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Preface

These are lectures notes for a graduate-level Introduction to Reinforcement Learning
(RL) course, taught at the Department of Computer Science, University of Toronto,
in Spring 2021. The course is introductory in the sense that it does not assume
prior exposure to reinforcement learning. It is not, however, focused on being a
collection of algorithms or only providing high-level intuition. Instead, it tries to
build the mathematical intuition behind many important ideas and concepts often
encountered in RL. I prove many basic, or sometimes not so basic, results in RL. If
the proof of some result is too complicated, I prove a simplified version of it. This
course requires some level of mathematical maturity.

These lectures notes are a work in progress. New chapters will be added each
week during the course. The content may change dramatically in future revisions of
the work. Sometimes I have not had a chance to do a close proofread of each chapter
before posting them. I add a footnote at the beginning of each chapter showing what
stage of maturity the chapter is. The version 0.05 is for the first full draft, version
0.1 is after its first proofread and possible revisions, and the versions below 0.05 are
for incomplete chapters (which means that I have the content ready, but I haven’t
typed it yet).

If you find any typos or you find some parts not very clear or you have any
suggestion on how the content can be improved, please send an email to me at
csc2547-2021-01@cs.toronto.edu (especially if you are a student of the course, so I
won’t miss your email) or farahmand@vectorinstitute.ai. I would appreciate your
feedback.

i

mailto:csc2547-2021-01@cs.toronto.edu?subject=[LNRL]
mailto:farahmand@vectorinstitute.ai?subject=[LNRL]




Chapter 1

Introduction

Reinforcement Learning (RL) refers to both a type of problem and a set of compu-
tational methods for solving that type of problem.1 The RL problem is the problem
of how to act so that some notion of long-term performance is maximized. The RL
problem, by its very definition, is about acting and interaction of an entity, which
we call an agent, with its surrounding, which we call an environment. This is a very
general objective. One may argue that solving the AI problem is equivalent to the
RL problem.

Reinforcement learning also refers to a set of computational methods to solving
the RL problem. What kind of computation does an agent need to do in order to
ensure that its actions lead to good (or even optimal) long-term performance? The
methods that achieve these are known as RL methods.

Historically, only a subset of all computational methods that attempt to solve
the RL problem are known as the RL methods. For example, a method such as
Q-Learning (which we shall study in this course) is a well-regarded RL method, but
a method on evolutionary computation, such as the genetic algorithms, is not. One
can argue that evolutionary computation methods do not have much of a “learning”
component, or that they do not act at the timescale of an agent’s lifetime, but
act at the timescale of generations. While these are true distinctions, this way of
demarcation is somewhat arbitrary. In this lecture notes, we focus on methods that
are commonly studied within the “RL Community”.

Next, we informally discuss the setup of the RL problem. Before proceeding, I
would like to mention that there are very good textbooks on RL, which I encourage
you to consult. A very well-known textbook is by Sutton and Barto [2019]. It

1Chapter’s Version: 0.05 (2021 January 11).
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: Reinforcement Learning Agent

provides a good intuition on many of the concepts and algorithms that we discuss in
these lectures notes.

1.1 Setup

In RL, we often talk about an agent and its environment, and their interaction.
Figure 1.1 depicts the schematic of how they are related. The agent is the decision
maker and/or learner, and the environment is anything outside it with which the
agent interacts. For example, an agent can be the decision-maker part of a robot.
Or it can be the decision-maker of a medical diagnosis and treatment system. For
the robot agent, the environment is whatever is outside the robot, i.e., the physical
system. For the medical agent, the environment is the patient.

The interaction of the agent and its environment follows a specific protocol. The
current discussion is somewhat informal, but may help you understand the concept
before we formalize it. At time t, the agent observes its state Xt in the environment.
For example, this is the position of the robot in the environment. Or it can be the
vital information of a patient such as their temperature, blood pressure, EKG signal,
etc.
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The agent then picks an action At according to an action-selection mechanism.
This mechanism is called a policy π. It usually depends on the agent’s current state
Xt. The policy can be deterministic, which means that π is a function from the state
space to the action space and At = π(Xt), or it can be stochastic (or randomized),
which means that π defines a probability distribution over the action space that
depends on the state variable, i.e., At ∼ π(·|Xt). Here ∼ refers to the random
variable At being drawn from the distribution π(·|Xt). For example, the action can
be a “move forward with velocity of 1m/s” command for the robot problem, or “inject
10mg of Amoxicillin”.

Based on the selected action, the state of the agent in the environment changes
and becomes Xt+1. The state evolves according to the dynamics of the agent in the
environment, which is shown by P in the figure. This means that Xt+1 ∼ P(·|Xt, At).
The conditional distribution P is called transition probability kernel (or distribution).
For the robot example, the dynamics can be described by a set of electromechanical
equations that describe how the position of the robot (including its joints) change
when a certain command is sent to its motor. For the medical agent, the dynamics
is described by how the patient’s physiology changes after the administration of the
treatment. This is a very complex dynamics, which we may not have a set of equation
to describe.

The agent also receives a reward signal Rt. The reward signal is a real number,
and it specifies how “desirable” the choice of action At at the state Xt (possibly lead-
ing to state Xt+1) has been. Therefore, Rt ∼ R(·|Xt, At) or Rt ∼ R(·|Xt, At, Xt+1)
(we use the former in the rest, as it does not matter). The reward is a measure of the
performance of the agent at time t. For example, if our goal is for a robot to go to
a specific location and pick up an object, the reward might be defined as a positive
value whenever the robot achieves that goal. And it can be a zero value whenever
the robot is not doing anything relevant to the goal. It maybe even be negative when
it does something that ruins achieving the goal, for example breaks the object. In
this case, the negative reward is actually a punishment. For the medical agent case,
the reward might be defined based on the vital signs of the patient. For example, if
the patient at time t had an infection, and the action was an appropriate choice of
antibiotics, and at the next time t+1 (maybe a day later), the infection has subsided,
the agent receives a positive reward, say, +10.

This process repeats and as a result, the agent receives a sequence of state, actions,
and rewards:

X1, A1, R1, X2, A2, R2, · · · .

This sequence might terminate after a fixed number of time steps (say, T ), or until
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the agent gets to a certain region of the state space, or it might continue forever.

1.2 Markov Decision Process (MDP)

In this section, we formally define some of the important concepts that we require
throughout the course. The first important concept is the Markov Decision Process
(MDP). An MDP essentially defines the environment with which the agent interacts.

In the rest of this lecture notes, we denote M(Ω) as the space of all probability
distributions defined over the space Ω, and B(Ω) as the space of all bounded functions
defined over Ω. So, for example, M(R) is the space of all probability distribution
over real numbers, and similar for B(R). Refer to Appendix A.1 for more formal
definition. We are ready to formally define elements of MDP.

Definition 1.1. A discounted MDP is a 5-tuple (X ,A,P ,R, γ), where X is a mea-
surable state space, A is the action space, P : X × A → M(X ) is the transition
probability kernel with domain X ×A, R : X ×A →M(R) is the immediate reward
distribution, and 0 ≤ γ < 1 is the discount factor.

MDPs encode the temporal evolution of a discrete-time stochastic process con-
trolled by an agent. The dynamical system starts at time t = 1 with random initial
state X1 ∼ ρ where “ ∼ ” denotes that X1 is drawn from the initial state distribution
ρ ∈M(X ).2 At time t, action At ∈ A is selected by the agent controlling the process.
As a result, the agent goes to the next state Xt+1, which is drawn from P(·|Xt, At)
The agent also receives an immediate reward drawn from Rt ∼ R(·|Xt, At). Note that
in general Xt+1 and Rt are random, unless the dynamics is deterministic. This pro-
cedure continues and leads to a random trajectory ξ = (X1, A1, R1, X2, A2, R2, · · · ).
We denote the space of all possible trajectories as Ξ.

This definition of MDP is quite general. If X is a finite state space, the result
is called a finite MDP. The state space X can be more general. If we consider a
measurable subset of Rd (X ⊆ Rd), such as (0, 1)d, we get the so-called continuous
state-space MDPs. We can talk about other state spaces too, e.g., the binary lattices
{0, 1}d, the space of graphs, the space of strings, the space of distributions, etc. In
this course, we switch back and forth between finite MDPs and continuous MDPs.

Example 1.1. When X is finite (i.e., X = {x1, x2, . . . , xm}), the transition proba-
bility kernel P(·|·, a) is a matrix for any a ∈ A.

2The initial distribution µ is not a part of the definition of MDPs. When we talk about MDPs
as the descriptor of temporal evolution of dynamical systems, we usually implicitly or explicitly
define the initial state distribution.



1.2. MARKOV DECISION PROCESS (MDP) 5

Example 1.2 (Deterministic Dynamics). We can represent deterministic dynamics
such as (1.18) within the framework. If xt+1 = f(xt, at) for f : X ×A → X (we use
x instead of z to gradually make it similar to the notation that we use here), then the
transition probability kernel conditioned on a pair of (x, a) puts a probability mass of
1 at f(x, a). Using Dirac’s delta function’s notation,

P(x′|x, a) = δ(x′ − f(x, a)).

Remark 1.1. We use ‘x’ to denote the state and ‘a’ to denote the action in these
lectures. This is similar to how Szepesvári [2010] use it too. These are not the
only notation used in the literature, and definitely not the most commonly used one.
Sutton and Barto [2019] use ‘s’ for the state and ‘a’ for the action. The authors
from the control theory background tend to use ‘u’ for the action, and ‘i’ [Bertsekas
and Tsitsiklis, 1996] or ‘x’ for the state [Bertsekas, 2018].

The reason I use ‘x’ for state is partly historical and partly because of the following
justification: I find it more aligned with how the rest of ML, and even applied math,
use x as the input to a function. The fact that the input is an agent’s state does not
mean that we have to use a different notation. I find it slightly more appealing to see
f(x) instead of f(s), though nothing is inherently wrong with the latter usage. The
reason I stick to ‘a’ for the action, instead of ‘u’ commonly used in control theory,
does not have much of a justification other than showing the CS/AI roots of RL.

Let us tend to the policy π. Recall from Section 1.1 that the policy is the action-
selection mechanism of the agent. The goal of the RL agent is to find a “good”
policy, to be defined what it exactly means. Let us formally define it.

Definition 1.2 (Definition 8.2 and 9.2 of Bertsekas and Shreve [1978]). A policy is
a sequence π̄ = (π1, π2, . . .) such that for each t,

πt(at|X1, A1, X2, A2, . . . , Xt−1, At−1, Xt)

is a universally measurable stochastic kernel on A given X ×A× · · · × X ×A× X︸ ︷︷ ︸
2t−1 elements

satisfying
πt(A|X1, A1, X2, A2, . . . , Xt−1, At−1, Xt) = 1

for every (X1, A1, X2, A2, . . . , Xt−1, At−1, Xt).
If πt is parametrized only by Xt, that is

πt(·|X1, A1, X2, A2, . . . , Xt−1, At−1, Xt) = πt(·|Xt),

π̄ is a Markov policy.
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If for each t and (X1, A1, X2, A2, . . . , Xt−1, At−1, Xt), the policy πt assigns mass
one to a single point in A, π̄ is called a deterministic (nonrandomized) policy; if it
assigns a distribution over A, it is called stochastic or randomized policy.

If π̄ is a Markov policy in the form of π̄ = (π, π, . . .), it is called a stationary
policy.

This definition essentially categorizes whether the policy is time-dependent or
not, and whether it uses only the current state Xt or looks at the previous state and
action pairs too. Recall our earlier discussion on the definition of state, and that the
observation O might be different from the state of the agent. That is one of the cases
when we need to use a non-Markov policy. Since we assume that we have access to
the state Xt, we do not need to use non-Markov policies. In most of these lectures,
we only focus on stationary and Markov policies, and simply use “policy” to refer to
a stationary Markov policy π(·|x).

If a policy is stochastic, it would be a conditional distribution over the action
space depending on the state, i.e., π(·|x) ∈ M(A). If a policy is deterministic, it
would be a function from the state space X to the action space A, and we use π(x)
to refer to it.

We define the following terminology and notations in order to simplify our expo-
sition.

Definition 1.3. We say that an agent is “following” a Markov stationary policy π
whenever At is selected according to the policy π(·|Xt), i.e., At = π(Xt) (determin-
istic) or At ∼ π(·|Xt) (stochastic). The policy π induces two transition probability
kernels Pπ : X → M(X ) and Pπ : X × A → M(X × A). For a measurable subset
A of X and a measurable subset B of X ×A and a deterministic policy π, denote

(Pπ)(A|x) ,
∫
X
P(dy|x, π(x))I{y∈A},

(Pπ)(B|x, a) ,
∫
X
P(dy|x, a)I{(y,π(y))∈B}.

If π is stochastic, we have

(Pπ)(A|x) ,
∫
X
P (dy|x, a)π(da|x)I{y∈A},

(Pπ)(B|x, a) ,
∫
X
P (dy|x, a)π(da′|y)I{(y,a′)∈B}.
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The m-step transition probability kernels (Pπ)m : X →M(X ) and (Pπ)m : X ×A →
M(X ×A) for m = 2, 3, · · · for a deterministic policy π are inductively defined as3

(Pπ)m(A|x) ,
∫
X
P(dy|x, π(x))(Pπ)m−1(A|y),

(Pπ)m(B|x, a) ,
∫
X
P(dy|x, a)(Pπ)m−1(B|y, π(y)).

We may use Pπ(A|x;m) and Pπ(B|x, a;m) to refer to (Pπ)m(A|x) and (Pπ)m(B|x, a).
The difference between the transition probability kernels Pπ : X → M(X ) and
Pπ : X × A → M(X × A) is in the way the policy affects the action selection: in
the former, the action of the first step is chosen according to the policy, while in the
latter the first action is pre-chosen and the policy chooses the action in the second
step.

1.3 From Immediate to Long-Term Reward

Recall that the RL problem is the problem of how to act so that some notion of
long-term performance is maximized. In this section, we would like to elaborate on
the meaning of “long-term”. Along the way, we learn about important concepts such
as return and value functions. It turns out that we can define long-term in different
ways. We discuss some of them here. Before that, however, let us start with a simpler
problem of maximizing the immediate (or short-term) performance first.

Suppose that an agent starts at stateX1 ∼ ρ ∈M(X ), chooses actionA1 = π(X1)
(deterministic policy), and receives a reward of R1 ∼ R(·|X1, A1). This ends one
round of interaction of the agent and its environment. The agent then restarts,
samples another (independent) X1 ∼ ρ ∈ M(X ), and repeats as before again and
again. We call each of these rounds an episode. Here the episode only lasts one
time-step.

How should this agent chooses its policy in order to maximize its performance?
To answer this question, we need to specify what performance actually refers too.
There are several sensible ways to define it one of which is to talk about the average
(expected) reward that the agent receives within one episode. This meaning of average
here is that if the agent repeats this interaction with the environment for many
episodes (infinitely), how much reward it receives in average. So the averaging is
over the episodes.

3The definition for the stochastic policy would be similar.
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If we define the performance in this way, answering the question of how the agent
should act to maximize this notion of performance is easy. Let us define expected
reward as

r(x, a) , E [R|X = x,A = a] . (1.1)

Here the random variables (r.v.) R is distributed according to R(·|x, a).

In order to maximize the expected reward, the best action depends on the state
the agent initially starts with. At state x, it should choose

a∗ ← argmax
a∈A

r(x, a).

This is the best, or optimal, action at state x.4 By the definition of argmax, no choice
of action can gather more rewards in expectation. With this choice, we can define
the optimal policy π∗ : X → A as the function that at each state x returns

π∗(x)← argmax
a∈A

r(x, a). (1.2)

Note that the optimal policy depends on the agent’s initial state. It does not
depend on initial distribution ρ.

Exercise 1.1. Describe a similar setup where the optimal policy depends on ρ. The
performance measure should still be the expected reward that the agent receives. But
feel free to change some crucial aspect of the agent.

Exercise 1.2. Explain how a standard supervised learning problem can be formulated
as finding the policy that maximizes the immediate expected reward. To be concrete,
focus on the binary classification problem. What is the state x? What is the action
a? And what is the reward r(x, a)?

Exercise 1.3. We equate the performance as maximizing the expected reward. What
other sensible performance measures can you think of? It should still be related to
the rewards that the agent receives in its episode.

Let us consider some setups where the agent interacts with the environment for
multiple steps.

4If there are more than one action that attains maxa∈A r(x, a), the agent can choose any of
them.
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1.3.0.1 Finite Horizon Tasks

Here the idea is that agent interacts with the environment for a fixed T ≥ 1 number
of steps. When T = 1, this is the same as what we already discussed, but when
T > 1, it is different.

To be more concrete, within each episode, the interaction of the agent following
a policy π goes like this:

• The agent starts at X1 ∼ ρ ∈M(X ).

• It chooses action A1 = π(X1) (or A1 ∼ π(·|X1) for a stochastic policy)

• The agent goes to the next-state X2 ∼ P(·|X1, A1) and receives reward R1 ∼
R(·|X1, A1).

• The agent chooses A2 = π(X2) (or A2 ∼ π(·|X2) for a stochastic policy).

• The agent goes to the next-state X3 ∼ P(·|X2, A2) and receives reward R2 ∼
R(·|X2, A2).

• This process repeats for several steps until ...

• XT ∼ P(·|XT−1, AT−1).

• RT ∼ R(·|XT−1, AT−1).

Afterward, the agent starts a new episode.5

How should we evaluate the performance of the agent as a function of the reward
sequence (R1, R2, . . . , RT )? A common choice is to compute the sum of rewards:

Gπ , R1 + . . .+RT . (1.3)

The r.v. Gπ is called the return of following policy π. As it is random, its value in each
new episodes would be different (unless the dynamics and policy are deterministic,
and ρ always selects the same initial state; or other similar cases).

Another choice is to consider discounted sum of rewards. Given a discount factor
0 ≤ γ ≤ 1, we define the return as

Gπ , R1 + γR2 + . . .+ γT−1RT . (1.4)

5We could generalize the interaction by allowing P and R to be time-dependent. In that case,
Xt+1 ∼ Pt(·|Xt, At) and Rt ∼ R(·|Xt, At).
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Whenever γ < 1, the reward that is received earlier contributes more to the return.
Intuitively, this means that such a definition of return values earlier rewards more,
e.g., you prefer to get a cookie today instead of tomorrow, and you prefer a cookie
tomorrow to a cookie a week later (assuming that you like cookies). How much
exactly your preference changes depends on the value of γ. The discount factor has
a financial interpretation too and is related to the inflation rate.6 The inflation is
the rise over time in the average price (usually over a large part of the market, for
example, the consumer goods and services). If the price of a certain set of goods
has changed from $1 to $(1 + rateinflation) next year, the inflation is rateinflation per
year. This means that whenever rate > 0, the value of a dollar this year is more
than a value of dollar next year. So if you have a choice in receiving a dollar this
year or some amount of dollar next year, you need to consider the inflation rate, and
discount the value of dollar next year by γ = 1

1+rateinflation
. Of course, this is all based

on the assumption that you do not have an immediate need for that dollar, so you
can potentially postpone the time you receive it.

