
Q(Xt+1, a

′).

If the Q function is initialized as any constant function (zero, for example), as long
as the agent has not received any non-zero Rt, the right-hand side (RHS) is equal to
the same constant function – the action-value function does not change. No change
in the value function shows that the agent does not learn anything.

This is an extreme example to show that the sparse reward might cause diffi-
culty in learning, even though from the goal specification standpoint, the reward is
correctly specified.

28 CHAPTER 1. INTRODUCTION

As another example, consider the smart HVAC system that optimizes the comfort
of the occupants. For that problem, the reward might be directly provided by the
occupant of the space, given in the form of occasional voice feedback about their
level of comfort.

Sometimes we can avoid directly specifying the reward function, but instead try
to infer it from other information available to the agent.

One approach is to assume that we have access to an expert who knows how to
solve the problem, and we can observe their behaviour. The goal is then to find a
reward function whose optimal policy leads to a behaviour similar to the expert’s.
This is called the inverse reinforcement learning problem.

The expert data can be in the form of observing the set of states and actions the
expert has selected, or only the set of states the behaviour of the expert generated.
As a concrete example, consider that the expert has a policy πE, which is unavailable
to the agent. The expert follows policy πE in an environment with the transition
dynamics P . As a result, a sequence of data in the form of XE

1 , A
E
1 , X

E
2 , A

E
2 , . . . is

generated. Assume that the agent can only observe the states of the expert, and not
its actions: XE

1 , X
E
2 , . . . (observing the actions is also a possible setup of IRL). The

goal of the IRL problem is to find the reward distribution R such that the optimal
policy π∗(P ,R) leads to a similar distribution of states asXE

1 , X
E
2 , Different IRL

methods use different notions of similarity and take different approaches to compute
this unobserved reward distribution. f

Instead of providing a scalar reward, we may provide the agent with our prefer-
ence over its choice of actions or induced trajectory. This is called preference-based
reinforcement learning. In one approach to this problem, we first learn a scalar re-
ward model that conforming to the preferences, and then use a regular RL algorithm
to optimize using this learned reward model instead. The preference-based RL ap-
proach in the context of training and aligning the Large Language Models (LLM)
with human preferences has attracted much attention under the name of RL from
Human Feedback (RLHF) in recent years.g

Finally, we would like to remark that in biological animals, the reward signal has
not been designed, but has been evolved. Their reward mechanism has been evolved
so that the chance of survival and successful reproduction increases. Other than a
few exceptions, the RL community does not tend to combine evolution of rewards
and a learning-based RL algorithm.h

Throughout this course, we assume that the reward signal is given, but we note
that much research has been done in how to specify reward.

In biological systems, however, the reward signal has not been designed, but has
been evolved. The reward mechanism of animals has been evolved so that the chance

1.7. APPLICATIONS OF REINFORCEMENT LEARNING 29

of survival and successful reproduction increases. Throughout this course, we assume
that the reward signal is given, but we note that much research has been done in
how to specify reward. i

1.6.3 On Time

A modelling assumption of the MDP model is that the agent makes decision on its
actions at regular time steps 1, 2, What does time actually mean here?

For certain problems, such as board games, the meaning of these decision times is
clear: each decision time corresponds to a move of a piece on a chess board. In those
problems, the notion of time is abstract and corresponds to the number of steps the
game is played.

For an agent living in a physical world such as a robot, or a simulation thereof,
the correspondence is usually through a discretization of the continuous flow of time.
Each decision time t = 1, 2, . . . correspond to the physical time t = t∆t, where ∆t
is the discretization resolution. For some tasks, such a control of a robot, the dis-
cretization resolution might be in the order of milliseconds, while for a slower process
such as the temperature of a room in the smart HVAC problem, the discretization
resolution might be in the order of minutes.

1.7 Applications of Reinforcement Learning

Chapter Summary

Summarize the main points that the reader needs to remember from this chap-
ter.

Notes and Remarks

a Relevant citations: Farahmand et al. [2016, 2017]; Pan et al. [2018]. More by others?

b The viewpoint of an animal as the nexus of causal pathways is from Chapter 5 (The
Origin of Subjects) of Godfrey-Smith [2020]. I include it because I believe it is a
good metaphor on what an intelligent being is, no matter biological or artificial. Of
course, it is not a mathematically rigorous definition of what an animal is, and should
not be interpreted as such.

30 CHAPTER 1. INTRODUCTION

c Designing a reward function that reflects our intended goals clearly is not always
easy. This is the problem of agent alignment and is a subject of active research
in the AI safety community. . If the animal is evolved, however, the problem of
designing a proper reward function is taken care of by the evolutionary process: if
the reward function does not lead to successful reproduction, the genes that encode
that animal, and its reward function, will not survive for long.

d The original Stanford Marshmallow test is conducted by Mischel et al. [1972]. It
appears that the discounting model of humans is better modelled by a hyperbolic
model, instead of the geometric one. In that model, the influence of reward received
after time t is Rt

1+λt
, instead of γtRt, which we consider here. It also seems that

humans have a relatively stable discounting parameters [Kirby, 2009]. The neural
correlates of this discounting has also been studied, for example, by Casey et al.
[2011].

e The assumption that the maximizer exists is technical, and may appear when the
maximizing action does not belong to the action set. As an example, suppose that
the state space is X = R and the action set is A = (−1,+1), an open set. If the
reward function is r(x, a) = −(x − a)2, the maximizing action depends on whether
x ∈ (−1,+1) or outside it. If it is inside, the optimal action is to choose a being
equal to x. But when x is outside that set, the optimal action is to be as close as +1
(for x > 1) or as close as −1 (for x < −1). But since the maximizing action cannot
be realized within the action set, we can choose an action that is arbitrary close to
+1 or −1.

f Some relevant papers for inverse RL are Russell [1998]; Ng et al. [2000]; Ramachan-
dran and Amir [2007]; Ziebart et al. [2013]; Huang et al. [2015].

g Wirth et al. [2017] survey preference-based RL just before the recent surge of interest
in RL from Human Feedback (RLHF). Some related papers directly related to RLHF
are Wirth et al. [2017]; Christiano et al. [2017]; Ouyang et al. [2022]; Gheshlaghi Azar
et al. [2024].

h What are good papers for this? Singh et al. has “Where Do Rewards Come From?”,
which seems relevant. And also “Intrinsically Motivated Reinforcement Learning: An
Evolutionary Perspective” from Singh et al. I did some research about it during my
MS (2003 or 2004), but unfortunately I didn’t publish.

1.7. APPLICATIONS OF REINFORCEMENT LEARNING 31

i There are several approaches to define or design a reward signal. In one approach,
we assume that we have access to an expert who knows how to solve the problem,
and we can observe their behaviour. The goal is then to find a reward function whose
optimal policy leads to a behaviour similar to the expert’s. This is called inverse
reinforcement learning problem [Russell, 1998; Ng et al., 2000; Ziebart et al., 2013;
Huang et al., 2015]. An active area of research is to convert the preference of For
example, one may try to convert the preference of humans into reward function. ,
for example, in order to capture human We should mention that there has been work
in evolving the reward signal itself.

Appendix A

Mathematical Background

A.1 Probability Space

For a space Ω, with σ-algebra σΩ, we define M(Ω) as the set of all probability
measures over σΩ. Further, we let B(Ω) denote the space of bounded measurable
functions w.r.t. (with respect to) σΩ and we denote B(Ω, L) as the space of bounded
measurable functions with bound 0 < L <∞.

We write ν1 ≪ ν2 if ν2(A) = 0 implies that ν1(A) = 0 as well. For two σ-finite
measures ν1 and ν2 on some measurable space (Ω, σΩ), ν1 is absolutely continuous
w.r.t. ν2 if there is a non-negative measurable function f : Ω→ R such that µ1(A) =∫
fdν2 for all A ∈ σΩ. It is known that ν1 is absolutely continuous w.r.t. ν2 if and

only if ν1 ≪ ν2. We write dν1
dν2

= f and call it the Radon-Nikodym derivative of ν1
w.r.t. ν2 [Rosenthal, 2006, Chapter 12].

A.2 Norms and Function Spaces

We use F : X → R to denote a subset of measurable functions.1 The exact specifi-
cation of this space should be clear from the context. We usually denote F as the
space of value functions.

For a probability distribution ν ∈ M(X), and a measurable function V ∈ F , we
define the Lp(ν)-norm of V with 1 ≤ p <∞ as

∥V ∥pp,ν ≜
∫
X
|V (x)|pdν(x). (A.1)

1This section is quoted almost verbatim from Section 2.1 of Farahmand [2011].

33

34 APPENDIX A. MATHEMATICAL BACKGROUND

When p = 2, this is the norm induced by the inner product ⟨ · , · ⟩ : F ×F → R:
For any V1, V2, we have

⟨V1 , V2 ⟩ν =

∫
X
V1(x)V2(x)dν(x). (A.2)

It is clear that ∥V ∥22,ν = ⟨V , V ⟩ν .
The L∞(X)-norm is defined as

∥V ∥∞ ≜ sup
x∈X
|V (x)|. (A.3)

If we want to emphasize that the probability distribution is defined on the state
space X , we use νX and ∥V ∥p,νX .

We define F |A| : X ×A → R|A| as a subset of vector-valued measurable functions
with the following identification:

F |A| =
{
(Q1, . . . , Q|A|) : Qi ∈ F , i = 1, . . . , |A|

}
.

We use Qj(x) = Q(x, j) (j = 1, . . . , |A|) to refer to the jth component of Q ∈ F |A|.
We often denote F |A| as a space of action-value functions. If there is no chance
of ambiguity, we may use F : X × A → R|A| for a space of action-value functions
though.

Let z1:n denote the Z-valued sequence (z1, . . . , zn). We define the empirical mea-
sure as the measure that assigns the following probability to any (measurable) set
B ⊂ Z:

νn(B) ≜
1

n

n∑
i=1

I{Zi ∈ B}.

The empirical norm of function f : Z → R is then

∥f∥pp,z1:n = ∥f∥pp,Dn
≜ ∥f∥p,νn =

1

n

n∑
i=1

|f(zi)|p. (A.4)

When there is no chance of confusion about Dn, we may simply use ∥f∥pp,n. Based
on this definition, one may define ∥V ∥n (with Z = X) and ∥Q∥n (with Z = X ×A).

If Dn = Z1:n is random with Zi ∼ ν, the empirical norm is random as well. For

any fixed function f , we have E
[
∥f∥p,n

]
= ∥f∥p,ν .

A.3. FUNCTIONAL ANALYSIS: SPACES, OPERATORS, AND
CONTRACTION MAPPING 35

We sometimes use the shorthand notation of ν|Q|p = ∥Q∥pp,ν (similar for νX and
other probability distributions). In this book, most results are stated for p = 1 or
p = 2. The symbols ∥·∥ν and ∥·∥n refers to an L2-norm.

Finally, define the projection operator ΠF |A|,ν : B(X ×A)→ B(X ×A) as

ΠF ,νQ ≜ argmin
Q′∈F |A|

∥Q′ −Q∥2ν

for Q ∈ B(X × A). The definition of ΠF ,νX : B(X) → B(X) is similar. If the
distribution νX or ν are clear from the context, we may simply write ΠF and ΠF |A|

instead.

A.3 Functional Analysis: Spaces, Operators, and

Contraction Mapping

The contraction mapping (or operator) is a mapping that maps points (i.e., vectors,
functions) closer to each other. As the Bellman operators for discounted tasks are
contraction mapping, it is useful to have a good understanding on what such a map-
ping is, and what their properties are. We briefly review some basic concepts from
functional analysis. Our discussion here freely borrows from Hunter and Nachtergaele
[2001].

First, let us recall the definition of a metric space. Let Z be an arbitrary non-
empty set.

Definition A.1 (Metric – Definition 1.1 of Hunter and Nachtergaele 2001). A metric
or a distance function on Z is a function d : Z×Z → R with the following properties:

• d(x, y) ≥ 0 for all x, y ∈ Z; and d(x, y) = 0 if and only if x = y.

• d(x, y) = d(y, x) for all x, y ∈ Z (symmetry).

• d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ Z (triangle inequality).

Given a metric, we can define a metric space.

Definition A.2 (Metric Space). A metric space (Z, d) is a set Z equipped with a
metric d.

Example A.1. Let Z = R and d(x, y) = |x − y|. These together define a metric
space (R, d).

36 APPENDIX A. MATHEMATICAL BACKGROUND

Example A.2. Let Z be a discrete set and define

d(x, y) =

{
0 x = y,

1 x ̸= y.

We often work with linear vector spaces and norms in this book. Let us define
them.

Definition A.3 (Linear Space – Definition 1.7 of Hunter and Nachtergaele 2001). A
linear space Z over the scalar field R (or C) is a set of points (or vectors), on which
operations of vector additions and scalar multiplications with the following properties
are defined:

(a) The set Z is a commutative group with the operation of + of vector addition,
that is,

• x+ y = y + x.

• x+ (y + z) = (x+ y) + z

• There exists an element 0 ∈ Z such that for any x ∈ Z, we have x+0 = x.

• For each x ∈ Z, there exists a unique vector −x ∈ Z such that x+(−x) = 0.

(b) For all x, y ∈ Z and a, b ∈ R (or C), we have

• 1.x = x.

• (a+ b)x = ax+ bx.

• a(bx) = (ab)x.

• a(x+ y) = ax+ by.

Next we define a notion of the length or size of a vector.

Definition A.4 (Norm – Definition 1.8 of Hunter and Nachtergaele 2001). A norm
on a linear space Z is a function ∥·∥ : Z → R with the following properties:

(a) (non-negative) For all x ∈ Z, ∥x∥ ≥ 0.

(a) (homogenous) For all x ∈ Z and λ ∈ R (or C), ∥λx∥ = |λ| ∥x∥.

(a) (triangle inequality) For all x, y ∈ Z, ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

(a) (strictly positive) If for a x ∈ Z, we have that ∥x∥ = 0, it implies that x = 0.