The return (1.4) (and (1.3) as a special case) is a random variable. To define a
performance measure that is not random, we compute its expectation. We define

V π(x) , E

[
T∑
t=1

γt−1Rt|X1 = x

]
. (1.5)

This is the expected value of return if the agent starts at state x and follows policy
π. The function V π : X → R is called the value function of π.

More generally, we can define the return from time τ = 1, . . . , T until the end of
episode (which is time T ) as

Gπ
τ ,

T∑
t=τ

γk−1Rt. (1.6)

And likewise, define the value function at time τ to be

V π
τ (x) , E [Gπ

τ |Xτ = x] . (1.7)

Clearly, V π
1 is the same as V π in (1.5).

Comparing the expected return (1.1) and the value function is instructive. We
first focus on T = 1. We get that

V π(x) = E [R1|X = x] .

6I do not have any background in finance, so take my interpretation with a grain of salt.
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This is similar to r(x, a) = E [R|X = x,A = a] with the difference that r(x, a) is
conditioned on both x and a, whereas V π is conditioned on x. The choice of a
in V π is governed by the policy π, and is a = π(x) (deterministic) or A ∼ π(·|x)
(stochastic). If we define

rπ(x) , E [R|X = x] (1.8)

with A ∼ π(·|x), we get that rπ = V π. Of course, this equality is only true for T = 1.
For T > 1, V π captures the long-term (discounted) average of the rewards, instead
of the expected immediate reward captures by rπ.

For T = 1, finding the optimal policy given r(x, a) is easy because we can simply
find the action that maximizes it (1.2).7 Finding the optimal policy given V π may
seem to be less straightforward. We need to search over the space of all deterministic
or stochastic policies. For example, if we denote the space of all stochastic policies
by

Π = { π : π(·|x) ∈M(A),∀x ∈ X } (1.9)

we need to find
π∗ ← argmax

π∈Π
V π.

It turns out that this problem is not too difficult when T = 1. As the values of V π

at two different states x1, x2 ∈ X do not have any interaction with each other, we
find the optimal policy at each state separately. Note that for each x ∈ X ,

V π(x) =

∫
R(dr|x, a)π(da|x) =

∫
π(da|x)r(x, a).

Find a π(·|x) that maximizes V π(x) means that

sup
π(·|x)∈M(A)

∫
π(da|x)r(x, a). (1.10)

The maximizing distribution can concentrate all its mass at the action a∗ that max-
imizes r(x, a) (assuming it exists). Therefore, π∗(a|x) = δ(a − argmaxa′∈A r(x, a

′))
(or equivalently, π∗(x) = argmaxa∈A r(x, a)) is an optimal policy at state x.

When T > 1, this argument does not hold anymore and finding the optimal policy
is more difficult. The reason is that the choice of action at each time step affects
the future states, so we have to be careful in choosing the policy. We spend a great
deal of time on algorithms to solving this problem (though not for the finite horizon
problems, but for another type that we shall introduce soon).

7Assuming that finding the maximizer is easy. For a finite (and small) action space, it is. But
for a general action spaces, it is not.
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1.3.0.2 Episodic Tasks

In some scenarios, there is a final time T that the episode ends (or terminates), but it
is not fixed a priori. For example, think of playing of a board game such as chess (it
ends whenever one side checkmates the other or they reach a draw), moving through
a maze (it ends whenever the agent reaches a goal state), or a robot successfully picks
up an object and places it in another location. For these problems, the episode ends
(or terminates) whenever the agent reaches a certain state xterminal within the state
space, that is, it terminates whenever XT = xterminal.

8 For these problems, called
episodic problems, the length of the episode T is a random variable. We can define
the return as before: For 0 ≤ γ ≤ 1, we have

Gπ ,
T∑
k=1

γk−1Rk, (1.11)

and

V π(x) , E [Gπ|X1 = x] . (1.12)

If γ < 1, these definitions are always well-defined. If γ = 1, we need to ensure
that the termination time T is finite. Otherwise, the summation might be divergent
(just imagine that all Rt are equal to 1). We do not get into analysis of episodic
problem with γ = 1, so we do not get into more detail here anymore. Refer to Section
2.2 (Stochastic Shortest Path Problems) by Bertsekas and Tsitsiklis [1996].

1.3.0.3 Continuing Tasks

Sometimes the interaction between the agent and its environment does not break into
episodes that terminates. It goes on continually forever. For example, this might be
the case for a life-long robot or a chemical plant that is supposed to work for a long
time. Of course, nothing in practice lasts forever, so the mathematical framework
on continuing tasks is an abstract idealization of tasks that may take a long time.

Consider the sequence of rewards (R1, R2, . . . ) generated after the agent starts at
state X1 = x and follows policy π. Given the discount factor 0 ≤ γ < 1, the return
is

Gπ
t ,

∑
k≥t

γk−tRk. (1.13)

8It might be more intuitive to think about the terminal states Xterminal, instead of a singular
one. Mathematically, it does not matter.
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We can also define the value function, as before. Since this is the value function that
we will use for the rest of the lectures, we define it formally.

Definition 1.4 (Value Functions). The (state-)value function V π and the action-
value function Qπ for a policy π are defined as follows: Let (Rt; t ≥ 1) be the sequence
of rewards when the process is started from a state X1 (or (X1, A1) for the action-
value function) drawn from a positive probability distribution over X (or X ×A) and
follows the policy π for t ≥ 1 (or t ≥ 2 for the action-value function). Then,

V π(x) , E

[
∞∑
t=1

γt−1Rt|X1 = x

]
,

Qπ(x, a) , E

[
∞∑
t=1

γt−1Rt|X1 = x,A1 = a

]
.

In words, the value function V π evaluated at state x is the expected discounted
return of following the policy π from state x. The action-value Qπ function evaluated
at (x, a) is the expected discounted return when the agent starts at state x, takes
action a, and then follows policy π.

The action-value function Qπ and value function V π are closely related. The
difference is that the first action A1 in V π is selected according to π(·|X1), but the
first action in Qπ(x, a) is the pre-specified action a. So

V π(x) = E [Qπ(x,A)] =

∫
π(da|x)Qπ(x, a). (1.14)

If γ = 0, Qπ = E [R1|X1 = x,A1 = a]. This is the same as the expected immediate
reward r(x, a). The same way that we could easily compute the optimal action using
r(x, a) in the finite-horizon problem with T = 1, we shall see that we can use Qπ (in
continual task) in order to easily compute the optimal policy.

Note that an episodic task can be seen as a continuing task with a special state
xterminal from which the agent cannot escape and it always gets a reward of zero, i.e.,

P(xterminal|xterminal, a) = 1, ∀a ∈ A
R(r|xterminal, a) = δ(r), ∀a ∈ A.

1.4 Optimal Policy and Optimal Value Function

What does it mean for an agent to act optimally? To start thinking about this
question, let us first think about how we can compare two policies π and π′. For
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Figure 1.2: For any policy π, we have that V π∗ ≥ V π. Here the values V π1 and V π2

of two sub-optimal policies π1 and π2 are shown.

the moment, we can assume that they are Markov stationary policies, so the action
selection is based on At ∼ π(·|Xt) (and not At ∼ π(·|Xt, Xt−1, Xt−2, . . . ) or At ∼
πt(·|Xt)). We say that π is better than or equal to π′ (i.e., π ≥ π′) iff V π(x) ≥ V π′(x)
for all states x ∈ X . This is shown in Figure 1.2.

If we can find a policy π∗ that satisfies π∗ ≥ π for any π, we call it an optimal
policy. There may be more than one optimal policy. Despite that, their values should
be the same, i.e., if we have two different π∗1 and π∗2, we have V π∗1 (x) ≥ V π∗2 (x) and
V π∗1 (x) ≤ V π∗2 (x) for all x ∈ X , which entails that V π∗1 = V π∗2 . If we denote Π as the
space of all stationary Markov polices, this means that

π∗ ← argmax
π∈Π

V π, (1.15)

where one of the maximizers is selected in an arbitrary way. The value function of
this policy is the called the optimal value function, and is denoted by V π∗ or simply
V ∗. We can also define the optimal policy based on Qπ, i.e.,

π∗ ← argmax
π∈Π

Qπ. (1.16)

The optimal action-value function is denoted by Qπ∗ or Q∗.
For the immediate reward maximization problem (or equivalently, when T = 1

for a finite horizon problem), the solution was easy to find, see (1.2) and (1.10). It is
not obvious, however, that such a policy exists for the continuing discounted tasks.
It might be the case that no single policy can dominate all others for all states. For
example, it is imaginable that at best we can only hope to find a π∗ that is better
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than any other policy π only on a proper subset of X , perhaps depending on π, but
not everywhere.

It is also not obvious why we should focus on stationary policies. Isn’t it possible
to have a policy π̄ = {π1, π2, . . .} that depends on the time step and acts better than
any stationary policy π̄ = {π, π, . . .}?

If we find satisfactory answers to these questions, a more pragmatic question
remains: How we can compute π∗ if we know the MDP (which means that we know
P and R)?

And even more interesting is the question of how we can learn π∗, or a close
approximation thereof, without actually knowing the MDP, but only have samples
coming from interacting with the MDP.

We study the question about the existence and properties of the optimal policy
in Chapter 2. The short answer is that for continual discounted problems, the op-
timal policy is indeed a stationary Markov policy. Moreover, we can always find a
deterministic optimal policy too.

Chapter 3 introduces several methods for computing the optimal policy given a
known model P and R. We study some of their properties, and prove their conver-
gence to the optimal policy. We call the setting when the model is known as the
planning setting.

When we do not know P or R, we are in the reinforcement learning setting. In
that setting, we do not have a direct access to the model, but instead we can only
interact with the MDP by selecting action At at state Xt, and getting a reward Rt ∼
R(·|Xt, At) and going to the next state Xt+1 according to the transition probability
kernel. It turns out that many of the methods for planning can be modified to become
a learning algorithm. Therefore, it is good to get a good grasp of planning methods
first instead of delving into RL from the beginning. We introduce and analyze some
methods for solving RL problems in Chapter 4. The focus of that chapter is on the
RL problems with finite state and action spaces. We turn to problems with large
state and action spaces (e.g., when X is a subset of Rd) in later chapters.9

1.5 An Instance of an RL Algorithm: Q-Learning

It takes a while before we get into any RL algorithm, so it is good to see an example of
such an algorithm before starting our excursion into the properties of MDPs (Chap-
ter 2) and the planning methods (Chapter 3) until we finally get to RL algorithms
in Chapter 4.

9The detail of chapter information will be determined later.
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Algorithm 1.1 Q-Learning

Require: Step size α ∈ (0, 1]
1: Initialize Q : X×A → R arbitrary, except that for xterminal, set Q(xterminal, ·) = 0.
2: for each episode do
3: Initialize X1 ∼ ρ
4: for each step t of episode do
5: At ∼ π(·|Xt), . Action selection
6: Take action At, observe Xt+1 and Rt . The environment chooses
Xt+1 ∼ P(·|Xt, At) and Rt ∼ R(·|Xt, At).

7: Q(Xt, At)← Q(Xt, At) + α [Rt + γmaxa′∈AQ(Xt+1, a
′)−Q(Xt, At)]. .

Q-Learning Update Rule
8: end for
9: end for

Q-Learning (Algorithm 1.1) is the quintessential RL algorithm, introduced by
Christopher Watkins [Watkins, 1989, Chapter 7 – Primitive Learning]. Q-Learning
itself is an example of the Temporal Difference (TD) learning [Sutton, 1988].

The choice of policy π in Line 1.1.5 is not specified. The Q-Learning algorithm
can work with variety of choices for π. A common choice is to use the ε-greedy policy.
The ε-greedy policy πε(Q) for an 0 ≤ ε ≤ 1 chooses the action as follows: Given the
current estimate of the action-value function Q, it chooses the action that maximizes
the action-value function at the current state Xt with probability 1− ε, and chooses
a (possibly uniformly) random action with probability ε. Mathematically,

At =

{
argmaxa∈AQ(Xt, a) w.p. 1− ε
uniform(A) w.p. ε

(1.17)

Usually the value of ε is small and may go to zero as the agent learns more about
its environment.

The update rule for Q-Learning is Line 1.1.7. We notice that it does not directly
use the model P or R, but uses the tuple (Xt, At, Rt, Xt+1) in order to update the
action-value function Q.

Under certain conditions, including how the learning rate α should be selected,
the Q-Learning algorithm can be guaranteed to converge to the optimal action-value
function Q∗. As we shall see later, we can use Q∗ to find the optimal policy π∗. We
shall try to understand why this is the case in the next few chapters.
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1.6 A Few Remarks on the MDP Assumption

Before finishing this chapter, a few remarks are in order. Perhaps the most crucial
one is the definition of state. What is a state? Is any variable that the agent observes
a state? The way we use the state here is that the state of the agent at time t is a What is a state vari-

able?variable that summarizes whatever has happened to the agent up to that time step.
Knowing the state is enough to know (probabilistically) what will happen to the
agent in the future. In other words, the state is a sufficient statistic of the history.

To make this more clear, let us introduce another concept called observation.
An observation Ot is the variable that the agent actually observes using its various
sensors. For example, it might be the camera input for the robot agent, or the
temperature and blood pressure for the medical agent. The observation alone may
not be sufficient to know “everything” that we could know about the agent given
the information so far. For example, by only having an access to the current cam-
era image, we do not know whether the robot is moving forward or backward or
something is getting close to it or far from it (as the velocity information cannot be
inferred from the position information alone). Or as another example, if we can only
observe the blood pressure and heart rate, we cannot know everything that could be
known about the agent. The information might be there, if we looked at the previous
observations.

Whatever has happened to the agent up to time t is in its history Ht variable

Ht = (O1, A1, . . . , Ot−1, At−1, Ot).

The history Ht summarizes whatever has happened to the agent up to time t.
Given Ht, we can inquire about the probability distribution

P {Ot+1|Ht, At} .
This is all we can hope to know about the future, given the information that we
have. Now, if we do not look at Ht, but only look at the current observation Ot, we
can still form P {Ot+1|Ot, At}, but it has more “uncertainty” about the probability
of Ot+1. We are losing information by not looking at Ht.

The variable Ht is a state of the agent at time t. But it is not a compact one,
as its size gradually increases. If it happens that we can find another variable Xt,
which is a function of Ht but perhaps of a compact form, that satisfies

P {Ot+1|Ht, At} = P {Ot+1|Xt, At} ,
we can replace Ht with Xt. This Xt is the state of the system in the sense described
above. In the rest of these lectures, we assume that the agent has access to such a
state variable.
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Finding such a summary is not always complicated. Consider a dynamical system
described by the following equation:

zt+1 = f(zt, at), (1.18)

where z ∈ Rm, a ∈ Rn, and f : Rm × Rn → Rm. For example, if

f(z, a) = Mz +Na,

with M ∈ Rm×m and N ∈ Rm×n, we have a linear dynamical system. Sup-
pose that the observation is ot = zt. In this case, we do not need to keep ht =
(z1, a1, . . . , zt−1, at−1, zt) as a state of the system; the observation ot alone is enough
to know whatever has happened to the system up to time t. We can disregard
zt−1, at−1, zt−2, etc. Now suppose that the observation is ot = g(zt) with g : Rm → Rd.
In this case, depending on the function g, the observation ot may or may not be a
state. For example, if g is not a bijection (one-to-one correspondence), it is likely
that we lose o being a state. However it may be possible that we can still process ht
and find a compact representation xt that is a state of the agent.

Most (all?) physical systems can be written by an equation similar to (1.18).10

If we have such a description of the dynamics, the state is often clear as long as we
observe the right variable.

Exercise 1.4. A ball is free falling under the Earth’s gravity. The state is the vector
described by its location x(t) at its velocity v(t) = ẋ(t). If we only observe x(t), that
is not enough to know the (physical) state of the ball. How can you estimate the state
using only the location information?

Exercise 1.5. In Atari games, a single frame is not a state of the agent. Explain
why.

The other remark is regarding the reward signal. How do we determine the reward
signal Rt? The reward signal encodes the desire of the problem designer. It is a partWhere does reward

come from? of the problem specification. In biological systems, however, the reward signal has
not been designed, but has been evolved. The reward mechanism of animals has
been evolved so that the chance of survival increases. Throughout this course, we
assume that the reward signal is given. We should mention that there has been work
in evolving the reward signal itself.

10To be more accurate, almost all physical systems are written in the form of a differential
equation, so we have dz

dt (t) = f(zt, at) instead. But this is not a crucial difference here.



Chapter 2

Structural Properties of Markov
Decision Processes

In this chapter we study some important properties of the value function V π and
Qπ of a policy π, the optimal value functions V ∗ and Q∗, and the optimal policy π∗

itself.1 We also introduce the Bellman operators and study their properties such as
monotonicity and contraction. What these mean will become clear soon. We focus
on the discounted continuing tasks.

2.1 Bellman Equations

2.1.1 Bellman Equations for Value Functions of a Policy

Recall that the return Gπ (1.13) is a r.v. defined as

Gπ
t ,

∑
k≥t

γk−tRk.

Comparing Gπ
t and Gπ

t+1, we observe that

Gπ
t = Rt + γGπ

t+1. (2.1)

This shows that the return at the current time is equal to the reward at time t
plus the discounted return at the next time step. This recursive structure is very
important in MDPs, and many Planning and RL algorithms benefit from it.

Let us take a closer look at the return and its recursive property.

1Chapter’s Version: 0.05 (2021 January 26).
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When the agent is at a particular state x at time t, it chooses At ∼ π(·|Xt). The
action is, in general, a random variable. The next-state Xt+1 ∼ P(·|Xt, At) and the
reward Rt ∼ R(·|Xt, At) are r.v. too. Continuing this process, we get a sequence of
rewards, which define return Gπ

t , which would be a r.v. in general.
Now suppose that the exact same agent restarts at state x and follows the same

policy π. This time the draws of r.v. would be different, which means that the agent
chooses a different A′t, the next-state X ′t+1, reward R′t, etc. The resulting return G′πt
takes a different value, even though its distribution is the same.

Exercise 2.1. Describe a situation when the return Gπ
t would always be the same.

Even though the actual value of the return Gπ
t , starting from the same state x, is

different in each run, they all have the same distribution. As a result, if we take its
expectation, it would be the same (and would be equal to the value function V π at
state x). By computing the expected value of the return, we can reveal an important
recursive property of the value function V π. For any x ∈ X , we have

V π(x) = E [Gπ
t | Xt = x]

= E
[
Rt + γGπ

t+1 | Xt = x
]

= E [R(Xt, At) | Xt = x] + γE
[
Gπ
t+1 | Xt = x

]
= rπ(x) + γE [V π(Xt+1) | Xt = x] ,

where in the first equality, we simply substituted the definition of the value function
(Definition 1.4); we used the recursive property of the return (2.1) in the second
equality; and used the definition of the expected reward while choosing action ac-
cording to π in the last one (1.8). This is similar to (2.1), except that as opposed to
it, neither sides are random.

Let us pay attention to E [V π(Xt+1) | Xt = x]. This is the expected value of
V π(Xt+1) when the agent is at state x at time t, chooses action A ∼ π(·|x). If we
expand it, we get

E [V π(Xt+1) | Xt = x] =

∫
P(dx′|x, a)π(da|x)V π(x′).

Likewise, for countable state-action spaces, we have

E [V π(Xt+1) | Xt = x] =
∑
x′,a

P(x′|x, a)π(a|x)V π(x′).

Therefore, we get that for any x ∈ X , it holds that

V π(x) = rπ(x) + γ

∫
P(dx′|x, a)π(da|x)V π(x′). (2.2)
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This is known as the Bellman equation for a policy π. Using the notation of Pπ (1.3),
we can also write it as

V π(x) = rπ(x) + γ

∫
Pπ(dx′|x)V π(x′).

The Bellman equation gives us an interpretation of the value function V π: The value
of following a policy π starting from the state x is the reward that the agent receives
at that state plus the discounted average (expected) value that the agent receives at
the next-state that is generated by following policy π.

We can also write the Bellman equation more compactly:

V π = rπ + γPπV π.

These are all known as the Bellman equation for a policy π. Note that it defines
a linear system of equations in V π. We will later show that the only V that satisfies
this equation is V π, i.e., if we find a V such that V = rπ+γPπV , that V is necessarily
the same as V π, the value function of a policy π.

The action-value function Qπ also satisfies a Bellman equation:

Qπ(x, a) = r(x, a) + γ

∫
P(dx′|x, a)V π(x′) (2.3)

= r(x, a) + γ

∫
P(dx′|x, a)π(da′|x′)Qπ(x′, a′), (2.4)

or more compactly,

Qπ = r + γPV π,

with the understanding that V π and Qπ are related as V π(x) =
∫
π(da|x)Qπ(x, a),

see (1.14). The difference with the Bellman equation for V π is that the choice of
action at the first time step is pre-specified, instead of being selected by policy π.

Exercise 2.2. What is the interpretation of Qπ(x, a) based on the Bellman equation?

Exercise 2.3. Write down the Bellman equation for a deterministic policy π : X →
A.

Exercise 2.4. Write down the Bellman equation for a deterministic dynamical sys-
tem (xt+1 = f(xt, at) – see Example 1.2) and deterministic policy π : X → A.
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2.1.2 Bellman Equations for Optimal Value Functions

Recall that the optimal policy π∗ is a policy that satisfies π∗ ≥ π for any (stationary
Markov) policy π. Based on this definition, it also satisfies (cf. (1.15))

π∗ ← argmax
π∈Π

V π.

Given an optimal policy, the optimal value function would be V π∗ . Here we restricted
the search of the policy to the space of stationary policies. We discussed in Section 1.4
that it is imaginable that one can find a non-stationary policy that is better than
this stationary optimal policy. In that case, calling such a policy an “optimal” one
would be questionable. Nevertheless, we should not worry about it as one can show
that for discounted continuing MDPs, we can find a stationary policy that is optimal
within the space of all stationary and non-stationary policies.

Does the optimal value function V π∗ satisfy a recursive relation similar to the
Bellman equation for a policy π? It turns out that it does. We should proceed
carefully in our claims.

First, we claim that there exists a unique value function V ∗ that satisfies the
following equation: For any x ∈ X , we have

V ∗(x) = max
a∈A

{
r(x, a) + γ

∫
P(dx′|x, a)V ∗(x′)

}
. (2.5)

This equation is called the Bellman optimality equation for the value function. We
prove the existence and uniqueness of V ∗ later in this chapter.

The second claim is that it turns out V ∗ is indeed the same as V π∗ , the optimal
value function when π is restricted to be within the space of stationary policies.

The third claim is that for discounted continuing MDPs, we can always find a
stationary policy that is optimal within the space of all stationary and non-stationary
policies.

These three claims together show that the Bellman optimality equation (2.5)
reveals the recursive structure of the optimal value function V ∗ = V π∗ . In the rest
of these lectures, we often use V ∗ to refer to the optimal value function, unless we
want to emphasize its dependence on the optimal policy, in which case we use V π∗ .

To define the optimal state-value function, we started from the the relation that
π ≥ π′ iff for all states x ∈ X , we have V π(x) ≥ V π′(x). This relation, however,
could be defined based on the action-value functions. That is, we could say that
π ≥ π′ iff for all state-actions (x, a) ∈ X × A, we have Qπ(x, a) ≥ Qπ′(x, a). This
would allow us to define

π∗ ← argmax
π∈Π

Qπ.
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Let us use V π ≥ V π′ as a short form for V π(x) ≥ V π′(x) for all x ∈ X ; similarly,
we use Qπ ≥ Qπ′ as a short form for Qπ(x, a) ≥ Qπ′(x, a) for all (x, a) ∈ X . The
following proposition shows that these relations are equivalent.

Proposition 2.1. Given two policies π, π′, V π ≥ V π′ ⇐⇒ Qπ ≥ Qπ′.

Proof. Suppose that V π(x) ≥ V π′(x) for all x ∈ X . We write the action-value
functions Qπ and Qπ′ in terms of the value function V π and V π′ using (2.3). For any
(x, a) ∈ X , we have

Qπ(x, a) = r(x, a) + γ

∫
P(dx′|x, a)V π(dx′)

≥ r(x, a) + γ

∫
P(dx′|x, a)V π′(dx′) = Qπ′(x, a).

So whenever V π(x) ≥ V π′(x), we also have Qπ(x, a) ≥ Qπ′(x, a).
To see the other direction, recall from (1.14) that V π(x) =

∫
π(da|x)Qπ(x, a).

Thus, if Qπ(x, a) ≥ Qπ′(x, a) for all (x, a) ∈ X ×A, we also have that for any x ∈ X ,

V π(x) =

∫
π(da|x)Qπ(x, a) ≥

∫
π(da|x)Qπ′(x, a) = V π′(x).

Therefore, the relation V π ≥ V π′ is the same as Qπ ≥ Qπ′ . The result is that we
can define the optimal policy as the one that satisfies π∗ ← argmaxπ∈ΠQ

π.
We can define the Bellman optimality equation for the action-value functions,

similar to (2.5). We have that for any (x, a) ∈ X ×A,

Q∗(x, a) = r(x, a) + γ

∫
P(dx′|x, a) max

a′∈A
Q∗(x′, a′). (2.6)

This equation is called the Bellman optimality equation for the value function. Simi-
lar to V ∗, it can be shown that such a Q∗ exists and is unique. Moreover, the relation
of the solution Q∗ of this equation and the action-value function Qπ∗ of the optimal
policy is the same as the relation of V ∗ and V π∗ : we have that Q∗ = Qπ∗ .

2.2 From Optimal Value Function to Optimal

Policy through Greedy Policy

If we know the optimal value functions V ∗ or Q∗, we can compute the optimal policy
π∗ relatively easily. We can choose a deterministic optimal policy π∗ : X → A. For
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any x ∈ X , the optimal policy is2

π∗(x) = argmax
a∈A

Q∗(x, a)

= argmax
a∈A

{
r(x, a) + γ

∫
P(dx′|x, a)V ∗(x′)

}
.

Let us discuss this to gain a better understanding. Suppose that the agent is state
x. If it wants to act optimally, it needs to act optimality both at the current time
step (Now) and then afterwards in the Future time steps. If at either Now or Future,
it doesn’t act optimally, the decision would not be optimal and it can improve its
decisions at Now or the Future to obtain a higher value. Suppose that we know
that the agent is going to act optimally in the Future. This means that when it get
to the next state X ′ ∼ P(·|x, a), given its choice of action a, it follows the optimal
policy π∗. The value of following the optimal policy is going to be V ∗(X ′). Since
we do not know where the agent will be at the next time step, and our performance
criteria is the expected return, the performance of acting optimally in the Future,
given its current choice of action a, is

∫
P(dx′|x, a)V ∗(x′). As we are dealing with

discounted tasks, the performance of the agent at the current state x is going to be
r(x, a) + γ

∫
P(dx′|x, a)V ∗(x′). To act optimally Now, the agent should choose an

action that maximizes this value, which is exactly what we have above. Of course,
this is the same action that maximizes the right-hand side (RHS) of (2.5).

The mapping that selects an action by choosing the maximizer of the (action-)
value function is called the greedy policy. For an action-value function Q ∈ B(X×A)
(not necessarily the optimal one or for a particular policy), the greedy policy πg :
X × B(X ×A)→ A is defined as

πg(x;Q) = argmax
a∈A

Q(x, a).

Likewise, for a value function V ∈ B(X ), the greedy policy is3

πg(x;V ) = argmax
a∈A

{
r(x, a) + γ

∫
P(dx′|x, a)V (x′)

}
. (2.7)

When we do not explicitly state the dependence on x, πg(V ) and πg(Q) denote
functions from X to A. Clearly, πg(V

∗) = πg(Q
∗) = π∗.

The intuition behind the greedy policy is that it chooses the action only based
on the local information. It does not compute the value of all possible future actions

2This is the consequence of Proposition 2.5, which we shall prove.
3If there are more than one maximizer, any of them can be chosen.
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and picks the action sequence that maximizes the expected return. Instead, it only
looks one step ahead (for V ) or even no-step ahead (for Q) in order to pick the action.
This is a myopic action selection mechanism. Nevertheless, if we pass V ∗ or Q∗ to
the greedy policy, the selected action is going to be the optimal one. This is because
the optimal value functions encodes the information about the future, so we do not
need to explicitly consider all possible futures.

2.3 Bellman Operators

The Bellman equations can be seen as the fixed point equation of certain operators
known as the Bellman operators.4 The Bellman operators are mapping from the
space of value functions (or action-value function) to the space of value functions (or
action-value functions). They are formally defined as follows.

Definition 2.1 (Bellman Operators for policy π). Given a policy π : X → M(A),
the Bellman operators T π : B(X ) → B(X ) and T π : B(X × A) → B(X × A) are
defined as the mapping

(T πV )(x) , rπ(x) + γ

∫
P(dx′|x, a)π(da|x)V (x′), ∀x ∈ X

(T πQ)(x, a) , r(x, a) + γ

∫
P(dx′|x, a)π(da′|x′)Q(x′, a′), ∀(x, a) ∈ X ×A.

Here we are overloading the same notation to refer to two different operators. Its
interpretation should be clear from the context and whether the function they are
applied to is of the dimension of the value function or the action-value function.

If the policy is deterministic, the Bellman operators become

(T πV )(x) , rπ(x) + γ

∫
P(dx′|x, π(x))V (x′), ∀x ∈ X

(T πQ)(x, a) , r(x, a) + γ

∫
P(dx′|x, a)Q(x′, π(x′)), ∀(x, a) ∈ X ×A.

Comparing the Bellman equations (2.2) and (2.4) with the definition of the Bell-
man operator, we observe that the Bellman equations are in fact the fixed point
equation defined based on the Bellman operators, i.e.,

V π = T πV π,

Qπ = T πQπ.

4Recall that if L : Z → Z is an operator (or mapping) from a space Z to Z, the point z
satisfying Lz = z is called the fixed point of L. Refer to Definition A.7 in Appendix A.3.
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This is a compact form of Bellman equations.
We can define the Bellman optimality operators similarly.

Definition 2.2 (Bellman Optimality Operators). The Bellman operators T ∗ : B(X )→
B(X ) and T ∗ : B(X ×A)→ B(X ×A) are defined as the mapping

(T ∗V )(x) , max
a∈A

{
r(x, a) + γ

∫
P(dx′|x, a)V (x′)

}
, ∀x ∈ X

(T ∗Q)(x, a) , r(x, a) + γ

∫
P(dx′|x, a) max

a′∈A
Q(x′, a′), ∀(x, a) ∈ X ×A.

Remark 2.1. We often use maxa∈A in the definition of the Bellman optimality
operator and the Bellman optimality equation. But we could also have supa∈A instead.
The supremum of a function within a set is the least upper bound of the function,
and may or may not belong to A. As a simple example, if f(a) = a and the domain
is (0, 1), then supa∈(0,1) f(a) = 1, and is attained at a∗ = 1, but a∗ = 1 does not
belong to (0, 1), so the maximum does not exist.

Comparing with the Bellman optimality equations (2.5) and (2.6), we see that
V ∗ and Q∗ can be written as the solution of the fixed-point equations defined based
on these operators, i.e.,

V ∗ = T ∗V ∗,

Q∗ = T ∗Q∗.

The maximization in the definition of the Bellman optimality operator for V is
over the action space A. We can also write as the maximization over the space
of stochastic or deterministic policies, and the result would be the same. Recall
from (1.9) that the space of stochastic policies is Π = { π : π(·|x) ∈M(A), ∀x ∈ X }.
The space of determinstic policies is defined as

Πdet = { π : π(x) ∈ A,∀x ∈ X } = AX . (2.8)

We have that for all x ∈ X ,

(T ∗V )(x) = sup
a∈A

{
r(x, a) + γ

∫
P(dx′|x, a)V (x′)

}
= sup

π∈Πdet

{
r(x, a) + γ

∫
P(dx′|x, a)V (x′)

}
= sup

π∈Π

{
r(x, a) + γ

∫
P(dx′|x, a)V (x′)

}
.
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The reason the second equality holds is that Πdet is the Cartesian product of A,
so the maximizing action a∗(x) over each dimension x ∈ X can be combined to define
a function π∗ =

∏
x∈X a

∗(x) ∈ Πdet.
To see why the last equality holds, let us focus only on a single state. The claim

is that for any f ∈ B(A), which in our case is the quantity within the brackets
(f(a) = r(x, a) + γ

∫
P(dx′|x, a)V (x′)), we have

sup
µ∈M(A)

∫
µ(da)f(a) = max

a∈A
f(a). (2.9)

This is true because we can define µ as a Dirac’s delta function at one of the maxi-
mizers a∗ ← argmaxa∈A f(a), and the value would be the same. This shows that

sup
µ∈M(A)

∫
µ(da)f(a) ≥

∫
δ(a− a∗)f(a)da = f(a∗) = max

a∈A
f(a).

On the other hand, as f(a) ≤ f(a∗) for any a ∈ A, the integral (or expectation) of f
w.r.t. any distribution µ is not going to be greater than f(a∗), so it is not possible
to find a distribution µ such as that the left-hand side (LHS) is strictly greater than
the RHS.

All this, in summary, show that

TV = sup
π∈Πdet

T πV = sup
π∈Π

T πV. (2.10)

Therefore, the Bellman optimality operator is the supremum of the Bellman op-
erator T π over all stochastic or deterministic policies.

We shall define some extensions of the Bellman operators later. Next, we focus
on studying some important properties of the Bellman operators.

2.4 Properties of the Bellman Operators

The Bellman operators have some interesting and important properties. These prop-
erties are crucially used in some proofs as basic as the existence and uniqueness of
the solution for the Bellman equations. They are used, directly or indirectly, in many
RL/Planning algorithms too. The properties that matters for us the most are

• Monotonicity

• Contraction

We shall define what these mean next.
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Figure 2.1: A few examples of the order relation between values: V3 ≤ V1 and
V3 ≤ V2, but neither V2 ≤ V1, nor V1 ≤ V2.

2.4.1 Monotonicity

For two functions V1, V2 ∈ B(X ), we use V1 ≤ V2 if and only if V1(x) ≤ V2(x) for all
x ∈ X . This is the same notation as we used in Section 2.1.2 for comparing the value
of two policies (V π ≥ V π′), except that here we extend it to any arbitrary function
defined over X , as opposed to the value function of a particular policy. Figures 2.1
depicts an example.

The monotonicity of the Bellman operator means that if V1 ≤ V2 and we apply
the Bellman operator to both sides, we get T πV1 ≤ T πV2, i.e., the Bellman operator
does not change the order relationship. The next result shows that this is indeed
true for both T π and T ∗.

Lemma 2.2 (Monotonicity). Fix a policy π. If V1, V2 ∈ B(X ), and V1 ≤ V2, then
we have

T πV1 ≤ T πV2,

T ∗V1 ≤ T ∗V2.

Proof. Let us expand T πV1. As V1(x′) ≤ V2(x′) for any x′ ∈ X , we get that for any
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Figure 2.2: When V1 ≤ V2, we also have T ∗V1 ≤ T ∗V2.

x ∈ X ,

(T πV1)(x) = rπ(x) + γ

∫
Pπ(dx′|x)V1(x′)︸ ︷︷ ︸

≤V2(x′)

≤ rπ(x) + γ

∫
Pπ(dx′|x)V2(x′) = (T πV2)(x).

Therefore, T πV1 ≤ T πV2. This is the first claim.
For the Bellman optimality operator, we follow almost the same argument. For

any x ∈ X , we have

(T ∗V1)(x) = max
a∈A

r(x, a) + γ

∫
P(dx′|x, a)V1(x′)︸ ︷︷ ︸

≤V2(x′)


≤ max

a∈A

{
r(x, a) + γ

∫
P(dx′|x, a)V2(x′)

}
= (T ∗V2)(x).

Therefore, T ∗V1 ≤ T ∗V2.

Figure 2.2 graphically shows the monotonicity property for T ∗. A similar graph
would hold for T π. Note that V1 or V2 do not have to be smaller than V ∗ as they
are arbitrary value functions, and not the value of a policy. As such, T ∗V1 is not
necessarily smaller than V ∗ either, but it just happens to be in this depiction.5

5If it happens that for a value function V , we have that V ≤ T ∗V , we can prove that V and
T ∗V are both smaller or equal to V ∗. We shall show this later. This is the case in this figure.
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Exercise 2.5 (?). Prove that the Bellman operators T π : B(X × A) → B(X × A)
and T ∗ : B(X ×A)→ B(X ×A) applied on Q satisfy the monotonicity property.

Exercise 2.6 (? ? ?). Suppose that the Bellman operator was defined as

(T πmultV )(x) , rπ(x)

∫
Pπ(dx′|x)V (x′),

for any x ∈ X . Answer the following questions:

(a) Is operator T πmult monotonic? If yes, prove it. If not, what assumptions do we
need to make in order to guarantee its monotonicity?

(b) What notion of long-term reward this operator corresponds to?

2.4.2 Contraction

The Bellman operators for discounted problems are contraction mappings. Refer
to Appendix A.3 for a brief introduction on contraction mapping, why they are
important, and the statement of the contraction mapping (or Banach fixed point)
theorem (Theorem A.1).

We often use the supremum norm of value functions (see Example A.4). Let us
write them down here: For V ∈ B(X ) and Q ∈ B(X × A), their supremum norms
are

‖V ‖∞ = sup
x∈X
|V (x)|,

‖Q‖∞ = sup
(x,a)∈X×A

|Q(x, a)|.

We can show that the the Bellman operators T π and T ∗ are contraction mappings.

Lemma 2.3 (Contraction). For any π, the Bellman operator T π is a γ-contraction
mapping. Moreover, the Bellman operator T ∗ is a γ-contraction mapping.