A.3. FUNCTIONAL ANALYSIS: SPACES, OPERATORS, AND
CONTRACTION MAPPING 37

The same way that we used a metric space given a metric, we can define a normed
linear space given a norm.

Definition A.5 (Normed Linear Space). A normed linear space (Z, ∥·∥) is a linear
space Z equipped with a norm ∥·∥.

We can use a norm to define a distance between two points in a linear space Z,
simply by defining d(x, y) = ∥x− y∥. This gives us a metric space (Z, d).

Example A.3. Let Z = Rd (d ≥ 1). The following norms are often used:

∥x∥p =
p

√√√√ d∑
i=1

|xi|p, 1 ≤ p <∞,

∥x∥∞ = max
i=1,...,d

|xi|.

This can be generalized to infinite sequences too.

Example A.4. For p ≥ 1, the sequence space ℓp is the set of all sequences (xi)i≥1

such that
∑

i≥1 |xi|p <∞. The norm is defined as

∥x∥p =

{
p
√∑∞

i=1 |xi|p, 1 ≤ p <∞,

maxi≥1 |xi|. p =∞

Example A.5. Consider the space of continuous functions with domain [0, 1]. It is
denoted by C([0, 1]). This plays the rule of Z. We define the following norm for a
function f ∈ C([0, 1]):

∥f∥∞ = sup
x∈[0,1]

|f(x)|.

This is called the supremum or uniform norm. Given this norm, (C([0, 1]), ∥·∥∞)
would be a normed linear space. This norm is similar to ∥x∥∞ with x ∈ Rd (pre-
vious example), but it is for the space of continuous functions, which is an infinite
dimensional object, as opposed to for a finite dimensional vector.

We often use the supremum norm of value functions. For V ∈ B(X) and Q ∈
B(X ×A), their supremum norms are

∥V ∥∞ = sup
x∈X
|V (x)|,

∥Q∥∞ = sup
(x,a)∈X×A

|Q(x, a)|,

38 APPENDIX A. MATHEMATICAL BACKGROUND

Using this norm, we can define a supremum-norm-based distance between two
value functions V1 and V2 as d∞(V1, V2) = ∥V1 − V2∥∞ (and similarly for the action-
value functions).

We can also define

A.3.1 Operators

Operators, or mappings, are transformations from one linear space Z to another
linear space W . An operator L : Z → W is a linear operator when

L(c1z1 + c2z2) = c1Lz1 + c2Lz2,

for all c1, c2 ∈ R and z1, z2 ∈ Z.
A simple example is the operator L : R→ R defined as Lz = az with a ∈ R and

z ∈ R. It is a mapping from the space of real numbers to the space of real numbers.
Here both Z and W are R.

A generalization of this is L : Rm → Rn (withm,n being integer numbers) defined
as the mapping that takes z ∈ Z = Rm and maps it to w ∈ W = Rn with the i-th
component of w being

wi =
m∑
j=1

li,jzj,

for li,j ∈ R for i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}. Of course, this is the same as
matrix-vector multiplication that we can succinctly write as w = Lz with L being a
matrix with components li,j. These are examples of linear operators.

Not all operators are linear though. For example, the operator L : R→ R defined
as Lz = az + b (with a, b ∈ R) or Lz = z2 or Lz = sin(z) or Lz = max{0, z} are not
linear operators. We call them nonlinear operators. The first one is called affine.

The operators are not necessarily limited to finite dimensional linear spaces, but
they can also be defined over the space of functions. An example is the linear
integral operators. Consider a continuous function k : [0, 1]× [0, 1]→ R, and define
K : C([0, 1]) → C([0, 1]) (cf. Example A.5) as the operator that takes a continuous
function f ∈ C([0, 1]) and returns another continuous function Kf : [0, 1] → R,
whose value at x ∈ [0, 1], that is (Kf)(x), is

(Kf)(x) =

∫ 1

0

L(x, y)f(y)dy.

Note the similarity of Kf with Pf (Definition 1.4) and the Bellman operators
applied to a value function, such as T πV or T ∗V (Definition ??). The Bellman
operators, however, are not linear operators, but they are affine.

A.3. FUNCTIONAL ANALYSIS: SPACES, OPERATORS, AND
CONTRACTION MAPPING 39

If the spaces Z and W are also equipped with norms, that is, we have (Z, ∥·∥Z)
and (W , ∥·∥W), we can define a notion of operator norm based on the norm of these
two spaces. First, we say that the operator L is bounded if there exists a finite
B < ∞ such that for any z ∈ Z, the norm of the output of the operator L, that is
w = Lz ∈ W , satisfies

∥Lz∥W ≤ B ∥z∥Z .

Note that as w = Lz belongs to the spaceW , its size should be measured with ∥·∥Z .
We define the operator norm of L as

∥L∥ = inf {B : ∥Lz∥W ≤ B ∥z∥Z } . (A.5)

This is equivalent to

∥L∥ = sup
z ̸=0

∥Lz∥W
∥z∥Z

= sup
∥z∥Z=1

∥Lz∥W . (A.6)

The operator norm measures the maximum any input z can be expanded after going
through the operator L and creating z = Lw.

An immediate consequence of this definition is that for any z ∈ Z, we have

∥Lz∥W ≤ ∥L∥ ∥z∥Z . (A.7)

Another useful property is that for two operators L1 : Z → W and L2 : W → Y ,
whose joint operation L2L1 :W → Y , their norm is sub-multiplicative:

∥L2L1∥W→Y ≤ ∥L1∥Z→W ∥L2∥W→Y . (A.8)

Here we used subscripts Z → W and W → Y to emphasize that these two operator
norms are defined over different spaces. A further discussion of this XXX

A.3.2 Contraction Mapping

We are ready to define the contraction mapping/operator formally.

Definition A.6 (Contraction Mapping – Definition 3.1 of Hunter and Nachtergaele
2001). Let (Z, d) be a metric space. A mapping L : Z → Z is a contraction mapping
(or contraction) if there exists a constant 0 ≤ a < 1 such that for all z1, z2 ∈ Z, we
have2

d(L(z1), L(z2)) ≤ ad(z1, z2).

40 APPENDIX A. MATHEMATICAL BACKGROUND

<latexit sha1_base64="CC2xat6cjrq+c+LEHFr2XsSPR5Y=">AAACQXicdVBLSwMxGEzqq9ZXq0cvwaJ4Krsi6LHYiwcPFewD2lKy2WwbmseSZIW69Dd41d/jr/AneBOvXky3PdiWDnwwzHwDwwQxZ8Z63ifMbWxube/kdwt7+weHR8XScdOoRBPaIIor3Q6woZxJ2rDMctqONcUi4LQVjGpTv/VMtWFKPtlxTHsCDySLGMHWSY0H9NL3+8WyV/EyoFXiz0kZzFHvl+BFN1QkEVRawrExHd+LbS/F2jLC6aTQTQyNMRnhAe04KrGgppdmbSfo3CkhipR2Jy3K1P+JFAtjxiJwnwLboVn2puI6zw7FZFHjA6WZkxlZYyy1tdFtL2UyTiyVZFY2SjiyCk3nQyHTlFg+dgQTl2cEkSHWmFg3cqGbBdOaEgLL0Ezcsv7yjqukeVXxvYr/eF2u3s03zoNTcAYugQ9uQBXcgzpoAAIYeAVv4B1+wC/4DX9mrzk4z5yABcDfPwJAsSA=</latexit>

<latexit sha1_base64="ygkUduiSujA+MCxh2be9RiMEV50=">AAACQXicdVBLSwMxGEx81vpq9eglWBRPZbcIeiz24sFDBfuAtpRsNtuG5rEkWaEu/Q1e9ff4K/wJ3sSrF9NtD7alAx8MM9/AMEHMmbGe9wk3Nre2d3Zze/n9g8Oj40LxpGlUogltEMWVbgfYUM4kbVhmOW3HmmIRcNoKRrWp33qm2jAln+w4pj2BB5JFjGDrpMYDeulX+oWSV/YyoFXiz0kJzFHvF+FlN1QkEVRawrExHd+LbS/F2jLC6STfTQyNMRnhAe04KrGgppdmbSfowikhipR2Jy3K1P+JFAtjxiJwnwLboVn2puI6zw7FZFHjA6WZkxlZYyy1tdFtL2UyTiyVZFY2SjiyCk3nQyHTlFg+dgQTl2cEkSHWmFg3cr6bBdOaEgLL0Ezcsv7yjqukWSn7Xtl/vC5V7+Yb58AZOAdXwAc3oAruQR00AAEMvII38A4/4Bf8hj+z1w04z5yCBcDfPwQZsSE=</latexit>

<latexit sha1_base64="PhrH9G8gw8B6NoMkzviAXHYcFIQ=">AAACPXicdVBLS8NAGNzUV62vVo9eFoviqSQi6LHYiwcPLdgHtKFsNtt26T7C7kYoIb/Aq/4ef4c/wJt49eo2zcG2dOCDYeYbGCaIGNXGdT+dwtb2zu5ecb90cHh0fFKunHa0jBUmbSyZVL0AacKoIG1DDSO9SBHEA0a6wbQx97svRGkqxbOZRcTnaCzoiGJkrNR6Gparbs3NANeJl5MqyNEcVpyrQShxzIkwmCGt+54bGT9BylDMSFoaxJpECE/RmPQtFYgT7SdZ0xReWiWEI6nsCQMz9X8iQVzrGQ/sJ0dmole9ubjJMxOeLmtsLBW1MsUbjJW2ZnTvJ1REsSECL8qOYgaNhPPpYEgVwYbNLEHY5imGeIIUwsYOXBpkwaQhOUci1Kld1lvdcZ10bmqeW/Nat9X6Q75xEZyDC3ANPHAH6uARNEEbYEDAK3gD786H8+V8Oz+L14KTZ87AEpzfP0Omr84=</latexit>

<latexit sha1_base64="6lBybHOHoAxG0TjT/b6ZyK4I68g=">AAACR3icdVBbSwJBGJ21m9lN67GXISkMQnYlqEfJlx4N8gK6LLOzow7OZZmZDXTxZ/Rav6ef0K/oLXps1H1IwwMfHM75DhxOGDOqjet+Ormt7Z3dvfx+4eDw6PikWDpta5koTFpYMqm6IdKEUUFahhpGurEiiIeMdMJxY+53XojSVIpnM4mJz9FQ0AHFyFipF1WmgXcDp0HtOiiW3aq7APxPvIyUQYZmUHKu+pHECSfCYIa07nlubPwUKUMxI7NCP9EkRniMhqRnqUCcaD9ddJ7BS6tEcCCVPWHgQv2bSBHXesJD+8mRGel1by5u8syIz1Y1NpSKWpniDcZaWzO491Mq4sQQgZdlBwmDRsL5iDCiimDDJpYgbPMUQzxCCmFjpy70F8G0ITlHItIzu6y3vuN/0q5VPbfqPd2W6w/ZxnlwDi5ABXjgDtTBI2iCFsBAglfwBt6dD+fL+XZ+lq85J8ucgRXknF/vabH9</latexit>

<latexit sha1_base64="hMUtNieEDFZkIIMMzuhw4+Lj1+4=">AAACUHicdVBLSwMxGPy2vmp9tfXoJViUClJ2i6BHsRePFWwV2rJks2kbzGNNsmJd+le86u/x5j/xpulD0IoDIcPMNzBMlHBmrO+/e7ml5ZXVtfx6YWNza3unWCq3jUo1oS2iuNK3ETaUM0lblllObxNNsYg4vYnuGhP/5oFqw5S8tqOE9gQeSNZnBFsnhcVyl9N7hFFcfQqDY/QU1o/CYsWv+VOgvySYkwrM0QxL3mE3ViQVVFrCsTGdwE9sL8PaMsLpuNBNDU0wucMD2nFUYkFNL5uWH6MDp8Sor7R70qKp+jORYWHMSETuUmA7NIveRPzPs0Mx/q3xgdLMyYz8Yyy0tf2zXsZkkloqyaxsP+XIKjRZE8VMU2L5yBFMXJ4RRIZYY2Ld5oXuNJg1lBBYxmbslg0Wd/xL2vVa4NeCq5PK+cV84zzswT5UIYBTOIdLaEILCDzCM7zAq/fmfXifOW92+v3DLvxCrvAFnW+ztA==</latexit>

<latexit sha1_base64="B0mUdhkkxqLGsyfF2sI5SDGBbuM=">AAACP3icdVBLS8NAGNzUV62vVo9egkXxVBIR9FjsxWNF+4A2lM1mky7dR9jdCDXkJ3jV3+PP8Bd4E6/e3KY52JYOfDDMfAPD+DElSjvOp1Xa2Nza3invVvb2Dw6PqrXjrhKJRLiDBBWy70OFKeG4o4mmuB9LDJlPcc+ftGZ+7xlLRQR/0tMYewxGnIQEQW2kx5eRO6rWnYaTw14lbkHqoEB7VLMuhoFACcNcIwqVGrhOrL0USk0QxVllmCgcQzSBER4YyiHDykvzrpl9bpTADoU0x7Wdq/8TKWRKTZlvPhnUY7XszcR1nh6zbFGjkZDEyAStMZba6vDWSwmPE405mpcNE2prYc/GswMiMdJ0aghEJk+QjcZQQqTNxJVhHkxbgjHIA5WZZd3lHVdJ96rhOg334brevCs2LoNTcAYugQtuQBPcgzboAAQi8ArewLv1YX1Z39bP/LVkFZkTsADr9w/uirCg</latexit>

<latexit sha1_base64="f+6bEHrRhlNpUv4XzREd0ltrbxo=">AAACP3icdVBLS8NAGNz4rPXV6tFLsCieSlIEPRZ78VjRPqANZbPZpEv3EXY3Qg35CV719/gz/AXexKs3t2kOtqUDHwwz38AwfkyJ0o7zaW1sbm3v7Jb2yvsHh0fHlepJV4lEItxBggrZ96HClHDc0URT3I8lhsynuOdPWjO/94ylIoI/6WmMPQYjTkKCoDbS48uoMarUnLqTw14lbkFqoEB7VLUuh4FACcNcIwqVGrhOrL0USk0QxVl5mCgcQzSBER4YyiHDykvzrpl9YZTADoU0x7Wdq/8TKWRKTZlvPhnUY7XszcR1nh6zbFGjkZDEyAStMZba6vDWSwmPE405mpcNE2prYc/GswMiMdJ0aghEJk+QjcZQQqTNxOVhHkxbgjHIA5WZZd3lHVdJt1F3nbr7cF1r3hUbl8AZOAdXwAU3oAnuQRt0AAIReAVv4N36sL6sb+tn/rphFZlTsADr9w/wY7Ch</latexit>

Figure A.1: Visualization of an a-contraction mapping L.