Proof. We show it for the Bellman operators applied on action-value function, i.e.
T π : B(X ×A)→ B(X ×A) and T ∗ : B(X ×A)→ B(X ×A).

Consider two action-value functions Q1, Q2 ∈ B(X × A). Consider the metric
d(Q1, Q2) = ‖Q1 −Q2‖∞. We show the contraction w.r.t. this metric.



2.4. PROPERTIES OF THE BELLMAN OPERATORS 31

We start with the proof for T π. For any (x, a) ∈ X ×A, we have

|(T πQ1)(x, a)− (T πQ2)(x, a)| =
∣∣∣∣∣
[
r(x, a) + γ

∫
P(dx′|x, a)π(da′|x′)Q1(x′, a′)

]
−

[
r(x, a) + γ

∫
P(dx′|x, a)π(da′|x′)Q2(x′, a′)

] ∣∣∣∣∣
= γ

∣∣∣∣∫ P(dx′|x, a)π(da′|x′) (Q1(x′, a′)−Q2(x′, a′))

∣∣∣∣ .
We are going to upper bound the RHS. Since we will see similar arguments

frequently, let us do each step of it in detail. We have an integral of the form∣∣∫ P (dx)f(x)
∣∣ (or a summation |∑x P (x)f(x)| for a countable state space). This

can be upper bounded as∣∣∣∣∫ P (dx)f(x)

∣∣∣∣ ≤ ∫ |P (dx)f(x)| =
∫
|P (dx)|.|f(x)| ≤

∫
P (dx). sup

x∈X
|f(x)|

= sup
x∈X
|f(x)|

∫
P (dx) = ‖f‖∞ ,

where in the last equality we used the fact that for a probability distribution P , we
have

∫
P (dx) = 1.

In our case, we get that

|(T πQ1)(x, a)− (T πQ2)(x, a)| = γ

∣∣∣∣∫ P(dx′|x, a)π(da′|x′) (Q1(x′, a′)−Q2(x′, a′))

∣∣∣∣
≤ γ

∫
P(dx′|x, a)π(da′|x′) |Q1(x′, a′)−Q2(x′, a′)|

≤ γ ‖Q1 −Q2‖∞
∫
P(dx′|x, a)π(da′|x′)

= γ ‖Q1 −Q2‖∞ .

This inequality holds for any (x, a) ∈ X × A, so it holds for its supremum over
X ×A too, that is,

‖(T πQ1)− (T πQ2)‖∞ ≤ γ ‖Q1 −Q2‖∞ .

This shows that T π is a γ-contraction.
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Showing the contraction property of T ∗ is similar. We consider two action-value
functions Q1, Q2 ∈ B(X ×A). We get

|(T ∗Q1)(x, a)− (T ∗Q2)(x, a)| = γ

∣∣∣∣∫ P(dx′|x, a)

(
max
a′∈A

Q1(x′, a′)−max
a′∈A

Q2(x′, a′)

)∣∣∣∣
≤ γ

∫
P(dx′|x, a) sup

x′∈X

∣∣∣∣max
a′∈A

Q1(x′, a′)−max
a′∈A

Q2(x′, a′)

∣∣∣∣ .
(2.11)

We have that for two functions f1, f2 : A → R,∣∣∣∣max
a∈A

f1(a)−max
a∈A

f2(a)

∣∣∣∣ ≤ max
a∈A
|f1(a)− f2(a)| .

Therefore, we get that the RHS of (2.11) is upper bounded by

(2.11) ≤ γ

∫
P(dx′|x, a) sup

x′∈X
max
a′∈A
|Q1(x′, a′)−Q2(x′, a′)|

= γ sup
(x,a)∈X×A

|Q1(x, a)−Q2(x, a)|
∫
P(dx′|x, a)

= γ ‖Q1 −Q2‖∞ .

This proves the second claim.

Exercise 2.7 (??). Prove that for two functions f1, f2 : A → R, we have∣∣∣∣max
a∈A

f1(a)−max
a∈A

f2(a)

∣∣∣∣ ≤ max
a∈A
|f1(a)− f2(a)| .

2.5 Some Consequences of Monotonicity and

Contraction

We have shown that the Bellman operators for a discounted MDP are both monotonic
(Lemma 2.2) and γ-contraction w.r.t. the supremum norm (Lemma 2.3). These
properties have important consequences, which we study some of them here. One of
the most important ones is that these operators have a unique fixed point. This, in
turn, shows that the Bellman equations have a unique solution.
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2.5.1 Uniqueness of Fixed Points

Proposition 2.4 (Uniqueness of Fixed Points). The operators T π and T ∗ have
unique fixed points, denoted by V π (Qπ) and V ∗ (Q∗), i.e.,

V π = T πV π; Qπ = T πQπ,

V ∗ = T ∗V ∗; Q∗ = T ∗Q∗.

Moreover, they can be computed from any V0 ∈ B(X ) or Q0 ∈ B(X×A), by iteratively
computing

Vk+1 ← T πVk; Qk+1 ← T πQk,

Vk+1 ← T ∗Vk; Qk+1 ← T ∗Qk,

for k = 0, 1, . . . . We have that Vk → V π and Qk → Qπ (for T π) and Vk → V ∗ and
Qk → Q∗ (for T ∗).

Proof. Consider the space of bounded functions B(X ) with the metric d based on
the uniform norm, i.e., d(V1, V2) = ‖V1 − V2‖∞ = supx∈X |V1(x)− V2(x)|. The space
(B(X ), d) is a complete metric space.

Lemma 2.3 shows that for any π, the operator T π is a γ-contraction. The same
lemma shows that T ∗ has the same property too.

By the Banach fixed point theorem (Theorem A.1), they have a unique fixed
point. Moreover, any sequence (Vk) with V0 ∈ B(X ) and Vk+1 ← T πVk (k = 0, 1, . . . )
is convergent, which means that limk→∞ ‖Vk − V π‖∞ = 0. The same is true for the
sequence generated by the repeated application of T ∗, with appropriate modifica-
tions.

This result suggests a way to find V π and V ∗ by repeated application of the
Bellman operators. This procedure will be one of the main approaches to find the
value function (either for a policy π or the optimal one). It is called Value Iteration.
We shall define and study it later in Chapter 3.

In the proof of the result, we used the completeness property of B(X ), so that we
can use the Banach fixed point theorem. We do not prove its completeness property
(or even define what it actually means). For the proof, see Theorem 43.6 of Munkres
[2018].

Also note that we only used the contraction property of the Bellman operators,
and not their monotonicity. We will use the monotonicity later.

The next result shows that the greedy policy of the optimal value function has
the value of V ∗. This partially justifies the use of the greedy policy.
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Proposition 2.5 (Proposition 2.1.1(c) of Bertsekas 2018). We have T πV ∗ = T ∗V ∗

if and only if V π = V ∗.

Proof. Let us first assume that T πV ∗ = T ∗V ∗. We try to prove that V π = V ∗. As V ∗

is the solution of the Bellman optimality equation, we have T ∗V ∗ = V ∗. Therefore,

T πV ∗ = T ∗V ∗ = V ∗.

This shows that V ∗ is a fixed point of T π. The fixed point of T π, however, is unique
(Proposition 2.4) and is equal to V π. So V π and V ∗ should be the same, i.e., V π = V ∗.

To prove the other direction, we apply T π to both sides of V ∗ = V π to get

T πV ∗ = T πV π.

As V π is the solution of the Bellman equation for policy π, we have T πV π = V π.
Therefore,

T πV ∗ = T πV π = V π.

By assumption, V π = V ∗. So we have T πV ∗ = V π = V ∗. On the other hand, we
have V ∗ = T ∗V ∗, so

T πV ∗ = V ∗ = T ∗V ∗,

which is the desired result.

The same holds for Q too, i.e., T πQ∗ = T ∗Q∗ ⇐⇒ Qπ = Q∗.

Exercise 2.8 (?). Prove that T πQ∗ = T ∗Q∗ if and only if Qπ = Q∗.

This proposition shows if T πV π = T ∗V ∗ for some policy π, the value function V π

of that policy is the same as the fixed point of T ∗, which is V ∗. Note that we have
not yet shown that the fixed point of T ∗ is an optimal value function, in the sense
that it is π∗ ← argmaxπ∈Π V

π(x) (for all x ∈ X ) over the space of all stationary
policies Π, or even more generally, over the set of all non-stationary policies. But it
is indeed true, as we shall see.

To see the connection to the greedy policy (2.7) more clearly, note that given any
V , the greedy policy selects

argmax
a∈A

{
r(x, a) + γ

∫
P(dx′|x, a)V (x′)

}
.

So the Bellman operator of the greedy policy of V being applied to V (i.e., T πg(V )V )
is

T πg(V )V = max
a∈A

{
r(x, a) + γ

∫
P(dx′|x, a)V (x′)

}
. (2.12)
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Let us compare it with T ∗ being applied to V . We have

(T ∗V )(x) = max
a∈A

{
r(x, a) + γ

∫
P(dx′|x, a)V (x′)

}
. (2.13)

Both are the same, so T πg(V )V = T ∗V . In particular, if V = V ∗, we have T πg(V ∗)V ∗ =
T ∗V ∗. This proposition then states that the value of πg(V

∗), that is V πg(V ∗) is the
same as V ∗.

This means that if we find V ∗, we can compute its greedy policy πg(V
∗), and the

greedy policy would have the value of V ∗ (which so far we do not know if it is the
same as the optimal value function, but it is).

Its consequence is that we can find the optimal value function V ∗, and get the
optimal policy by simply computing its greedy policy.

2.5.2 Error Bounds

The consequence of the uniqueness property of the Bellman operators is that if we
find a function V = T πV (or V = T ∗V ), we know that V = V π (or V = V ∗).
What happens if we find a function V that only approximately satisfies the Bellman
equations? That is, suppose we only have V ≈ T πV (or V ≈ T ∗V ). Can we say
anything about these approximate solutions to the Bellman equations, and how close
they are to V π (or V ∗)?

Answering such a question is important because in practice, we may not be able
solve the Bellman equations exactly, but only approximately. There are several rea-
sons for approximation. Some of them are computational, which limit how much we
can get close to the solution of the fixed-point equations, some are because we can
only represent value functions approximately due to the use of function approxima-
tions, and some are due to the statistical errors. We get to these in later chapters.

It turns out that we can relate the closeness of V to V π based on the size of
BR(V ) , T πV − V or BR∗(V ) , T ∗V − V . The functions BR(V ) and BR∗(V ) are
called the Bellman Residual. There are several such results in the literature. The
next one is a simple one, which shows the flavour of these results.

Proposition 2.6. For any V ∈ B(X ) or Q ∈ B(X ×A), we have

‖V − V ∗‖∞ ≤
‖V − T ∗V ‖∞

1− γ , ‖Q−Q∗‖∞ ≤
‖Q− T ∗Q‖∞

1− γ .
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Proof. We add and subtract T ∗V to V − V ∗, take the supremum norm, and use the
triangle inequality to get

V − V ∗ = V − T ∗V + T ∗V − V ∗
⇒ ‖V − V ∗‖∞ = ‖V − T ∗V + T ∗V − V ∗‖∞

≤ ‖V − T ∗V ‖∞ + ‖T ∗V − V ∗‖∞ .

Let us focus on the term ‖T ∗V − V ∗‖∞. We make two observations: (1) V ∗ =
T ∗V ∗, and (2) the Bellman optimality operator is a γ-contraction w.r.t. the supre-
mum norm. Thus,

‖T ∗V − V ∗‖∞ = ‖T ∗V − T ∗V ∗‖∞ ≤ γ ‖V − V ∗‖∞ .

Therefore,

‖V − V ∗‖∞ ≤ ‖V − T ∗V ‖∞ + γ ‖V − V ∗‖∞ .

Re-arranging this, we get that

(1− γ) ‖V − V ∗‖∞ ≤ ‖V − T ∗V ‖∞ ,

which is the desired result. The proof for the second part is the same.

The norm of the Bellman Residual is called the Bellman Error. Here we use the
supremum norm to quantify its size, but we could also define it w.r.t. other norms.
In that case, however, we do not get the same result, as a crucial step in the proof was
the γ-contraction of the Bellman operator w.r.t. the supremum norm. If we change
the norm, the Bellman operator would not necessarily be a contraction anymore.

Exercise 2.9 (?). Why don’t we get the same result if we change the norm from
the supremum norm to the `2-norm or other `p-norms (with p < ∞), e.g., ‖V ‖2 =√∑

x∈X |V (x)|2 (for countable state space), see Example A.3.

Proposition 2.7. For any V ∈ B(X ) or Q ∈ B(X ×A), and any π ∈ Π, we have

‖V − V π‖∞ ≤
‖V − T πV ‖∞

1− γ , ‖Q−Qπ‖∞ ≤
‖Q− T πQ‖∞

1− γ .

Exercise 2.10 (?). Prove Proposition 2.7.
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2.5.3 Fixed Point of T ∗ is the Optimal Value Function

Next we show that the fixed point of T ∗ is indeed the optimal value function within
the space of stationary policies Π. This result uses the monotonicity of T ∗, in addition
to contraction, which was used before.

Proposition 2.8 (Proposition 2.1.2 of Bertsekas 2018). Let V ∗ be the fixed point of
T ∗, i.e., V ∗ = T ∗V ∗. We have

V ∗(x) = sup
π∈Π

V π(x), ∀x ∈ X .

Proof. We first show that V ∗(x) ≤ supπ∈Π V
π(x) (for all x ∈ X ). We then show the

opposite direction, that is, supπ∈Π V
π(x) ≤ V ∗(x). These two combined prove the

statement.
For the first direction, we use Proposition 2.7 with the choice of V = V ∗. We get

that for any π ∈ Π,

‖V ∗ − V π‖∞ ≤
‖V ∗ − T πV ∗‖∞

1− γ . (2.14)

Let ε > 0. Choose a policy a πε such that

‖V ∗ − T πεV ∗‖∞ ≤ (1− γ)ε.

This is possible because we have

(T ∗V ∗)(x) = sup
a∈A

{
r(x, a) + γ

∫
P(dx′|x, a)V ∗(x′)

}
,

so it is sufficient to pick a πε that solves the optimization problem up to (1 − γ)ε-
accuracy of the supremum at each state x (if we find the maximizer, then ε = 0).

For policy πε, (2.14) shows that

‖V ∗ − V πε‖∞ ≤ ε.

This means that
V ∗(x) ≤ V πε(x) + ε, ∀x ∈ X .

Notice that V πε(x) ≤ supπ∈Π V
π(x) (as πε ∈ Π). We take ε→ 0 to get that

V ∗(x) ≤ lim
ε→0
{V πε(x) + ε} ≤ lim

ε→0

{
sup
π∈Π

V π(x) + ε

}
= sup

π∈Π
V π(x) ∀x ∈ X . (2.15)
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This shows that V ∗, the fixed point of T ∗, is smaller or equal to the optimal value
function within the space of stationary policies.

To show the other direction, consider any π ∈ Π. By the definition of T π and T ∗,
for any V ∈ B(X ), we have that for any x ∈ X ,6

(T πV )(x) =

∫
π(da|x)

[
r(x, a) + γ

∫
P(dx′|x, a)V (x′)

]
≤ sup

a∈A

{
r(x, a) + γ

∫
P(dx′|x, a)V (x′)

}
= (T ∗V )(x).

In particular, with the choice of V = V ∗, we have T πV ∗ ≤ T ∗V ∗. As T ∗V ∗ = V ∗,
we have

T πV ∗ ≤ V ∗. (2.16)

We use the monotonicity of T π (Lemma 2.2) to conclude that

T π(T πV ∗) ≤ T πV ∗,

which by (2.16) shows that
(T π)2V ∗ ≤ V ∗.

We repeat this argument for k times to get that

(T π)kV ∗ ≤ V ∗.

As k → ∞, Proposition 2.4 shows that (T π)kV ∗ converges to V π (the choice of
V ∗ is irrelevant). Therefore,

V π = lim
k→∞

(T π)kV ∗ ≤ V ∗.

As this holds for any π ∈ Π, we take the supremum over π ∈ Π to get

sup
π∈Π

V π ≤ V ∗. (2.17)

The inequalities (2.16) and (2.17) together show that

V ∗ = sup
π∈Π

V π,

which is the desired result.

6If this is not clear, see the discussion around (2.9).
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2.5.3.1 Optimality Over the Space of Non-stationary Policies

We have not ruled out the possibility that there exists a non-stationary policy (Def-
inition 1.2) in the form of π̄ = (π1, π2, . . . ) with each πt being a Markov policy such
that following it may lead to higher expected return compared to following any single
stationary Markov policy π, including the optimal one π∗ ← argmaxπ∈Π V

π (1.15).
By following π̄, we mean that at the first time step, the agent chooses action from
π1, and the second time step, the agent chooses action from π2, and so on.

Let us introduce some notations. Let Π̄ denote the space of all non-stationary
policies, so π̄ ∈ Π̄. More formally,

Π̄ = { π̄ = (π1, π2, . . . ) : πt : X →M(A), t = 1, 2, . . . } .

Any stationary policy π̄ = (π, π, . . . ) with π : X →M(A), is a member of Π̄ too.
We can convince ourselves that the expected return of following (π1, π2, . . . , πk)

and terminating at time k with the terminal reward of V0 is

V π1:πk = T π1T π2 . . . T πkV0.

If we let k → ∞, this would be the value of following the infinite sequence of
π̄ = (π1, π2, . . . ), i.e.,

V π̄ = lim inf
k→∞

V π1:πk .

When k →∞, the choice of V0 does not matter, as it is discounted by limk→∞ γ
k = 0.

Define the optimal value function within the space of non-stationary policy as
V +:

V + = sup
π̄∈Π̄

V π̄.

Proposition 2.9. We have
V ∗ = V +.

Proof. Since the space of stationary policies is a subset of the space of non-stationary
policies, we have

V ∗ = sup
π∈Π

V π ≤ sup
π̄∈Π̄

V π̄ = V +, (2.18)

where the equality of V ∗ and supπ∈Π V
π is because of Proposition 2.8.

Now consider an arbitrary sequence (π1, . . . , πk), and any value function V0. By
the optimality property of T ∗, we have that

T πkV0 ≤ T ∗V0.
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By the monotonicity of T πk−1 , we get that

T πk−1T πkV0 ≤ T πk−1T ∗V0.

Again, by the optimality property of T ∗, we have

T πk−1T ∗V0 ≤ T ∗T ∗V0 = (T ∗)2V0.

Repeating this argument, we get that

T π1T π2 · · ·T πkV0 ≤ (T ∗)kV0.

By letting k → ∞, the LHS converges to V π̄, and the RHS converges to V ∗ by
Proposition 2.4, i.e.,

V π̄ = lim inf
k→∞

T π1T π2 · · ·T πkV0 ≤ lim
k→∞

T kV0 = V ∗.