This is visualized in Figure A.1.

Example A.6. Let Z = R and d(z1, z2) = |z1 − z2|. Consider the mapping L : z 7→
az for a ∈ R. We have Let us see if/when this mapping is a contraction or not.

For any z1, z2 ∈ R, we have

d(L(z1), L(z2)) = |L(z1)− L(z2)| = |az1 − az2| = |a||z1 − z2| = |a|d(z1, z2).

So if |a| < 1, this is a contraction mapping.

Exercise A.1 (⋆). Consider the same (R, | · |) as before, but let the mapping be
L : z 7→ az + b for a, b ∈ R. What is condition on a and b for this mapping to be a
contraction.

Exercise A.2 (⋆⋆). Consider the same (R, | · |) as before, and let L : z 7→ az2+ b for
a, b ∈ R. Is this a contraction mapping for some choice of a and b? If yes, specify
a and b. If not, can you consider another space Z (a subset of R) that makes this a
contraction (possibly with an appropriate choice of a and b)?

Exercise A.3 (⋆⋆). Consider Z = Rd. Given a matrix A ∈ Rd×d and a vector
b ∈ Rd, define the mapping L : z 7→ Az+ b. Using the vector norm ∥·∥p (1 ≤ p ≤ ∞,
define the metric dp(z1, z2) = ∥z1 − z2∥p. Then, dp(L(z1), L(z2)) = ∥Az1 − Az2∥p.

What is the condition that L is a contraction? Note that this depends on the
choice of p.

2Sometimes the condition of having a < 1 is called strict contraction [Berinde, 2007], and the
condition that d(L(z1), L(z2)) < d(z1, z2) is called contractive.

A.3. FUNCTIONAL ANALYSIS: SPACES, OPERATORS, AND
CONTRACTION MAPPING 41

Exercise A.4 (⋆⋆). Consider (R, | · |). Let r ≥ 0 and define the mapping

L : z 7→ rz(1− z).

When is this a contraction mapping?

Why do we care about a contraction mapping? We have two reasons in mind.
The first is that we can describe the behaviour of a dynamical system depending

on whether the mapping describing it is a contraction or not. To be concrete, let
z0 ∈ Z and consider a mapping L : z 7→ az for some a ∈ R. Define the dynamical
system

zk+1 = Lzk, k = 0, 1,

The dynamical system described by this mapping generates

z0

z1 = az0

z2 = az1 = a2z0
...

zk = azk−1 = akz0.

If |a| < 1, zk converges to zero, no matter what z0 is. If a = 1, we have zk = z0. So
depending on z0, it converges to different points. For a = −1, the sequence would
oscillate between +z0 and −z0. And if |a| > 1, the sequence diverges (unless z0 = 0).

An interesting observation is that the case of converge is the same as the case of
L being a contraction map (see Example A.6). This is not an isolated example, as
we shall see. A dynamical system defined based on a contraction mapping converges.
We call such a system stable.3

The second reason we care about contraction is that we can sometimes use it
to solve equations. We can convert an equation that we want to solve (think of
solving f(z) = 0) as the fixed point equation, as we shall see. If it happens that the
underlying mapping is contraction, we can define an algorithm based on a dynamical
system in order to solve the equation. Let us make this idea more concrete.

Definition A.7 (Fixed Point). If L : Z → Z, then a point z ∈ Z such that

Lz = z

is called a fixed point of L.
3There are various notions of stability in control theory. What we consider as stable is the same

as globally exponentially stable.

42 APPENDIX A. MATHEMATICAL BACKGROUND

In general, a mapping may have more one, many, or no fixed point.

Given an equation f(z) = 0, we can convert it to a fixed point equation Lz = z
by defining L : z 7→ f(z) + z. Then, if Lz∗ = z∗ for a z∗, we get that f(z∗) = 0, i.e.,
the fixed point of L is the same as the solution of f(z) = 0.

Example A.7. Suppose that we want to solve cz + b = 0 for z ∈ R and constants
c, b ∈ R. We can choose L : z 7→ (c + 1)z + b. The mapping L is a contraction if
|c+1| < 1 (or −2 < c < 0). As a numerical example, if we want to solve −0.5z+1 = 0
(which has z∗ = 2), we can write it as L : z 7→ 0.5z + 1. If we start from z0 = 0, we
get the sequence of (z0, z1, . . .) = (1, 1.5, 1.75, 1.875, 1.9375, 1.96875, . . .).

Of course, this is a very simple example, and we may not use such an iterative
method to solve that equation.

The next theorem formalizes what we discussed about the convergence property
of a contraction mapping. This is a simple, yet very important, result. It is known
as the contraction mapping or Banach fixed point theorem.

Theorem A.1 (Banach Fixed Point Theorem – Theorem 3.2 of Hunter and Nachter-
gaele 2001). If L : Z → Z is a contraction mapping on a complete metric space
(Z, d), then there exists a unique z∗ ∈ Z such that Lz∗ = z∗.

Furthermore, the point z∗ can be found by choosing an arbitrary z0 ∈ Z and
defining zk+1 = Lzk. We have zk → z∗.

Note that the convergence is in norm, and it means that limk→∞ d(zk, z
∗) = 0.

There are extensions of this result, for example, when L is not a contraction per
se, but is non-expansion, i.e., d(L(z1), L(z2)) ≤ d(z1, z2). With a relaxed assumption
on the contraction property, we may lose some of the properties (e.g., uniqueness of
the fixed point) or we may need extra conditions on the space, e.g., its compactness.4

A.4 Matrix Norm and Some of its Properties

Let us recall some results from linear algebra regarding the matrix norm, and the
inverse of I− A and its matrix norm. The material here is mostly from Section 2.3
of Golub and Van Loan [2013].

4As an example, we quote Theorem 3.1 of Berinde [2007]: Let Z be a closed bounded convex
subset of the Hilbert space H and L : Z → Z be a non-expansion mapping. Then L has at least
one fixed point. This does not, however, mean that we can find it by an iterative application of L.

A.4. MATRIX NORM AND SOME OF ITS PROPERTIES 43

The vector induced p-norm of a matrix A ∈ Rd×d is defined as

∥A∥p = sup
x ̸=0

∥Ax∥p
∥x∥p

= sup
∥x∥p=1

∥Ax∥p . (A.9)

The intuition is that we find a unit vector x ∈ Rd (according to the ℓp-norm) that
maximizes the sizes of the mapped vector Ax ∈ Rd, measured according to the same
ℓp-norm. We could generalize this definition to have different dimensions of domain
and range (Rd1 and Rd2) and use different vector norms to measure the length of the
vectors before and after mapping. As we do not use them such results, we do not
present them. These are all examples of operator norm (A.6) for linear operator A
between the normed spaces (Z = Rd, ∥·∥p) and (W = Rd, ∥·∥p), as we discussed in
Appendix A.3.1.

We have the following identities for the matrix norms:

• ∥A∥1 = max1≤j≤d

∑d
i=1 |ai,j| (maximum of the sum over rows)

• ∥A∥∞ = max1≤i≤d

∑d
j=1 |ai,j| (maximum of the sum over columns)

• ∥A∥2 =
√
λmax(A⊤A) (the maximum eigenvalue of A⊤A).

If A is a stochastic matrix, the sum over columns (next state) is equal to one. So

∥Pπ∥∞ = 1. (A.10)

A useful property of any vector-induced p-norm is that for any x ∈ Rd,

∥Ax∥p ≤ ∥A∥p ∥x∥p . (A.11)

It is worth paying attention that these norms are semantically different: the norms
∥Ax∥p and ∥x∥p are the p-norms on the vector space Rd, while ∥A∥p is a matrix norm

on the space of Rd×d matrices. This result is essentially the same as (A.7).
Another useful property of the vector induced p-norms is that they are sub-

multiplicative: For two matrices A and B, we have

∥AB∥p ≤ ∥A∥p ∥B∥p . (A.12)

This is the analogous result to (A.8), specialized to matrices.
As an example of how these are relevant to the topic of this book, consider two

policies π1 and π2, their policy induced transition kernels (matrices) Pπ1 ,Pπ2 ∈

44 APPENDIX A. MATHEMATICAL BACKGROUND

R|X |×|X |, and a value function V ∈ R|X |, all for a finite state space X = {x1, . . . , xd}.
The expression

Pπ1Pπ2V

is an |X |-dimensional vector whose i-th component is the expected value of V for the
agent starting from xi and follows π1 for the first step and π2 for the second step.
From (A.11) and (A.12), we have

∥Pπ1Pπ2V ∥p ≤ ∥P
π1Pπ2∥p ∥V ∥p ≤ ∥P

π1∥p ∥P
π2∥p ∥V ∥p .

If p =∞, by (A.10) we have ∥Pπ1∥∞ = ∥Pπ2∥∞ = 1, so overall, we get

∥Pπ1Pπ2V ∥∞ ≤ ∥V ∥∞ .

This is intuitive: the maximum value of the expectation of the value function V that
the agent gets following any policies is not going to be larger than the maximum of
V itself. If the norm was p < 1, this may not hold.

We also note that this argument is not limited to finite state problems, as we
could use the properties of operator norms to get the same results for more general
state spaces.

The following result shows that if a matrix A has a norm that is smaller than 1,
the inverse of I−A exists, it has a Neumann expansion, and we can provide a bound
on its norm.

Lemma A.2 (Lemma 2.3.3 of Golub and Van Loan 2013). If A ∈ Rd×d and ∥A∥p <
1, then I− A is non-singular, and

(I− A)−1 =
∞∑
k=0

Ak.

We also have ∥∥(I− A)−1
∥∥
p
≤ 1

1− ∥A∥p
.

The consequence of this result for us is that we can write

(I− γPπ)−1 =
∑
k≥0

(γPπ)k,

and conclude that ∥∥(I− γPπ)−1
∥∥
∞ ≤

1

1− γ
.

A.5. INCREMENTAL MATRIX INVERSION 45

A.5 Incremental Matrix Inversion

There are some formulae that allow us to incrementally update a matrix inversion
(Section 2.1.4 of Golub and Van Loan 2013).

The Sherman-Morrison-Woodbury formula states that for a matrix Ad×d and two
d× k matrices U and V , we have

(A+ UV ⊤)−1 = A−1 − A−1U(I+ V ⊤A−1U)−1V ⊤A−1,

assuming that A and (I + V ⊤A−1U) are invertible. As UV ⊤ is a k × k matrix (so
of rank at most k), A + UV ⊤ can be thought of as a rank-k update of the matrix
A. The update of its inverse requires the computation of the inverse of k× k matrix
(I + V ⊤A−1U), which can be much cheaper that directly inverting the new d × d
matrix A+ UV ⊤ when k is smaller than d.

A special case of this formula is known as the Sherman-Morrison formula. It
states that for an invertible matrix Ad×d and vectors u, v ∈ Rd, the matrix A+ uv⊤

is invertible if and only if 1 + v⊤A−1u ̸= 0. And if it is invertible, we can compute it
as (

A+ uv⊤
)−1

= A−1 − A−1uv⊤A−1

1 + v⊤A−1u
.

Note that the denominator is a scalar.

A.6 Concentration Inequalities

Consider X1, . . . , Xn be independent real-valued random variables. Their average

Sn =
1

n

n∑
i=1

Xi

is a random variable itself, and it tends to be concentrated arounds its expectation
E [Sn]. To see what this means, we provide a series of results that quantifies a notion
of concentration.

First, for the simplicity of exposition, assume that all of Xi have the same mean
µ and variance σ2. By the linearity of the expectation, we have

E [Sn] = E

[
1

n

n∑
i=1

Xi

]
=

1

n

n∑
i=1

E [Xi] =
1

n
E [µ] = µ.

46 APPENDIX A. MATHEMATICAL BACKGROUND

By benefitting from the independence of Xi and Xj, we get that the variance of Sn

is

Var [Sn] = E
[
(Sn − E [Sn])

2
]
= E

(1

n

n∑
i=1

(Xi − µ)

)2


=
1

n2
E

[
n∑

i,j=1

(Xi − µ)(Xj − µ)

]

=
1

n2
E

[
n∑

i=1

(Xi − µ)(Xi − µ) +
n∑

i,j=1;i ̸=j

(Xi − µ)(Xj − µ)

]

=
1

n2

[
n∑

i=1

σ2 +
n∑

i,j=1;i ̸=j

E [(Xi − µ)(Xj − µ)]

]

=
σ2

n
+

1

n2

n∑
i,j=1;i ̸=j

E [(Xi − µ)]E [(Xj − µ)] =
σ2

n
.

This shows that as n increases, the variance of Sn decreases with a rate of 1
n
.

Variance is a notion of dispersion of a random variable arounds its mean, so this
result shows that Sn is increasingly more concentrated around µ.

We can use these results on the mean and variance of Sn to derive a high proba-
bility notion of concentration.

Recall the Markov’s inequality, which states that for a non-negative random vari-
ables Z, for any ε > 0, we have

P {Z > ε} ≤ E [Z]

ε
. (A.13)

This means that the probability that a non-negative r.v. Z is much larger than its
expectation is decreasing. For instance, P {Z > kE [Z]} ≤ 1

k
.