This is true for any π̄ ∈ Π̄, so we have

sup
π̄∈Π̄

V π̄ ≤ V ∗. (2.19)

By (2.18) and (2.19) we get the desired result.



Chapter 3

Planning with a Known Model

Our goal is to design an RL agent that should be able to act optimally (or close to
optimally) in an environment.1 So we we have defined the value function, policy, and
studied of their important properties. We have not presented any mechanism to find
the optimal policy though. This chapter provides general approaches for finding the
optimal policy. The underlying assumption here is that the MDP is known, i.e., we
know R and P .

The assumption of knowing the MDP does not hold in the RL setting. In that set-
ting, the agent can only observe data coming from interaction with the environment.
Designing methods for finding the optimal policy given that knowledge, however,
would provide the foundation for developing methods for the RL setting. We shall
see that many methods that can handle the RL setting are sample-based variants of
the methods in this chapter.

The methods for finding the optimal policy π∗ can be roughly divided to three
categories:

• Value-based

• Direct policy search

• Hybrid methods

The first category tries to find V ∗ or Q∗ first, and then use it to compute the
optimal policy. This is often done by simply computing the greedy policy πg w.r.t.
the approximation of the optimal policy. As we discussed in Section 2.2 and formally
proved in Proposition 2.5, this is a sensible approach.

1Chapter’s Version: 0.04 (2021 January 26). Some examples are incomplete and need to be
typed.
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The methods in the second category directly search in the space of policies without
explicitly constructing the optimal vale function, though they may still implicitly use
a quantity that has the same interpretation as the value function.

There are also hybrid methods that use the explicitly constructed value function
to guide the search in the policy space.

We should note that the boundaries between these categories are not clear cut.

In this chapter, our focus will be on the value-based methods. We talk about
policy search ones in Chapter 6.

3.1 Policy Evaluation vs. Control Problems

We need a distinction between two types of problems that we often solve.

• Policy Evaluation (PE)

• Control

The problem of policy evaluation refers to the problem of computing the value
function of a given policy π. This is not the ultimate goal of an RL agent, finding the
optimal policy is, but is often needed as an intermediate step in finding the optimal
policy. The problem of control refers to the problem of finding the optimal value
function V ∗ or Q∗ or optimal policy π∗. This is admittedly a confusing terminology.

We would also want to mention that some of the described methods are considered
as dynamic programming methods. These methods benefit from the structure of the
MDP, such as the recursive structure encoded in the Bellman equation, in order to
compute the value function.

Let us focus on the policy evaluation problem first.

3.2 Policy Evaluation: Two Initial Attempts

Problem Statement: Given an MDP (X ,A,P ,R, γ) and a policy π, we would like
to compute V π or Qπ.
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Figure 3.1: All future possibilities starting from state X1 = x up to depth 2.

3.2.1 A Naive Solution

Let us start from a naive solution. For simplicity, we assume finite X × A. To
compute V π at a state x ∈ X , we refer to its definition:

V π(x) = E

[
∞∑
t=1

γt−1Rt|X1 = x

]
.

This expectation is w.r.t. the sequence of r.v. (X1 = x,A1, X1, X2, A2, R2, . . . ) with
At ∼ π(·|Xt), Xt+1 ∼ P(·|Xt, At), and Rt ∼ R(·|Xt, At). Depending on the draw
of each r.v., we get different sequences. We can represent all possibilities in a tree
structure, partially depicted in Figure 3.1.

In principle, we can compute the probability of being in each state. For example,
at time t = 2, the probability of the agent being in state x′ and choosing action a′ is∑

a∈A

π(a|x)P(x′|x, a)π(a′|x′)

The expected reward that the agent receives at time t = 2 is then∑
a,x′,a′

π(a|x)P(x′|x, a)π(a′|x′)r(x′, a′).

We can continue the expansion to compute the expected reward at other time steps
too, and eventually add them in a discounted way to compute the value V π(x).

Nevertheless, this is not a satisfactory solution as the size of the tree grows
exponentially fast. Also for continuing problem, the depth of the tree is going to be
infinity.
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Exercise 3.1 (?). What is the size of the tree by the time that we get to Xt (t ≥ 1)?

Exercise 3.2 (??). Suppose that we expand the tree only up to horizon H <∞, and
use it to compute an H-truncated approximation V π

H of V π, defined as

V π
H(x) = E

[
H∑
t=1

γt−1Rt|X1 = x

]
.

Assume that |r(x, a)| ≤ Rmax for all (x, a) ∈ X × A. Provide an upper bound on
|V π(x)− V π

H(x)|.

3.2.2 Linear System of Equations

A much better way to compute V π is to benefit from the recursive structure of the
value function, represented by the Bellman equation V π = T πV π. In the discrete
state-action case, the Bellman equation defines a set of n = |X | equations with |X |
unknowns (V (x1), . . . , V (xn)) and has the the form of

V (x) = rπ(x) + γ
∑
x′∈X

Pπ(x′|x)V (x′),

for each x ∈ X . As the solution of the Bellman equation is unique (Proposition 2.4),
the solution V of these equations would be the same as V π.

How can we solve this set of equations? As the Bellman equation for a policy π
is a linear system of equations, we can simply use any standard solver to compute
V = V π. To see the linearity more clearly, we re-arrange the equation to get

V (x)− γ
∑
x′∈X

Pπ(x′|x)V (x′) = rπ(x),

or more compactly in the matrix form as

(I− γPπ)V = rπ,

where I is an n×n-identity matrix, and Pπ is overloaded to denote an n×n stochastic
matrix with [Pπ]i,j = Pπ(xj|xi). This has the same form as

An×nxn×1 = bn×1,

commonly used to represent a linear system of equations.
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If the size of the state space n is not too large (say, a few thousands or so), we
can easily solve this linear system of equation either by computing the inverse of A
and writing it as x = A−1b, or even better, using a standard linear equation solver.
When the state space becomes very large, the standard solvers may not scale very
well, and we have to use solvers that are somewhat specialized to the properties of
the value function.2

We remark that to solve the control problem of finding V ∗, we need to solve
V = T ∗V , whose unique solution is V ∗. This would be n equations in the form of

V (x) = max
a∈A

{
r(x, a) + γ

∑
x′∈X

P(x′|x, a)V (x′)

}
.

These equations, however, are not linear in V anymore, and the use of a linear solver
is not feasible. We shall see later that we can formulate it as a linear program (LP)
instead.

Exercise 3.3 (?). Write down A, x, and b in terms Pπ, rπ, γ, and V . What is the
form of A if the MDP is deterministic?

Exercise 3.4 (?). Write down the linear system of equations needed for finding Qπ.
How many equations do we have?

Exercise 3.5 (??). What solvers for linear systems of equations do you know? De-
scribe one or two in some detail. What is the computational complexity of getting to
ε-approximate solution for the solver?

Exercise 3.6 (? ? ?). (Project Idea? Open ended) Identify and implement a novel
solver that we often do not use in DP. Can we find a sample-based version of it?

3.3 Value Iteration

One of the main approaches to find the value function is called Value Iteration
(VI), which we briefly encountered in Section 2.5.1. It is a direct consequence of
Proposition 2.4, in which we showed that the fixed point of the Bellman operators
are unique, and they can be computed by the iterative application of the Bellman

2One such solver is called Value Iteration, which we shall describe soon. Note that VI used for
evaluating π can be interpreted as implementing the Jacobi iteration method for solving a linear
system of equations, so it is a linear solver itself.
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operator. The VI can be used for both PE and Control problems. We start with its
description for the PE problem.

Starting from V0 ∈ B(X ), we compute a sequence of (Vk)k≥0 by

Vk+1 ← T πVk. (3.1)

Proposition 2.4 shows that

lim
k→∞
‖Vk − V π‖∞ = 0.

This entails the pointwise convergence of Vk to V π too, i.e., for any x ∈ X , we have
that Vk(x)→ V π(x). As the initial value function V0, we may simply choose V0 = 0,
but other choices are possible too. The procedure to compute Qπ is very similar,
with the difference that we start from Q0 ∈ B(X × A) and iteratively compute
Qk+1 ← T πQk. This procedure is called the Value Iteration algorithm, and is one of
the fundamental algorithms for planning. We shall see that many RL algorithms are
essentially the sample-based variants of VI too.

Remark 3.1. Sutton and Barto [2019] call this method for PE “Iterative Policy
Evaluation”, and reserve Value Iteration for the procedure used to compute V ∗ or
Q∗, as we encounter soon. I use VI for both procedures because the essence of both
is the iterative application of the Bellman operator on the current approximation of
the value function. It should not matter whether the Bellman operator is T π or T ∗,
and whether the value function is V π or V ∗. Which one we are referring to should
be clear from the context, and if not, we can always use VI for PE or VI for Control
to distinguish them.

Exercise 3.7 (?). Assume that we have a finite state-action MDP.

(a) Write down VI for the computation of V π and Qπ.

(a) What is the computational cost of each iteration of VI, in terms of basic arith-
metic operations? You can assume that we have n = |X | and m = |A|.

3.3.1 Value Iteration for Control

We may use VI to compute V ∗ or Q∗. The procedure is very similar to (3.2), with
the difference that we apply the Bellman optimality operator instead, i.e.,

Vk+1 ← T ∗Vk, (3.2)

Qk+1 ← T ∗Qk. (3.3)

Proposition 2.4 guarantees that Vk → V ∗ (or Qk → Q∗).
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3.4 Policy Iteration

A different approach is based on the iterative application of the following two steps:

• (Policy Evaluation) Given a policy πk, compute V πk (or Qπk).

• (Policy Improvement) Find a new policy πk+1 that is better than πk, i.e.,
V πk+1 ≥ V πk (with a strict inequality in at least one state, unless at con-
vergence).

The policy evaluation step is clear. We can use any method, such as solving a
linear system of equation or even VI (PE) to compute the value of a policy πk.

To perform the policy improvement, we have to find a policy that is better than
the current one. Commonly used approach is to use the greedy policy of the value
function of πk. That is, given a value function Qπk , we set the new policy as

πk+1(x)← πg(x;Qπk) = argmax
a∈A

Qπk(x, a), ∀x ∈ X .

If we are given V πk , we set πk+1 ← πg(V
πk).

To gain an intuition on why the greedy policy is a better policy, assume that at
state x, we act according to πg(x;Qπk), and afterwards, we follow πk. The value of
this new policy is

Qπk(x, πg(x;Qπk)) = Qπk(x, argmax
a∈A

Qπk(x, a)) = max
a∈A

Qπk(x, a).

Comparing maxa∈AQ
πk(x, a) with the value of following the current policy at state

x, which is V πk(x) = Qπk(x, πk(x)), we get that

Qπk(x, πg(x;Qπk)) ≥ V πk(x). (3.4)

So this new policy is equal to better than πk at state x. We shall prove that if we
choose greedy policy at all states, the value function would satisfy a similar inequality
at all states.

The policy improvement step in the procedure described at the beginning of this
section only required V πk+1 ≥ V πk . The Policy Iteration (PI) algorithm refers to the
specific case that we pick the new policy πk+1 as πg(Q

πk).
As the value function of πk is the unique fixed point of T πk (Proposition 2.4), and

the greedy policy πg(Q
πk) satisfies T πk+1Qπk = T ∗Qπk (see (2.13) and (2.12)), we can

summarize each iteration of the Policy Iteration algorithm as
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• (Policy Evaluation) Given πk, compute Qπk , i.e., find a Q that satisfies Q =
T πkQ.

• (Policy Improvement) Obtain πk+1 as a policy that satisfies T πk+1Qπk = T ∗Qπk .

Remark 3.2. We also have approximate policy iteration algorithms too, in which
we allow some level of approximations. The approximation can be either at the policy
evaluation step (we only find Q ≈ T πkQ), or the policy improvement step (we only
find T πk+1Qπk ≈ T ∗Qπk), or both.

Exercise 3.8 (?). Write down the Policy Iteration algorithm based on V πk .

3.4.1 Convergence of Policy Iteration

We establish the convergence of the PI algorithm. The following result is sometimes
called the policy improvement theorem, and is a crucial part of the convergence proof
of the PI algorithm. We can think of it as extending and formalizing what we have
shown in (3.4).

Theorem 3.1 (Policy Improvement). If for policies π and π′, it holds that T π
′
Qπ =

T ∗Qπ, we have that Qπ′ ≥ Qπ.

Proof. We have T ∗Qπ ≥ T πQπ = Qπ because for any (x, a) ∈ X ×A, it holds that

r(x, a) + γ

∫
P(dx′|x, a) max

a′∈A
Qπ(x′, a′) ≥ r(x, a) + γ

∫
P(dx′|x, a)Qπ(x′, π(x′)).

Therefore, T π
′
Qπ = T ∗Qπ ≥ T πQπ = Qπ.

We apply T π
′

to both sides of T π
′
Qπ ≥ Qπ, and use the monotonicity property

of the Bellman operator (Lemma 2.2) to conclude

T π
′
(T π

′
Qπ) ≥ T π

′
Qπ = T ∗Qπ ≥ Qπ.

So we also have (T π
′
)2Qπ ≥ T ∗Qπ ≥ Qπ. By repeating this argument, we get that

for any m ≥ 1,

(T π
′
)mQπ ≥ T ∗Qπ ≥ Qπ. (3.5)

Take the limit of m → ∞. Because of the contraction property of the Bellman
operator T π

′
(Proposition 2.4), we get that

lim
m→∞

(T π
′
)mQπ = Qπ′ . (3.6)



3.4. POLICY ITERATION 49

By combining (3.5) and (3.6), we get that

Qπ′ = lim
m→∞

(T π
′
)mQπ ≥ T ∗Qπ ≥ Qπ, (3.7)

which is the desired result.

The same result holds for V π and V π′ .
This result shows that by choosing the greedy policy w.r.t. the most recent value

function, we get a new policy that is at least as good as the previous one. Based
on this result, we can actually show that the PI algorithm converges to an optimal
policy. And if |X × A| <∞, this happens in a finite number of iterations. We shall
state this result soon. The basic idea behind the proof is that we either can strictly
improve the policy, or if we cannot, we are already at the optimal policy.

Theorem 3.2 (Convergence of the Policy Iteration Algorithm – Proposition 2.4.1
of Bertsekas 2018). Let (πk)k≥0 be the sequence generated by the PI algorithm. For
all k, we have that V πk+1 ≥ V πk , with equality if and only if V πk = V ∗. Moreover,

lim
k→∞
‖V πk − V ∗‖∞ = 0.

Furthermore, if the set of policies is finite, the PI algorithm converges in a finite
number of iterations.

Proof. By Theorem 3.1, we have that V πk+1 ≥ V πk . Suppose that instead of a strict
inequality, we have an equality of V πk+1 = V πk . We get that

T πk+1V πk = T πk+1V πk+1 .

As T πk+1V πk = T ∗V πk by the definition of the PI algorithm, we get that

T πk+1V πk+1 = T ∗V πk = T ∗V πk+1 ,

where in the last step we used V πk+1 = V πk again. By these equalities, we have

T πk+1V πk+1 = T ∗V πk+1 .

As V πk+1 is the value function of πk+1, it satisfies T πk+1V πk+1 = V πk+1 . Therefore,
we also have

V πk+1 = T ∗V πk+1 .

This means that V πk+1 is a fixed point of T ∗. But the fixed point of T ∗ is unique
and is equal to V ∗ by Proposition 2.4, so we must have that V πk+1 = V ∗.
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The proof of the other direction is simple: If V πk = V ∗, then πk is an optimal
policy. The greedy policy of V πk = V ∗ is still an optimal policy, hence V πk+1 = V ∗ =
V πk .

To prove the convergence, recall that from (3.7), we have

Qπk+1 ≥ T ∗Qπk ≥ Qπk . (3.8)

By induction,

Qπk+1 ≥ T ∗Qπk ≥ T ∗(T ∗Qπk−1) ≥ · · · ≥ (T ∗)kQπ0 .

By the definition of the optimal policy, we have Qπ ≤ Q∗ for any π, including all πk
generated during the iterations of the PI algorithm. So Qπk+1 is sandwiched between
Q∗ and (T ∗)kQπ0 , i.e.,

Q∗ ≥ Qπk+1 ≥ (T ∗)kQπ0 .

By the contraction property of the Bellman optimality operator, we have that

lim
k→∞

∥∥(T ∗)kQπ0 −Q∗
∥∥
∞ = 0.

As ‖Qπk+1 −Q∗‖∞ ≤
∥∥(T ∗)kQπ0 −Q∗

∥∥
∞, we have that

lim
k→∞
‖Qπk −Q∗‖∞ = 0.

This implies the convergence of V πk too.
Finally, if the number of policies is finite, the number of times (3.8) can be a

strict inequality is going to be finite too.

This result shows that the PI algorithm converges to the optimal policy in a finite
number of iterations whenever the number of policies is finite. This is the case if
the state space X and the action space A are finite. To see this, note that each
deterministic policy π : X → A is of the form π = (a1, a2, . . . , a|X | with ai ∈ A.
Thus, we have a total of |A||X | different policies, which is finite.

Even though this is finite, it can be very large even for modest problems. For
example, a 10×10 grid world problem with 4 actions at each state has 4100 ≈ 1.6×1060

possible policies. Surely we do not want to perform that many iterations of an
algorithm before finding the optimal policy.

In practice, however, we observe that the PI algorithm converges much faster, for
example just in a couple of iterations. This suggest that the previous analysis might
be very crude. This is indeed the case, as we prove in the next section.
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3.4.2 Fast Convergence of Policy Iteration

Here we show that PI converges much faster than |A||X | iterations, as was suggested
by the previous analysis. In fact, we can show that the PI terminates in

O

( |X ||A|
1− γ log

(
1

1− γ

))
iterations. This result is relatively new. Variant of it have been proved by Ye [2011];
Hansen et al. [2013]; Scherrer [2016]. I closely follow the results and proofs of Scherrer
[2016] in this section.

To prove it, we require a new definitions and series of intermediate results. For
the rest of this section, we focus on deterministic policies. As discussed before, there
always exists an optimal deterministic policy.

Let π and π′ be two policies. We define the advantage of π′ w.r.t. π as

Aπ
′

π = T π
′
V π − V π.

To understand this definition better, let us expand it for a state x:

Aπ
′

π (x) = r(x, π′(x)) + γ

∫
P(dx′|x, π′(x))V π(x′)− V π(x).

So at the first step we follow π′, and then from the next-step onward, we follow π,
and we compare that value with following π from the first step. This is equal to

Aπ
′

π (x) = Qπ(x, π′(x))− V π(x). (3.9)

Remark 3.3. There is function called an advantage function of a policy π, which is
defined as

Aπ(x, a) = Qπ(x, a)− V π(x).

The advantage function shows how much the value of an action at a state is higher
than the value of the state. We that Aπ(x, π(x)) = 0 (or E [Aπ(x,A)] = 0 with
A ∼ π(·|x)). The advantage function is more commonly used in RL. Of course, Aπ

′
π

and Aπ are related as Aπ
′
π (x) = Aπ(x, π′(x)).

The following result reveals a relation between V π and V π′ , and their advantage
Aπ
′
π .