A direct consequence of the Markov’s inequality, applied to the non-negative r.v.
Z = |Sn − µ|2 is that

P {|Sn − µ| > ε} = P
{
|Sn − µ|2 > ε2

}
≤ E [|Sn − µ|2]

ε2
=

Var [Sn]

ε2
=

σ2

nε2
. (A.14)

This shows that for any ε > 0, as n→∞,

lim
n→∞

P {|Sn − µ| > ε} → 0.

A.6. CONCENTRATION INEQUALITIES 47

This means that asymptotically, the probability that Sn is more than ε different from
µ is zero, no matter how small ε is. This is the convergence in probability of Sn to
µ. This result is known as the weak Law of Large Number (LLN).

We also have the strong LLN, which states that

Sn → µ almost surely

under mild assumptions, such as E [|Xi|] <∞ for all i.
Both versions of LLN are about the convergence of Sn to µ, but they do not

specify how different Sn from µ is. The statement (A.14) provides a rather loose
upper bound on the deviation of Sn from µ. There are way to provide a tighter
statements.

The first is the Central Limit Theorem, which states that as n → ∞, the dis-
tribution of Sn converges to the Gaussian (normal) distribution with mean µ and
variance σ2

n
, that is

Sn
d−→ N

(
µ,

σ2

n

)
. (A.15)

Here
d−→ denotes the convergence in distribution, which means that for any t ∈ R

lim
n→∞

P
{
Sn − µ

σ
√
n
≤ t

}
→ Φ(t) =

1√
2π

∫ t

−∞
e−

x2

2 dx.

Two remarks are worth mentioning. The first is that the CLT is an asymptotic
result and holds exactly only when n→∞. When n is finite, say 100 or 10, 000, the
distribution of Sn is only approximately Gaussian. The second is that (A.15) shows
that the tail behaviour of Sn is (approximately) like a Gaussian distribution, which
means that

P {|Sn − µ| > ε} ≈ 2 exp(−

The following result is a simplified form of Lemma 6.3 of Györfi et al. 2002, which
itself is Theorem 2 of Hoeffding [1963].

Lemma A.3. (Hoeffding’s Inequality) Let X1, . . . , Xn be independent real-valued
random variables bounded by B almost surely, i.e., |Xi| < B. For any ε > 0,
we have

P

{∣∣∣∣∣ 1n
n∑

i=1

(Xi − E [Xi])

∣∣∣∣∣ > ε

}
≤ 2 exp

(
− nε2

2B2

)
.

48 APPENDIX A. MATHEMATICAL BACKGROUND

A.7 Information Theory

We provide a very brief overview of some definition from information theory, which
are occasionally used in the book. For a more detailed treatment, including intuition
about these concepts, refer to MacKay [2003]; Cover and Thomas [2006].

Given a discrete random variable X with probability distribution p, its entropy
is defined as

H [X] ≜
∑
x∈X

p(x) log
1

p(x)
. (A.16)

The joint entropy of (X, Y) is defined similarly:

H [X, Y] ≜
∑

(x,y)∈X×Y

p(x, y) log
1

p(x, y)
. (A.17)

The conditional entropy of X given Y is defined as

H [X|Y] ≜
∑

(x,y)∈X×Y

p(x, y) log
1

p(x|y)
. (A.18)

The KL divergence between distribution p and distribution q is defined as

KL(p||q) =
∫

p(dx) log
p(x)

q(x)
. (A.19)

The KL divergence is always non-negative. Whenever it is zero, it means that two
distributions are the same, almost surely.

The mutual information between X and Y is

I [X;Y] = H [X|Y]−H [X] . (A.20)

The mutual information can also be written as

I [X;Y] = KL(p(x, y)||p(x)p(y)).

It can be shown than the mutual information is symmetric (I [X;Y] = I [Y ;X]).
It is also non-negative I [X;Y] ≥ 0, as a direct consequence of non-negativity of the
KL divergence. When I [X;Y] = 0, the X and Y are independent.

A.8. ALGEBRAIC INEQUALITIES 49

A.8 Algebraic Inequalities

In the theoretical analysis of ML and Statistics algorithms, in general, and in RL
algorithms, in particular, we often go through some steps of upper bounding (or
occasionally lower bounding) certain quantities. To prove those upper bounds, we
use techniques that can be categorized, at the high level, as probabilistic arguments
or algebraic ones. In many cases, to complete a proof, we need to use both types of
arguments.

An example of the probabilistic argument is to benefit from the observation that
a random variable, such as Gπ(x), is concentrated around its mean, which is V π(x) =
E [Gπ(x)|x], and the probability of Gπ being very different from the mean V π is small,
and becomes even smaller when we average multiple independent samples from that
random variable. We discuss this in Appendix A.6.

An example of the algebraic one is to show that if r is Rmax-bounded and Q is
Qmax = Rmax

1−γ
-bounded, we also have T πQ = r + γPπQ is (1 + γ

1−γ
) = 1-bounded,

hence the Bellman error ∥Q− T π∥22 is also (2Qmax)
2-bounded. Many of the algebraic

proofs use inequalities, which we briefly summarize here.

We review Cauchy-Schwarz, Hölder, and Jensen inequalities. They all appear
in different forms, such as an inequality for a finite dimensional vector, an infinite
sequence, functions, or random variables. They can all be unified with the appropri-
ate selection of the function space (and measure), but we present them separately.
Considering that all of them are

In the following, let u, v ∈ Rd with u = (u1, . . . , ud) and v = (v1, . . . , vd); let
a = (a1, a2, . . .) and b = (b1, b2, . . .) be infinite sequences, and f, g : X → R be
functions. XXX

Lemma A.4. • For finite dimensional vectors u, v ∈ Rd, we have

d∑
i=1

uivi ≤

√√√√ d∑
i=1

|ui|2

√√√√ d∑
i=1

|vi|2,

or more compactly, ⟨u , v ⟩ ≤ ∥u∥2 ∥v∥2, with the norms defined as in Exam-
ple A.3.

• The same holds for sequences u = (u1, u2, . . .) and v = (v1, v2, . . .) that satisfy
∥u∥2 , ∥v∥2 <∞: ⟨u , v ⟩ ≤ ∥u∥2 ∥v∥2 (cf. Example A.4).

50 APPENDIX A. MATHEMATICAL BACKGROUND

• For functions f, g : X → R with
∫
f 2(x)dx and

∫
g2(x)dx both being finite, we

have ∫
f(x)g(x)dx ≤

√∫
|f(x)|2dx

√∫
|g(x)|2dx.

• If the random variables X and Y satisfy E [|X|2] ,E [|Y |2] <∞, we have

E [XY] ≤ E [|XY |] ≤ E
[
|X|2

] 1
2 E
[
|Y |2

] 1
2 .

This can be written as ⟨X , Y ⟩ ≤ ∥XY ∥1 ≤ ∥X∥2 ∥Y ∥2 (cf. (A.1)).

• Given a random variables X ∼ ν, and two functions V, U : X → R that have
finite second order moments E [|V (X)|2] ,E [|U(X)|2] <∞, we have

⟨U , V ⟩ν ≤ ∥V ∥2,ν ∥U∥2,ν ,

with inner product and norm defined as in (A.1) and (A.2).

•
We have

d∑
i=1

uivi ≤

√√√√ d∑
i=1

|ui|2

√√√√ d∑
i=1

|vi|2 or more compactly ⟨u , v ⟩ ≤ ∥u∥2 ∥v∥2 ,

∫
f(x)g(x)dx ≤

√∫
|f(x)|2dx

√∫
|g(x)|2dx

E [XY] ≤ E
[
|X|2

] 1
2 E
[
|Y |2

] 1
2

Bibliography

Vasile Berinde. Iterative approximation of fixed points, volume 1912. Springer, 2007.
40, 42

Dimitri P. Bertsekas. Abstract dynamic programming. Athena Scientific Belmont,
2nd edition, 2018. 7

Dimitri P. Bertsekas and Steven E. Shreve. Stochastic Optimal Control: The
Discrete-Time Case. Academic Press, 1978. 7

Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-Dynamic Programming. Athena
Scientific, 1996. 7, 18

B J Casey, Leah H Somerville, Ian H Gotlib, Ozlem Ayduk, Nicholas T Franklin,
Mary K Askren, John Jonides, Marc G Berman, Nicole L Wilson, Theresa
Teslovich, Gary Glover, Vivian Zayas, Walter Mischel, and Yuichi Shoda. Be-
havioral and neural correlates of delay of gratification 40 years later. Proceedings
of the National Academy of Sciences of the United States of America, 108(36):
14998–15003, 2011. 30

Paul F. Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario
Amodei. Deep reinforcement learning from human preferences. In Advances in
Neural Information Processing Systems (NeurIPS), 2017. 30

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley, 2nd
edition, 2006. 48

Amir-massoud Farahmand. Regularization in Reinforcement Learning. PhD thesis,
University of Alberta, 2011. 33

Amir-massoud Farahmand, Saleh Nabi, Piyush Grover, and Daniel N. Nikovski.
Learning to control partial differential equations: Regularized fitted Q-iteration

51

52 BIBLIOGRAPHY

approach. In IEEE Conference on Decision and Control (CDC), pages 4578–4585,
December 2016. 29

Amir-massoud Farahmand, Saleh Nabi, and Daniel N. Nikovski. Deep reinforcement
learning for partial differential equation control. In American Control Conference
(ACC), 2017. 29

Mohammad Gheshlaghi Azar, Mark Rowland, Bilal Piot, Daniel Guo, Daniele Ca-
landriello, Michal Valko, and Remi Munos. A general theoretical paradigm to
understand learning from human preferences. In International Conference on Ar-
tificial Intelligence and Statistics (AISTATS), 2024. 30

Peter Godfrey-Smith. Metazoa: Animal life and the Birth of the Mind. Farrar, Straus
and Giroux, 2020. 29

Gene H. Golub and Charles F. Van Loan. Matrix Computations. The John Hopkins
University Press, 4th edition, 2013. 42, 44, 45

László Györfi, Michael Kohler, Adam Krzyżak, and Harro Walk. A Distribution-Free
Theory of Nonparametric Regression. Springer Verlag, New York, 2002. 47

Wassily Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association, 58(301):13–30, 1963. 47

De-An Huang, Amir-massoud Farahmand, Kris M Kitani, and J. Andrew Bagnell.
Approximate MaxEnt inverse optimal control and its application for mental sim-
ulation of human interactions. In AAAI Conference on Artificial Intelligence,
January 2015. 30, 31

John K. Hunter and Bruno Nachtergaele. Applied analysis. World Scientific Pub-
lishing Company, 2001. 35, 36, 39, 42

Kris N. Kirby. One-year temporal stability of delay-discount rates. Psychonomic
Bulletin & Review, 16(3):457–462, 2009. 30

David J. C. MacKay. Information Theory, Inference, and Learning Algorithms. Cam-
bridge University Press, 2003. 48

Walter Mischel, Ebbe B. Ebbesen, and Antonette Raskoff Zeiss. Cognitive and
attentional mechanisms in delay of gratification. Journal of personality and social
psychology, 21(2):204, 1972. 30

BIBLIOGRAPHY 53

Andrew Y. Ng, Stuart Russell, et al. Algorithms for inverse reinforcement learning.
In International Conference on Machine Learning (ICML), 2000. 30, 31

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schul-
man, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell,
Peter Welinder, Paul F Christiano, Jan Leike, and Ryan Lowe. Training lan-
guage models to follow instructions with human feedback. In Advances in Neural
Information Processing Systems (NeurIPS), 2022. 30

Yangchen Pan, Amir-massoud Farahmand, Martha White, Saleh Nabi, Piyush
Grover, and Daniel Nikovski. Reinforcement learning with function-valued action
spaces for partial differential equation control. In Proceedings of the 35th Interna-
tional Conference on Machine Learning (ICML), volume 80, pages 3986–3995, Jul
2018. 29

Deepak Ramachandran and Eyal Amir. Bayesian inverse reinforcement learning.
In International Joint Conference on Artificial Intelligence (IJCAI), pages 2586–
2591, 2007. 30

Jeffrey S. Rosenthal. A Fist Look at Rigorous Probability Theory. World Scientific
Publishing, 2nd edition, 2006. 33

Stuart Russell. Learning agents for uncertain environments. In Annual conference
on Computational Learning Theory (COLT), pages 101–103, 1998. 30, 31

Richard S. Sutton. Learning to predict by the methods of temporal differences.
Machine Learning, 3(1):9–44, 1988. 23

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
The MIT Press, second edition, 2018. ii, 7

Csaba Szepesvári. Algorithms for Reinforcement Learning. Morgan Claypool Pub-
lishers, 2010. 7

Christopher J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, King’s
College, University of Cambride, 1989. 23

Christian Wirth, Riad Akrour, Gerhard Neumann, and Johannes Fürnkranz. A
survey of preference-based reinforcement learning methods. Journal of Machine
Learning Research (JMLR), 18(136):1–46, 2017. 30

54 BIBLIOGRAPHY

Brian D. Ziebart, J. Andrew Bagnell, and Anind K. Dey. The principle of maximum
causal entropy for estimating interacting processes. Information Theory, IEEE
Transactions on, 59(4):1966–1980, April 2013. ISSN 0018-9448. 30, 31

	Preface
	Introduction
	Setup
	Markov Decision Process (MDP)
	Following a Sequence of Policies (†)

	From Immediate to Long-Term Reward
	Finite Horizon Tasks
	Episodic Tasks
	Continuing Tasks

	Optimal Policy and Optimal Value Function
	An Instance of an RL Algorithm: Q-Learning
	A Few Remarks on the MDP Assumption
	On State
	On Reward
	On Time

	Applications of Reinforcement Learning

	Mathematical Background
	Probability Space
	Norms and Function Spaces
	Functional Analysis: Spaces, Operators, and Contraction Mapping
	Operators
	Contraction Mapping

	Matrix Norm and Some of its Properties
	Incremental Matrix Inversion
	Concentration Inequalities
	Information Theory
	Algebraic Inequalities

	Bibliography