Lemma 3.3. For all pairs of policies π and π′, we have

V π′ − V π = (I− γPπ′)−1Aπ
′

π .
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Proof. The Bellman equation for π′ is V π′ = rπ
′
+γPπ′V π′ , so by rearranging we get

(I− γPπ′)V π′ = rπ
′
.

As Pπ′ is a stochastic matrix, its max norm is equal to one, i.e., ‖Pπ′‖∞ = 1. As
a result, we have that ‖γPπ′‖∞ = γ. Lemma A.2 in Appendix A.4 shows that the
matrix (I− γPπ′) is invertible. Thus, we can write

V π′ − V π = (I− γPπ′)−1rπ
′ − V π. (3.10)

Let us expand V π as

V π = I · V π = (I− γPπ′)−1(I− γPπ′)V π.

Substituting this expanded form in (3.10), we get that

V π′ − V π = (I− γPπ′)−1
[
rπ
′ − (I− γPπ′)V π

]
= (I− γPπ′)−1

[
rπ
′
+ γPπ′V π − V π

]
= (I− γPπ′)−1

[
T π
′
V π − V π

]
= (I− γPπ′)−1Aπ

′

π ,

where in the last step we used the definition of the advantage Aπ
′
π . This is the desired

result.

The next result implies that the sequence (V πk)k generated by the PI algorithm
gets closer to V ∗ = V π∗ .

Lemma 3.4. Given V π, let π′ ← πg(V
π), i.e., π′ is the greedy policy w.r.t. V π. We

have ∥∥∥V π∗ − V π′
∥∥∥
∞
≤ γ

∥∥V π∗ − V π
∥∥
∞ .

Proof. Consider V π∗−V π′ and add and subtract T π
∗
V π and T π

′
V π. After benefitting

from the fact that V π∗ = T π
∗
V π∗ and V π′ = T π

′
V π′ , we get

V π∗ − V π′ = T π
∗
V π∗ −

(
T π
∗
V π − T π∗V π

)
−
(
T π
′
V π − T π′V π

)
− T π′V π′ (3.11)

=
(
T π
∗
V π∗ − T π∗V π

)
+
(
T π
∗
V π − T π′V π

)
+
(
T π
′
V π − T π′V π′

)
.

(3.12)
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Let us consider each term within parentheses separately. For the first term, we
have

T π
∗
V π∗ − T π∗V π =

(
rπ
∗

+ γPπ∗V π∗
)
−
(
rπ
∗

+ γPπ∗V π
)

= γPπ∗
(
V π∗ − V π

)
. (3.13)

Likewise, for the last term, we get

T π
′
V π − T π′V π′ = γPπ′

(
V π − V π′

)
. (3.14)

We now show that we can upper bound the second term, T π
∗
V π − T π′V π. As π′

is the greedy policy w.r.t. V π, it satisfies

T π
′
V π = T ∗V π. (3.15)

Recall that the Bellman optimality operator is the supremum of the Bellman
operators over all policies (see (2.10)), i.e,

T ∗V = sup
π∈Π

T πV.

This means that for any policy π′′, including π∗, we have

T ∗V π ≥ T π
′′
V π.

So with the choice of π′′ = π∗, and by substituting T ∗V π with T π
′
V π (3.15), we get

that

T π
′
V π − T π∗V π = T ∗V π − T π∗V π ≥ 0. (3.16)

Plugging (3.13), (3.14), and (3.16) into (3.11), we get

V π∗ − V π′ ≤ γPπ∗
(
V π∗ − V π

)
+ γPπ′

(
V π − V π′

)
.

By the Policy Improvement theorem (Theorem 3.1), we know that V π ≤ V π′ . As
Pπ′ ≥ 0 (element-wise), the value of Pπ′

(
V π′ − V π

)
≥ 0 too. So the last term in the

inequality above is non-positive, which means that

V π∗ − V π′ ≤ γPπ∗
(
V π∗ − V π

)
.

As the value of the optimal policy is greater than or equal to the value of π and
π′, we have V π∗ − V π′ ≥ 0 and V π∗ − V π ≥ 0. So we can take the norm from both
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sides without any change in the direction of the inequality. We take the supremum
norm, which can be simplified as∥∥∥V π∗ − V π′

∥∥∥
∞
≤
∥∥γPπ∗ (V π∗ − V π

)∥∥ ≤ γ
∥∥Pπ∗∥∥∞︸ ︷︷ ︸

=1

∥∥V π∗ − V π
∥∥
∞ = γ

∥∥V π∗ − V π
∥∥
∞ .

This lemma shows that the sequence (πk)k generated by the PI algorithm satisfies∥∥V π∗ − V πk+1
∥∥
∞ ≤ γ

∥∥V π∗ − V πk
∥∥
∞, hence∥∥V π∗ − V πk
∥∥
∞ ≤ γk

∥∥V π∗ − V π0
∥∥
∞ , (3.17)

that is, the value of the πk gets closer to the optimal value function with a geometric
rate. A corollary of this result is that we can determine the number of iterations k
required to get a policy πk such that V πk ≥ V π∗ − ε, i.e., following it is at most ε
worse than following the optimal policy.

Proposition 3.5. Assume that for all policies π, ‖V π‖∞ ≤ Vmax. Given an ε > 0,
we need to run the PI algorithm for at most⌈

log(2Vmax

ε
)

log( 1
γ
)

⌉

iterations in order to guarantee that V πk ≥ V π∗ − ε.

Proof. To satisfy V πk ≥ V π∗− ε, it is sufficient to have
∥∥V π∗ − V πk

∥∥
∞ = ε. We have

ε =
∥∥V π∗ − V πk

∥∥
∞ ≤ γk

∥∥V π∗ − V π0
∥∥
∞ ≤ γk(2Vmax),

where we evoked Lemma 3.4 (as we did in (3.17)), and benefitted from the fact that
all the value functions are Vmax-bounded. This is satisfied if

ε

2Vmax

≤ γk.

Solving for k, we get that log( ε
2Vmax

) ≤ k log γ, which after some simple manipulations
leads to the desired result.

This result has a dependency on ε, albeit a very mild one (logarithmic). In
contrast with Theorem 3.2, it does not show that the PI algorithm ever terminates.
The next result provides such a guarantee.
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Theorem 3.6 (Convergence of the Policy Iteration Algorithm – Proposition 2.4.1
of Bertsekas 2018). The PI algorithm terminates after at most

(|A| − 1)|X |
⌈

1

1− γ log

(
1

1− γ

)⌉
Proof. Consider the sequence (πk) generated by the PI algorithm. By Lemma 3.3
with the choice of π = π∗ and π′ = πk, we have

−Aπkπ∗ = (I− γPπk)(V π∗ − V πk).

Since Pπk ≥ 0 and because ‖Pπk‖∞ = 1, the mapping (I− γPπk) > 0. Therefore,

−Aπkπ∗ ≤ (I− γPπk)(V π∗ − V πk) ≤ V π∗ − V πk . (3.18)

We claim that the function −Aπkπ∗ is non-negative. To see this, by its definition,
we have

−Aπkπ∗ = V π∗ − T πkV π∗ ≥ 0,

which is true because V π∗ is the optimal value function. This is the same as say-
ing that V π∗(x) − Qπ∗(x, πk(x)) ≥ 0, which is equivalent to the statement that
Qπ∗(x, π∗(x)) ≥ Qπ∗(x, πk(x))). If this wasn’t true, we could select action accord-
ing to πk at the first step, and then follow π∗ and get a higher value, which would
contradict the optimality of π∗.3

Because of the non-negativity of −Aπkπ∗ , we can take the norm of both sides
of (3.18) and keep the same direction of inequality:

‖Aπkπ∗‖∞ = ‖−Aπkπ∗‖∞ ≤
∥∥V π∗ − V πk

∥∥
∞ .

By Lemma 3.4 (specifically it consequence (3.17)), Lemma 3.3, and Lemma A.2
in Appendix A.4, we have that

‖−Aπkπ∗‖∞ ≤ γk
∥∥V π∗ − V π0

∥∥
∞

= γk
∥∥(I− γPπ0)−1(−Aπ0

π∗)
∥∥
∞

≤ γk

1− γ ‖(−A
π0
π∗)‖∞ . (3.19)

3A more formal proof: We prove by contradiction. Suppose that we have V π
∗
< TπkV π

∗

instead. We apply Tπk to both sides, and by the monotonicity property of the Bellman operator,
we get TπkV π

∗
< (Tπk)2V π

∗
, which entails that V π

∗
< (Tπk)2V π

∗
. Repeating this argument leads

to the statement that V π
∗
< (Tπk)mV π

∗
for any m = 1, 2, . . . . We now let m goes to ∞, and use

the contraction property of the Bellman operator Tπk to obtain V π
∗
< limm→∞(Tπk)mV π

∗
= V πk .

This is a contradiction, as V π
∗

is the optimal value function and cannot be smaller than V πk .
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As (−Aπ0
π∗) is non-negative, ‖−Aπ0

π∗‖∞ = maxx∈X (−Aπ0
π∗)(x). There is at least one

state x0 ∈ X such that the maximum is attained, and its value is −Aπ0
π∗(x0). Let us

focus on that state.

The value of (−Aπkπ∗) at state x0 (notice that here we have πk and not π0) can be
upper bounded by its supremum norm:

(−Aπkπ∗)(x0) ≤ ‖(−Aπkπ∗)‖∞ = ‖Aπkπ∗‖∞

By the upper bound (3.19) of ‖Aπkπ∗‖∞ and ‖Aπ0
π∗‖∞ = maxx∈X (−Aπ0

π∗)(x), we get
that

(−Aπkπ∗)(x0) ≤ γk

1− γ (−Aπ0
π∗)(x0). (3.20)

Let k∗ be an integer such that γk
∗

1−γ < 1. For all k ≥ k∗ and Aπ0
π∗(x0) > 0, we have

the strict inequality

−Aπkπ∗(x0) < −Aπ0
π∗(x0).

This entails that the action selected by πk at state x0 is different from π0(x0).
To see this more clearly, note that by (3.9), this is equivalent to the statement that
Q∗(x0, π0(x)) < Q∗(x0, πk(x)). This can only hold if π0(x) and πk(x) are different.

If Aπ0
π∗(x0) = 0, then Q∗(x0, π0(x)) = V ∗(x0), so π0 is optimal at x0. By (3.20)

and the non-negativity of (−Aπkπ∗), the advantage of πk w.r.t. π∗ (Aπkπ∗) must be zero,
hence πk(x0) is optimal too.

This argument shows that as soon as k ≥ k∗, the policy πk never chooses π0(x0)
unless it is optimal already. Therefore, at least one suboptimal action is eliminated
after k∗ iterations of the PI algorithm. We can repeat this argument (starting from
the just obtained πk as the “new” π0) to eliminate one suboptimal action after each
k∗ iterations. Because there are |X |(|A| − 1) suboptimal actions at most, the PI
continues for at most |X |(|A|−1)k∗ iterations, after which the remaining actions are
all optimal.

It remains to calculate k∗. We solve for its value such that γk
∗

1−γ = 1. This leads
to

k∗ log γ = log(1− γ)⇒ k∗ =
log(1− γ)

log(γ)
=

log( 1
1−γ )

log( 1
γ
)
.

As log( 1
γ
) ≥ 1− γ, if we choose k∗ = d log( 1

1−γ )

1−γ e, we get that γk
∗

1−γ < 1.
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3.5 Linear Programming

We can find V ∗ by solving a Linear Program (LP). This approach is less commonly
used compared to VI and PI. Later, we mention an approach to find π∗ without
computing V ∗ or Q∗ after all, based on the dual formulation of LP.

To begin with, consider the set of all V that satisfy V ≥ T ∗V , i.e.,

C = {V : V ≥ T ∗V } .

This set has an interesting property. For any V ∈ C, by the monotonicity of T ∗,
we have

V ≥ T ∗V ⇒ T ∗V ≥ T ∗(T ∗V ) = (T ∗)2V.

Repeating this argument, we get that for any m ≥ 1,

V ≥ (T ∗)mV.

We take the limit of m going to infinity and use the contraction property of the
Bellman optimality operator to conclude

V ≥ lim
m→∞

(T ∗)mV = V ∗.

So any V ∈ C is a lower bounded by V ∗. Or in other words, V ∗ is the function
that is in C, but is less than or equal to any other function in C in the pointwise
sense, i.e., V1 ≤ V2 ⇔ V1(x) ≤ V2(x),∀x ∈ X .

Based on this observation, we can devise a procedure to find V ∗. We find a
member of C such that it is less than or equal to any other V ∈ C. We can do this
by choosing a strictly positive vector µ > 0 with the dimension of X (we can think
of µ as the probability distribution with a support on X ; though at this stage being
a distribution is not needed), and solving the following constrained optimization
problem:

min
V ∈C

µ>V,

which can be written in an expanded form as

minV µ>V,

s.t. V (x) ≥ (T ∗V )(x), ∀x ∈ X .
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This has a linear objective and a set of |X | nonlinear constraints. We can convert
each of nonlinear constraints to |A| linear ones because each

V (x) ≥ max
a∈A

{
r(x, a) + γ

∑
y

P(y|x, a)V (y)

}

is equivalent to

V (x) ≥ r(x, a) + γ
∑
y

P(y|x, a)V (y), ∀a ∈ A.

Therefore, we can solve the following instead:

minV µ>V,

s.t. V (x) ≥ r(x, a) + γ
∑
y

P(y|x, a)V (y), ∀(x, a) ∈ X ×A.

This is a linear program with |X × A| constraints.
The choice of µ, as long as µ > 0, does not matter. To see this, suppose that

we find a Ṽ 6= V ∗ as the minimizer. As all V ∈ C satisfy V ≥ V ∗, this means that
for at least a state x′, we have that Ṽ (x′) > V ∗(x′). But if that is the case, we can
decrease the objective from µ>Ṽ to µ>V ∗ by the amount of

µ(x′)︸ ︷︷ ︸
>0

(Ṽ (x′)− V ∗(x′)︸ ︷︷ ︸
>0

) > 0.

So Ṽ cannot be strictly larger than V ∗. If µ(x′) = 0, however, we could not make
this argument anymore.

Exercise 3.9. What method do we have for solving an LP? What is the computa-
tional cost?

Exercise 3.10. How can we have an LP-like formulation when the state space is
continuous?

Exercise 3.11. What if we started our argument from V ≤ T ∗V and defined C ′ =
{V : V ≤ T ∗V } instead of C? Would it work? If so, what changes do we need?



Chapter 4

Learning from a Stream of Data:
Value Function Learning

We consider the setting when the MDP model (P and R) is known in the previous
chapter.1 In the RL setting, however, we do not have access to the model. Instead,
we observe data of agent interacting with its environment. The data, in general, is
in the form of data stream

X1, A1, R1, X2, A2, R2,

with At ∼ π(·|Xt), Xt+1 ∼ P(·|Xt, At) and Rt ∼ R(·|Xt, At), as we already described
in Sections 1.1 and 1.3.

Several important questions are:

• How can we learn a value of policy π?

• How can we learn V ∗ or Q∗ (and consequently, the optimal policy π∗)?

This chapter is about methods for doing these tasks. The methods in this chapter
are often feasible for finite MDPs. Similar high-level ideas work for continuous MDPs,
with some modifications, which we shall cover later in the lecture notes.

4.1 Online Estimation of the Mean of a Random

Variable

Let us start from a simple problem of estimating the mean of a random variable,
given samples from it. To be concrete, assume that we are given n real-valued

1Chapter’s Version: 0.05 (2021 February 23).
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r.v. Z1, . . . , Zt, all drawn i.i.d. from a distribution ν. How can we estimate the
expectation m = E [Z] with Z ∼ ν?

Of course, we can use the sample (or empirical) average:

mt ,
1

t

t∑
i=1

Zi.

We know that under mild conditions, by the Law of Large Numbers (LLN), mt → m,
almost surely.2

Exercise 4.1 (??). Assume that Var [Z] = σ2. What is the variance of mt?
Hint: Use the independence assumption between Zi and Zj (for i 6= j) in your

calculation of the variance.

The naive implementation of mt requires us to store all Z1, . . . , Zt. This is infea-
sible when t is large. But we can do it online too. To see it, let us write mt+1 in
terms of mt and Zt+1:

mt+1 =
1

t+ 1

t+1∑
i=1

Zi =
1

t+ 1

[
t∑
i=1

Zi + Zt+1

]
=

1

t+ 1
[tmt + Zt+1]

=

(
1− 1

t+ 1

)
mt +

1

t+ 1
Zt+1.

Let us define αt = 1
t+1

. We can write

mt+1 = (1− αt)mt + αtZt.

The variable αt is called the learning rate or step size.
With this choice of αt, the estimate mt converges to m as t → ∞, as this is

basically computing the empirical mean, whose convergence is ensured by the LLN.
This online procedure is an example of the family of stochastic approximation (SA)
methods. We shall see more example of it in the rest of this chapter.

We can also choose other αts too. In order to avoid confusion with mt, we use θt
as our estimate of m = E [Z], and consider an algorithm in the form of

θt+1 = (1− αt)θt + αtZt. (4.1)

2The condition would be that E [|Z|] <∞.
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Note that θt is a random variable. If αt = 1
t+1

, we get the previous procedure, and
we know that θt → E [Z] and has a variance that goes to zero (Exercise 4.1). As
another choice, we consider a fixed learning rate

αt = α,

for a α > 0. In that case, the sequence θt would be

θt+1 = (1− α)θt + αZt.

Let us try to understand this sequence better by studying its expectation and variance
as a function of time t. Take expectation of both sides to get

E [θt+1] = E [(1− α)θt + αZt]

= (1− α)E [θt] + αE [Zt]

= (1− α)E [θt] + αm.

Denote E [θt] by θ̄t (which is not a r.v. anymore), and write the equation above as

θ̄t+1 = (1− α)θ̄t + αm.

We would like to study the behaviour of θ̄t as t increases. Assuming that θ0 = 0
(so θ̄0 = 0) and 0 ≤ α < 1, we get that

θ̄1 = αm,

θ̄2 = (1− α)αm+ αm,

θ̄3 = (1− α)2αm+ (1− α)αm+ αm,

...

θ̄t = α

t−1∑
i=0

(1− α)im =
αm(1− (1− α)t)

1− (1− α)
= m

[
1− (1− α)t

]
.

Therefore, we can conclude that

lim
t→∞

θ̄t = m.

So the update rule leads to a sequence θ̄t that converges to m in expectation. This
is reassuring, but is not enough. It is imaginable that θt converges in expectation,
but has a large deviation around its mean. Let us compute its variance too.



62
CHAPTER 4. LEARNING FROM A STREAM OF DATA: VALUE FUNCTION

LEARNING

As Zt is independent of Z1, . . . , Zt−1 and θt is a function of Z1, . . . , Zt−1 only, the
random variables θt and Zt are independent too. We use this to get that

Var [θt+1] = Var [(1− α)θt + αZt] = (1− α)2Var [θt] + α2Var [Zt] .

As a quick calculation, we have that Var [θt+1] ≥ α2Var [Zt] = α2σ2. So for a constant
α, the variance of θt is not going to converge to zero. In other words, θt fluctuates
around its mean (in different runs of the data stream; though a similar conclusion
would hold within the same sequence (θt) too).

To compute the variance exactly, denote β = (1− α)2 and Ut = Var [θt]. Similar
to the calculation for the expectation, we have that

U0 = 0,

U1 = α2σ2,

U2 = α2σ2(1 + β)

...

Ut = α2σ2

t−1∑
i=0

βi =
α2σ2(1− βt)

1− β =
ασ2 [1− (1− α)2t]

2− α .

So

lim
t→∞

Var [θt] =
ασ2

2− α. (4.2)

To summarize, if we choose αt = 1
t+1

, the estimate θt converges to m almost

surely. In finite range of t, the variance of the estimate is σ2

t
, so it is decreasing as a

function of t. On the other hand, if αt = α, the estimate θt converges to m only in
expectation, but its variance is not going to zero as t grows.

In order to make θt actually converge in a sense stronger than expectation, we
need αt → 0 with some schedule. Obviously, αt = 1

t+1
works, but it is not the only

acceptable one. But any sequence αt going to zero is not working either. It should
not converge to zero too fast, as it would not allow enough adaptation. For example,
if αt = 0 for all t = 1, 2, . . . , θt is not updated at all. Even if αt becomes zero only
after a certain t0 > 1, we would not converge to the expectation.

One can show that the condition for convergence is that the learning rate (or step
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size) (αt) should satisfy:

∞∑
t=0

αt =∞, (4.3)

∞∑
t=0

α2
t <∞. (4.4)

Exercise 4.2 (?). Does αt = α (constant) satisfy these conditions?

Exercise 4.3 (?). Verify that the sequence αt = 1
t+1

satisfies these conditions.

Exercise 4.4 (?). Let αt = 1
tp+1

. For what range of p these conditions are satisfied?

4.2 Online Learning of the Reward Function

Recall the immediate reward problem from Section 1.3: At episode t, the agent
starts at state Xt ∼ ρ ∈ M(X ), chooses action At ∼ π(·|Xt), and receives a reward
of Rt ∼ R(·|Xt, At). The agent then starts a new independent episode t+ 1, and the
process repeats. The goal is to learn how to act optimally.

When the reward function r : X ×A → R was known, the optimal policy would
be (1.2)

π∗(x)← argmax
a∈A

r(x, a).

What if when we do not know the reward function? In this section, we study this
problem in some detail.

We can use SA to estimate r(x, a). This would simply be the extension of how
we estimated the mean of a single variable Z ∼ ν to the case when we have many
random variables, each for one of the state-action pairs (x, a) ∈ X × A. Each
r.v. has a distribution R(·|x, a) and its mean is r(x, a) = E [R|X = x,A = a] with
R ∼ R(·|x, a) (for all (x, a) ∈ X ×A).

Denote r̂t : X × A → R as our estimate of r at time t. Let us denote the state-
action-indexed sequence αt(x, a) as the step size for (x, a). At time/episode t, the
state-action pair (Xt, At) is selected. We update r̂t(Xt, At) as

r̂t+1(Xt, At)← (1− αt(Xt, At))r̂t(Xt, At) + αt(Xt, At)Rt, (4.5)

and do not change our estimate r̂t+1(x, a) from what we had r̂t(x, a) for all (x, a) 6=
(Xt, At). This can be written as having αt(x, a) = 0, i.e.,

r̂t+1(x, a)← (1− 0)r̂t(x, a) + 0.Rt,
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The SA conditions (4.3)-(4.4) apply here, with the difference that it should for
each state-action pair, i.e., for any (x, a) ∈ X ×A, we need to have

∞∑
t=0

αt(x, a) =∞,

∞∑
t=0

α2
t (x, a) <∞.

To define αt(x, a), we can use a counter on how many times (x, a) has been picked
up to time t. We define

nt(x, a) , |{ i : (Xi, Ai) = (x, a), i = 1, . . . , t }| .

We can then choose αt(x, a) = 1
nt(x,a)

. This leads to r̂t(x, a) being a sample mean of

all rewards encountered at (x, a).

Note that if the sampling distribution Xt ∼ ρ never chooses a particular state
x0 or if the policy π(·|x0) never chooses a particular action a0 at a certain state
x0, we cannot form any data-dependent estimate of r(x, a). This is in line with
what condition

∑∞
t=0 αt(x0, a0) = ∞ implies. For this condition to be satisfied, the

minimum requirement is that the state-action pair (x0, a0) is selected infinitely often
(if we only select it a finite number of times, the summation would be finite too).
Without having infinite number of samples from all state-actions pairs, our estimate
r̂ would not converge to r.

Is this important? If the goal is to have an accurate estimate of r, the answer is
positive. We shall see that we may not care about having an accurate estimate of r,
but we only care about choosing the optimal action. We shall see that they are not
the same goals.

4.2.1 From Reward Estimation to Action Selection

Recall that by selecting a ← πg(x; r) = argmaxa∈A r(x, a), we would choose the
optimal action at state x. In lieu of r, we can use r̂t : X ×A → R, estimated using
the SA (4.5), and choose the action At = πg(Xt; r̂t) at state Xt.

There is a problem with this approach though. The problem is that if r̂t is
inaccurate estimate of r, the agent may choose a suboptimal action. It is also possible
that it gets stuck in choosing that action forever, without any chance to improve its
estimate. To see how this might happen, consider a problem where we only have one
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state x1 with two actions a1 and a2. The reward function is

r(x1, a1) = 1,

r(x1, a2) = 2.

Suppose that the reward is deterministic, so whenever the agent chooses action a1

at state x1, it always receive R = 1 (and similar in the other case). Suppose that
the initial estimate of the reward r̂(x1, ·) = 0.

Assume that in the first episode t = 1, the agent happen to choose a1. So its
estimates would be

r̂2(x1, a1) = (1− α1)× 0 + α1 × 1 > 0

r̂2(x1, a2) = r̂1(x1, a2) = 0.

The next time the agent encounters x1, if it follows the greedy policy, the selected
action would be a1 again, and r̂3(x1, a1) remains positive. Meanwhile, since a2 is not
selected, the value of r̂3(x1, a2) remains equal to zero. As long as the agent follows
the greedy policy, it always chooses action a1 and never chooses action a2. This
means that the estimate r̂t(x1, a1) becomes ever more accurate (and asymptotically
converge to r(x1, a1), if the learning rate is selected properly), but r̂2(x1, a2) remains
inaccurate. Of course, this is problematic as the optimal action here is a2.

How can we ensure that the agent learns to eventually choose action a2? Let
us answer a slightly different question: How can we ensure that the agent learns a
good estimate of r for all state-action pairs (x, a)? If we have an estimate r̂ that is
very accurate for all (x, a) ∈ X × A, we can use it instead of r (this is a sufficient
condition though).

One solution is to force the agent regularly picks actions other than the one
suggested by the greedy policy. If we ensure that all actions are selected infinitely
often, the estimate r̂ converges to r. Using the ε-greedy policy, which we previously
encountered in (1.17), is a possible approach: For ε ≥ 0 and a function r̂, we define
πε as

πε(x; r̂) =

{
πg(x; r̂) w.p. 1− ε,
Unif(A) w.p. ε.

Here Unif(A) chooses an action from A uniformly.
If ε > 0, there is non-zero probability of selecting any of the actions, so asymp-

totically all of them are selected infinitely often. If αt is selected properly, the SA
conditions are satisfied, hence r̂ → r uniformly.
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The uniform choice of action in the ε-greedy helps the agent explore all actions,
even if the action is seemingly suboptimal. This can be contrasted with the greedy
part of its action select mechanism that exploits the current knowledge about the
reward function, and chooses the action that has the highest estimated reward. Ex-Exploration-

Exploitation Trade-
off

ploiting our knowledge, encoded by r̂ in this context, is a reasonable choice when
our knowledge about the world is accurate. If r̂ is exactly equal to r, the optimal
decision is to always exploit it and choose the greedy action. When we have uncer-
tainty about the world, however, we should not be overconfident of our knowledge
and exploit it all the time, but instead explore other available actions, which might
happen to be better.

The tradeoff between exploration and exploitation is a major topic in RL and
is an area of active research. The ε-greedy action selection mechanism is a simple
heuristic to balance between them, but it is not the only one, or the optimal one. An-
other heuristic is to select actions according to the Boltzmann (or Gibbs or softmax)
distribution. Given a parameter τ > 0, and the reward function r̂, the probability
of selecting action a at state x is

π(a|x; r̂) =
exp( r̂(x,a)

τ
)∑

a′∈A exp( r̂(x,a
′)

τ
)
.

This is for finite action spaces. For continuous action spaces, we replace the summa-
tion with an integration.

This distribution assigns more weight to actions with higher estimated value (i.e.,
reward). When τ →∞, the behaviour of this distribution would be the same as the
greedy policy, both choose the maximizing action. On the other hand, when τ → 0,
the probability of all actions would be the same, i.e., the distribution becomes close
to a uniform distribution.

We discuss how we can tradeoff the exploration and exploitation in a more sys-
tematic way in a later chapter.

4.3 Monte Carlo Estimation for Policy

Evaluation

The reward learning problem is a special case of value function learning problem when
the episode ends in one time step. Let us devise methods to learn (or estimate) the
value function V π and Qπ of a policy, and then the optimal value functions V ∗ and
Q∗. In this section, we focus on the policy evaluation problem. We introduce a
technique called Monte Carlo (MC) estimation.
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Recall from Chapter 1 that

V π(x) = E [Gπ
t |Xt = x] ,

with Gπ
t ,

∑
k≥t γ

k−tRk (1.13). That is, the value function is the conditional expec-
tation of the return. So Gπ

t (conditioned on starting from Xt = x) plays the same
rule as the r.v. Z in estimating m = E [Z] (Section 4.1), or the reward R ∼ R(·|x, a)
in estimating r(x, a) (Section 4.2).

Obtaining a sample from return Gπ is easy, at least conceptually. If the agent
starts at state x, and follows π, we can draw one sample of r.v. Gπ by comput-
ing the cumulative average of rewards collected during the episode.3 Each tra-
jectory is sometimes called a rollout. If we repeat this process from the same
state, we get another draw of r.v. Gπ. Let us call the value of these samples
Gπ(1)(x), Gπ(2)(x), . . . , Gπ(n)(x). We can get an estimate V̂ (x) of V π(x) by taking
the sample average:

V̂ π(x) =
1

n

n∑
i=1

Gπ(i)(x).

This procedure gives an estimate for a single state x. We can repeat it for all
states x ∈ X to estimate V̂ π. If n→∞, the estimate converges to V π. In the finite
sample regime, the behaviour of the estimate is V̂ π(x) ≈ V π(x) + OP ( 1√

n
).4 We

can also use a SA update to compute these values. We show a variation of this idea
when the initial state X1 at episode i is selected randomly according to a distribution
ρ ∈M(X ) in Algorithm 4.1. In this variation, the quality of V̂ π

t (x) depends on how
often x is samples in the first t time steps.

For the SA to converge, we need to choose the learning rate (αt(x))t such that it
satisfies the SA conditions, i.e., for all x ∈ X ,

∞∑
t=0

αt(x) =∞,
∞∑
t=0

α2
t (x) <∞. (4.6)

3If the problem is a continuing task, the episode never ends. So we cannot compute the return
this way. That is one of the reasons that I used “conceptual”. We can ignore this problem though,
as there are ways to either approximate it (see Exercise 3.2) or obtain an unbiased estimate of it.
We ignore these issues for now, and assume that the episode terminates in a finite number of time
steps.

4OP indicates that this holds with certain probability. To be more accurate, we can show that

there exists a c1 > 0 such that for any 0 < δ < 1, we have that |V̂ π(x)−V π(x)| ≤ c1
√

log(1/δ)
n with

probability at least 1− δ.
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Algorithm 4.1 Monte Carlo Estimation (Policy Evaluation) (Initial-State Only)

Require: Step size schedule (αt(x))t≥1 for all x ∈ X .

1: Initialize V̂ π
1 : X → R arbitrary, e.g., V̂ π

1 = 0.
2: for each episode t do
3: Initialize X

(t)
1 ∼ ρ

4: for each step t of episode do
5: Follow π to obtain X

(t)
1 , A

(t)
1 , R

(t)
1 , X

(t)
2 , A

(t)
2 , R

(t)
2 , . . . .

6: end for
7: Compute Gπ

1
(t) =

∑
k≥1 γ

k−1R
(t)
k .

8: Update

V̂ π
t+1(X

(t)
1 )←

(
1− αt(X(t)

1 )
)
V̂ π
t (X

(t)
1 ) + αt(X

(t)
1 )Gπ

1
(t).

9: end for

For example, if we set a counter

nt(x) ,
∣∣∣{X(i)

1 = x : 1 ≤ i ≤ t
}∣∣∣ ,

we can define αt(x) = 1
nt(x)

.
The procedure of following π, collecting the rewards, and estimating the value

function using the return is called the Monte Carlo (MC) estimation. Here it is used
to estimate (or predict) the value of a policy π. As we shall see, we can use the same
idea to find the optimal value function too.

A few remarks are in order.
First, we need each initial state x to be selected infinitely often. As discussed

in Section 4.2, if ρ(x) = 0, we cannot form an estimate for that state, hence V̂ π(x)
would be inaccurate.

The error εt(x) = |V̂ π
t (x) − V π(x)| depends on how many times x has been the

initial state by episode t, i.e., nt(x). For αt(x) = 1
nt(x)

(the mean estimator), we

can say that εi(x) = Op(
1√
nt(x)

). But note that nt(x) is a r.v. itself, so it is not

a deterministic function of t. Nonetheless, we can say that nt(x) is concentrated
around tρ(x) with a variation in the order of

√
tρ(x).

This version of MC is called initial-state-only MC, because we only update the
estimation of the value function at the initial state. We shall soon describe two
different variations of MC.

Exercise 4.5 (?). Describe an MC algorithm to estimate Qπ.
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4.3.1 First-Visit and Every-Visit Monte Carlo Estimators

Given a trajectory X
(t)
1 , A

(t)
1 , R

(t)
1 , X

(t)
2 , A

(t)
2 , R

(t)
2 , . . . , X

(t)
m , A

(t)
m , R

(t)
m , X

(t)
m , . . . , we can

compute not only the return Gπ
1

(t), but also all other returns Gπ
m

(t) from time step
m = 1, 2, . . . (all within the same episode). Each of them would be an unbiased

estimate of V π(X
(t)
m ). We can then update not only V̂ π(X

(t)
1 ), but all V̂ π(X

(t)
m )

(m = 1, 2, . . . ).

We have to be careful here though. If a trajectory visits a particular states
twice (or more) at time steps m1,m2, . . . (all within the same episode), the returns
Gπ
m1

(t), Gπ
m2

(t), . . . would be dependent. To see this, consider that we start from state
x at m = 1, return to the same x at m = 2, and then go to other states afterwards.
The returns are

Gπ
1 = R1 + γR2 + γ2R3 + · · · ,

Gπ
2 = R2 + γR3 + · · · .

We can see that Gπ
1 = R1 + γGπ

2 . So Gπ
1 is dependent on Gπ

2 . Therefore, Gπ
1 and Gπ

2

are not two independent samples from the return of following π. With dependent
samples, we may lose some of the nice properties of having independent samples.
For example, the answer to Exercise 4.1 would be different, and the variance might
decrease, as a function of n, slower than when we have independent samples. How
the behaviour exactly change depends on how dependent the samples are. It can
also be shown that these samples might be biased too.

Being biased does not necessarily mean that the approach is useless. In fact, it
can be shown that the estimate is consistent, i.e., the sample mean converges to the
true mean, despite dependence and biasedness.

One approach to avoid this issue is to only consider the first visit to each state
in updateing the estimation of V̂ π. That means that if we get to a state x at
m1(x),m2(x), . . . , we update V̂ π(x) only based on Gπ

m1(x), and not Gπ
mj(x) (j ≥ 1).

This estimate is unbiased. And there is no issue of dependency either. This variant
is called first-visit MC, and the former one is called every-visit.

Can we say the first-visit MC is a better estimator? Not necessarily! It might
be possible that the mean-squared error of every-visit is smaller in some situations,
despite the bias of the samples. Let us see an example. XXX This will be added!
XXX
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4.4 Temporal Difference Learning for Policy

Evaluation

MC methods allows us to estimate V π(x) by using returns Gπ(x). Depending on the
method, the samples are either unbiased (initial-state only and first-visit variants) or
biased but consistent (every-visit). MC methods, however, do not benefit from the
recursive property of the value function, which is codified with the Bellman equation.
The MC methods are agnostic to the MDP structure. This can be an advantage if
the underlying problem is not an MDP. But if it is, an MC method might be less
efficient.

In Chapter 3, we discussed several methods that could be used to compute V π

and V ∗. These methods benefitted from the structure of the MDP. Can we use
similar methods, even if we do not know P and R?

Let us focus on VI for PE, i.e., Vk+1 ← T πVk. At state x, the procedure is

Vk+1(x)← rπ(x) + γ

∫
P(dx′|x, a)π(da|x)Vk(x

′).

If we do not know rπ and P , we cannot compute this. Suppose that we have n
samples Ai ∼ π(·|x), X ′i ∼ P(·|x,Ai), and Ri ∼ R(·|x,Ai). Using these samples and
Vk, we compute

Yi = Ri + γVk(X
′
i). (4.7)

Now notice that
E [Ri|X = x] = rπ(x),

and

E [Vk(X
′
i)|X = x] =

∫
P(dx′|x, a)π(da|x)Vk(x

′).

So the r.v. Yi satisfies

E [Yi|X = x] = (T πVk)(x). (4.8)

This means that Yi is an unbiased sample from the effect of T π on Vk, evaluated at
x.

This should remind us of the problem of estimating m = E [Z] using samples
Z1, Z2, . . . in Section 4.1. The value of

Vk+1(x) ,
1

n

n∑
i=1

Yi
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Algorithm 4.2 Temporal Difference Learning (Synchronous)

Require: Policy π, step size schedule (αk)k≥1.
1: Initialize V1 : X ×A → R arbitrary, e.g., V1(x) = 0.
2: for iteration k = 1, 2, . . . do
3: for each state x ∈ X do
4: Let A ∼ π(·|x)
5: X ′(x) ∼ P(·|X,A) and R(x) ∼ R(·|x,A)
6: Let (T̂ πVk)(x) , R(x) + γVk(X

′(x))
7: end for
8: Update

Vk+1 ← (1− αk)Vk + αkT̂
πVk

9: end for

converges to (T πVk)(x) by LLN. And as we have seen, the rate of convergence is
OP ( 1√

m
). This is a sample-based version of VI for PE.

Instead of taking the sample average, we can use a SA procedure and update it
as

Vk+1,j+1(x) = (1− αj(x))Vk+1,j(x) + αj(x)Yj, j = 1, 2 . . . .

If we perform this process for all states x ∈ X simultaneously, we get an esti-
mate of T πVk, which is contaminated by a zero mean noise. This is summarized in
Algorithm 4.2. Note that we defined

(T̂ πVk)(x) , R(x) + γVk(X
′(x)), (4.9)

which is the same as Yi defined above (4.7). We call T̂ π the empirical Bellman
operator. As we shown before (4.8), this r.v. is an unbiased estimate of (T πVk)(x),
and we have

E
[
(T̂ πVk)(x)|X = x

]
= (T πVk)(x).

For a moment assume that we run a VI-like procedure

Vk+1 ← T̂ πVk,

instead of Vk+1 ← T πVk (this corresponds to the choice of αk = 0 in the algorithm
above). We can write it down as

Vk+1 ← T̂ πVk = T πVk +
(
T̂ πVk − T πVk

)
︸ ︷︷ ︸

,εk

. (4.10)
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This is similar to the usual VI with an additional zero-mean noise εk. This additional
noise, however, does not go zero with this procedure. To see this more clearly, assume
that Vk is already the correct value V π. In this case, the VI stays at the same value,
as Vk+1 = T πVk = T πV π = V π. But for the VI based on the empirical Bellman error,
we have

Vk+1 = T πVk + εk = T πV π + εk = V π + εk.

We can continue this to see that this would fluctuate around the true value a non-
diminishing fluctuation.

Comparing this with the estimation of the mean using a noisy sample might be
instructive. Recall from (4.1) that

θt+1 ← (1− αt)θt + αtZt

⇔θt+1 ← (1− αt)θt + αtm+ αk(Zt −m)

⇔θt+1 ← (1− αt)θt + αtm+ αtεt,

with εt = Zt −m being a zero-mean noise term. When αt = 1, we get a procedure
similar to (4.10). We discussed earlier that for θt to converge to m, we need αt to go
to zero with a certain rate. With any fixed α, including α = 1, the variance (4.2) of
the mean estimator does not go to zero.

The problem of finding the fixed point of T π is not exactly the same as the
problem of finding the mean of a r.v., but the condition for convergence is similar.
We need the usual SA conditions to be satisfied. For Algorithm 4.2, we need

∞∑
k=1

αk =∞,
∞∑
k=0

αk <∞.

The preceding procedure was synchronously updating the value of all states. We
can also only update one V (x) at any time step, i.e., asynchronous update. That is,
given a state transition (X,A,R,X ′), we update

V (X)← (1− α)V (X) + α(T̂ πV )(X) = V (X) + α[R + γV (X ′)− V (X)].

We have E [R + γV (X ′)− V (X)|X] = (T πV )(X) − V (X), so in expectation V (X)
is updated to

V (X) + α[(T πV )(X)− V (X)] = (1− α)V (X) + α(T πV )(X).

This is the same direction suggested by VI, but we only move the current estimate
only proportional to α towards it. Moreover, the update is only at one of the statesX,
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Algorithm 4.3 Temporal Difference Learning

Require: Policy π, step size schedule (αt)t≥1.
1: Initialize V1 : X ×A → R arbitrary, e.g., V1(x) = 0.
2: Initialize X1 ∼ ρ
3: for each step t = 1, 2, . . . do
4: Let At ∼ π(·|x)
5: Take action At, observe Xt+1 ∼ P(·|Xt, At) and Rt ∼ R(·|Xt, At)
6: Update

Vt+1(x)←
{
Vt(x) + αt(x)[Rt + γVt(Xt+1)− Vt(Xt)] x = Xt

Vt(x) x 6= Xt

7: end for

instead of all states. The hope is that the use of SA gets rid of the noise and we follow
the deterministic part, which is VI. The procedure is described in Algorithm 4.3.
This asynchronous sample-based variation of the VI algorithm is called the Temporal
Difference learning algorithm. The update rule could be written in perhaps a simpler,
but less precise, form of

V (Xt)← V (Xt) + αt(Xt)[Rt + γV (Xt+1)− V (Xt)],

without showing any explicit dependence of V on time index t.
The term

δt , Rt + γV (Xt+1)− V (Xt)

is called temporal difference (TD) error. This is a noisy measure of how close we are
to V π. To see this more clearly, let us define the dependence on the TD error on its
components more explicitly: Given a transition (X,A,R,X ′) and a value function
V , we define

δ(X,R,X ′;V ) , R + γV (X ′)− V (X).

We have

E [δ(X,R,X ′;V )|X = x] = (T πV )(x)− V (x) = BR(V )(x).

So in expectation, the TD error is equal to the Bellman residual of V , evaluated at
state x. Recall that the Bellman residual is zero when V = V π. The TD error does
not become zero, even if we have already found V π, but it fluctuates around zero
when we are there (unless we have a deterministic dynamics and policy).
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Remark 4.1. The error between the MC estimate Gπ
1 (x) of a state x and a value

function estimate V (x) is related to the TD error along the trajectory. To see this
clearly, consider a trajectory (X1, A1, R1, . . . ). The return Gπ

t =
∑

t′≥t γ
t′−tRt′ and

δt = Rt + γV (Xt+1)− V (Xt). We have

Gπ
1 − V (X1) = (R1 + γGπ

2 )− V (X1)

= R1 + γGπ
2 − V (X1) + γV (X2)− γV (X2)

= (R1 + γV (X2)− V (X1)) + γ(Gπ
2 − V (X2))

δ1 + γ(Gπ
2 − V (X2)).

Following the same argument, we get that

Gπ
1 − V (X1) = δ1 + γδ2 + . . . =

∑
t≥1

γt−1δt.

In words, the difference Gπ
1 − V (X1) is the discounted sum of the TD errors on the

trajectory. When V = V π, the LHS is a zero-mean noise, as is the RHS (since each
E [δt|X1] = E [E [δt|Xt] |X1] = E [0|X1] = 0.

4.4.1 TD Learning for Action-Value Function

We can use a similar procedure to estimate the action-value function. To evaluate
π, we need to have an estimate of (T πQ)(x, a) for all (x, a) ∈ X ×A. Suppose that
(Xt, At) ∼ µ and X ′t ∼ P(·|Xt, At) and Rt ∼ R(·|Xt, At). The update rule would be

Qt+1(Xt, At)← Qt(Xt, At) + αt(Xt, At) [Rt + γQt(X
′
t, π(X ′t))−Qt(Xt, At)] ,

and
Qt+1(x, a)← Qt(x, a)

for all other (x, a) 6= (Xt, At). It is easy to see that

E [Rt + γQt(X
′
t, π(X ′t))|X = x,A = a] = (T πQ)(x, a).

If we have a stream of data, X ′t = Xt+1, but this is not necessary.
An interesting observation is that π appears only in Qt(X

′
t, π(X ′t)) term. The

action At does not need to be selected by π itself. This entails that the agent can
generate the stream of data X1, A1, R1, X2, A2, R2, . . . by following a behaviour policy
πb that is different from the policy that we want to evaluate π. When πb = π, we areOn-policy vs. Off-

policy in the on-policy sampling scenario, in which the agent is evaluating the same policy
that it is following. When πb 6= π, we are in the off-policy sampling scenario, in
which the agent is evaluating a policy that is different from the one it is following.
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4.4.2 VI vs TD vs MC

Value Iteration, Monte Carlo estimation, and TD learning can all be seen as proce-
dures to estimate V π. It is instructive to compare the type of approximation each of
them are using.

• In MC, we use Gπ as the target value. As V π(x) = E [Gπ|X = x], we have a
noisy (but unbiased) estimate of V π. SA allows us to converge to its mean.

• In VI, we update Vk+1(x)← (T πVk)(x) = E [R + γVk(X
′)|X = x]. Here we do

not know V π, but use the current approximation Vk instead. Because of the
contraction property of the Bellman operator, this converges to V π.

• In TD learning, the target is R + γVk(X
′). This has two sources of approxi-

mation: (a) we use Vk instead of V π, and (b) we use a sample to estimate an
expectation.

4.5 Monte Carlo Estimation for Control

So far we have described methods for policy evaluation. We can use similar methods
for solving the control problem, i.e., finding the optimal value function and the
optimal policy. We describe MC-based methods here, and we get to the TD-based
methods in the next section.

The general idea is to use some version of PI. For example, if we run many rollouts
from each state-action pair (x, a), we can define Q̂π

t that converges to Qπ. If we wait
for an infinite time, Q̂π

∞ = limt→∞ Q̂
π
t = Qπ. We can then choose the new policy

π′ ← πg(Q̂
π
∞). Because of the Policy Improvement theorem, this new policy would

be better than π, unless π is already an optimal policy. This PI can be described by
the following sequence of π and Qπ:

π0
E−→ Qπ0 I−→ π1

E−→ Qπ1 I−→ · · · .

It turns out that we do not need to have a very accurate estimation of Qπk before
performing the policy improvement step. As a result, we can perform MC for a finite
number of rollouts from each state, and then perform the improvement step. In fact,
we only need to estimate Qπk(x, a) based on only a single MC estimate. The initial-
state-only version of this idea is shown in Algorithm 4.4. We choose the learning
rate (αk)k to satisfy the standard SA conditions, similar to (4.6).

This version has several features:
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Algorithm 4.4 Monte Carlo Control (Initial-State Only)

Require: Initial policy π1, step size schedule (αk)k≥1.
1: Initialize Q1 : X ×A → R arbitrary, e.g., Q1 = 0.
2: for each iteration k = 1, 2, . . . do
3: for all (x, a) ∈ X ×A do
4: Initialize X1 = x and A1 = a.
5: Generate an episode from X1 by choosing A1, and then following πk to

obtain X1, A1, R1, X2, A2, R2, . . . .
6: Compute Gπk

1 (X1, A1) =
∑

t≥1 γ
t−1Rt.

7: Update

Q̂π
k+1(X1, A1)← (1− αk(X1, A1)) Q̂π

k(X1, A1) + αk(X1, A1)Gπk
1 (X1, A1)

8: end for
9: Improve policy: πk+1 ← πg(Qk+1).

10: end for

• We start a rollout from all state-action pairs.

• We only use one rollout to obtain a new estimate of Qπk at each (x, a).

• We do not use the value ofGπk
t for all other states encountered on the trajectory.

Before further discussion and improvement of this version, let us state a theoret-
ical result about this procedure.

Proposition 4.1 (Convergence of MC for Control – Proposition 5 of Tsitsiklis 2002).
The sequence Qk generated by Algorithm 4.4 with the learning rate (αk) satisfying
the SA conditions (4.6) converges to Q∗ almost surely.

Another variation is when at each iteration k, instead of generating rollouts
from all state-action pairs, we only choose a single independently selected (X,A) ∼
Unif(X × A), follow the policy πk for a single rollout and update the action-value
Q(X,A). This procedure also converges to Q∗, as shown by Tsitsiklis [2002].

If instead of uniform distribution, we select (X,A) ∼ ρ ∈ M(X × A) with
rho > 0, the number of times that each state-action pair is selected can possibly be
vastly different. In order to make this procedure work, we need to define a state-
action-dependent step size αk(x, a), and set it equal to

αk(x, a) =
1

nk(x, a)
,
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Algorithm 4.5 Monte Carlo Control (Every-Visit)

Require: Initial policy π1, step size schedule (αk)k≥1, initial distribution ρ ∈M(X×
A).

1: Initialize Q1 : X ×A → R arbitrary, e.g., Q1 = 0.
2: Initialize n1 : X ×A → N with n1(x, a) = 0.
3: for each iteration k = 1, 2, . . . do
4: for all (x, a) ∈ X ×A do
5: Draw (X1, A1) ∼ ρ
6: Generate an episode from X1 by choosing A1, and then following πk to

obtain X1, A1, R1, X2, A2, R2, . . . until the end of episode.
7: For all (Xt, At) visited within the episode, set nk(Xt, At)← nk(Xt, At)+1.
8: Compute Gπk

t (Xt, At) =
∑

t′≥t γ
t′−tRt′ .

9: for all (Xt, At) visited in the episode do
10: Let αk(Xt, At) = 1

nk(Xt,At)
.

11: Update

Q̂π
k+1(Xt, At)← (1− αk(Xt, At)) Q̂

π
k(Xt, At) + αk(Xt, At)G

πk
t (Xt, At)

12: end for
13: nk+1 ← nk.
14: end for
15: Improve policy: πk+1 ← πg(Qk+1).
16: end for

with nk(x, a) being the number of times (x, a) have been selected up to iteration k.
This is essentially the same as averaging all returns starting from (x, a).

Another way we might modify this MC algorithm is to use first-visit or every-visit
variations of the MC procedure, as described in Section 4.3.1 for the PE problem.
The same idea can be applied, but the convergence guarantee has not been proven
so far. We report such an algorithm here as Algorithm 4.5, with the caution that it
is known whether it converges or not.

4.6 Temporal Difference Learning for Control:

Q-Learning and SARSA Algorithms

We can use TD-like methods for the problem of control too. The same way that we
devised the TD learning as the sample-based asynchronous version of VI for the PE
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problem, we can devise a sample-based asynchronous version of VI for the control
problem. Consider any Q ∈ B(X ×A). Let X ′ ∼ P(·|X,A) and R ∼ R(·|X,A) and
define

Y = R + γmax
a′∈A

Q(X ′, a′). (4.11)

We have

E [Y |X = x,A = a] = r(x, a) + γ

∫
P(dx′|x, a) max

a′∈A
Q(x′, a′)

= (T ∗Q)(x, a). (4.12)

So Y is an unbiased noisy version of (T ∗Q)(x, a). The empirical Bellman optimality
operator is

(T̂ ∗Q)(x, a) , R + γmax
a′∈A

Q(X ′, a′). (4.13)

We can define a noisy version of VI (control), similar to (4.10), as

Qk+1 ← T̂ ∗Qk,

which can be written as

Qk+1 ← T̂ ∗Qk = T ∗Qk +
(
T̂ ∗Qk − T ∗Qk

)
︸ ︷︷ ︸

,εk

. (4.14)

In order to diminish the effect of noise, however, we need to use a SA procedure. We
can define an online algorithm that updates Q based on (Xt, At, Rt, Xt+1) as follows:

Qt+1(Xt, At)← (1− αt(Xt, At))Qt(Xt, At) + αt(Xt, At)

[
Rt + γmax

a′∈A
Qt(Xt+1, a

′)

]
(4.15)

for the observed (Xt, At) and

Qt+1(x, a)← Qt(x, a)

for all other states (x, a) 6= (Xt, At). This procedure is called the Q-Learning algo-
rithm, which we encountered before as Algorithm 1.1 in Section 1.5. The learning
rate αt(x, a) is state-action-dependent in general, but sometimes might be considered
as state-action-independent αt or even time-independent α.
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What is the policy being evaluated by the Q-Learning algorithm? Looking at the
update rule, we see that we have maxa′∈AQt(Xt+1, a

′). What is the policy evaluated
at state Xt+1? We have that

max
a′∈A

Qt(Xt+1, a
′) = Qt

(
Xt+1, argmax

a′∈A
Qt(Xt, a

′)

)
= Qt (Xt+1, πg(Xt, Qt)) . (4.16)

So the Q-Learning algorithm is evaluating the greedy policy w.r.t. the current esti-
mate Qt. The evaluated policy may change as we update Qt. It is noticeable that
the greedy policy can be different from the policy π that the algorithm follows. This
makes the Q-Learning algorithm an example of an algorithm that works under the
off-policy sampling scenario. More concisely, we say that Q-Learning is an off-policy
algorithm.

Exercise 4.6 (?). When does the policy π generating data for the Q-Learning algo-
rithm become the same as the policy that it evaluates?

We can also have a PI-like procedure: Estimate Qπ for a given π, and perform
policy improvement to obtain a new π. If we wait for a long time (forever), the TD
method produces aQ that converges toQπ (under usual conditions of the convergence
of a TD method). This would be a usual PI procedure in which the policy evaluation
part is performed using a TD method. One can, however, improve the policy before
Q converges to Qπ. This is called a generalized policy iteration or optimistic policy
iteration.

An example of such an algorithm works as follows: At state Xt, the agent chooses
At = πt(Xt). It then receives Xt+1 ∼ P(·|Xt, At) and Rt ∼ R(·|Xt, At). At the time
step t+1, it chooses At+1 = πt(Xt+1) and updates the action-value function estimate
as

Qt+1(Xt, At)← (1− αt(Xt, At))Qt(Xt, At) + αt(Xt, At) [Rt + γQt(Xt+1, At+1)]
(4.17)

for the observed (Xt, At) and Qt+1(x, a) ← Qt(x, a) for all other states (x, a) 6=
(Xt, At).

The policy πt is often chosen to be close to a greedy policy πg(Qt), but with some
amount of exploration, e.g., the ε-greedy policy (1.17). The greedy part performs
the policy improvement, while the occasional random choice of actions allows the
agent to have some exploration.

This algorithm is called SARSA. The name comes from the fact that this al-
gorithm only needs the current State Xt, current Action At, Reward Rt, and the
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next State Xt+1, and the next Action At+1 to update Q (the naming would be more
obvious if we used S instead of X to refer to an action).5

If we compare SARSA’s update rule (4.17) to Q-Learning’s (4.15), we see that
their difference is effectively in the policy they evaluate at the next state. SARSA uses
Qt(Xt+1, At+1), which is equal to Qt(Xt+1, πt(Xt+1)). Hence, SARSA is evaluating
πt, which is the same policy that selects actions. On the other hand, Q-Learning
uses maxa′∈AQt(Xt+1, a

′), which evaluates the greedy policy πg(Qt), as we discussed
already (4.16). Whereas Q-Learning is an off-policy algorithm, SARSA is an on-
policy algorithm.

Remark 4.2. We do not need a stream of data for this algorithm (or Q-Learning)
to work. Instead of Xt+1, we could have X ′t ∼ P(·|Xt, At), but do not set Xt+1 to be
X ′t.

4.7 Stochastic Approximation

We have already encountered the use of stochastic approximation (SA) to estimate
the expectation of a random variable. Here we provide a convergence result for a
class of SA problems.

Suppose that we want to find the fixed-point of an operator L, i.e., solve the
following equation

Lθ = θ,

for θ ∈ Rd, and L : Rd → Rd. Consider the iterative update

θt+1 ← (1− α)θt + αLθt. (4.18)

If L is c-Lipschitz with c < 1 and α is small enough (0 < α < 2
1−c), this would

converge. To see this, notice that the above iteration is equivalent of having θt+1 ←
L′θt with the new operator

L′ : θ 7→ [(1− α)I + αL]θ.

For any θ1, θ2 ∈ Rd, this new operator satisfies

‖L′θ1 − L′θ2‖ ≤ (1− α) ‖θ1 − θ2‖+ α ‖Lθ1 − Lθ2‖ ≤ [(1− α) + αc] ‖θ1 − θ2‖ .

So if |(1−α)+αc| < 1, which is satisfied for 0 < α < 2
1−c , L

′ is a contraction mapping.
By the Banach fixed point theorem (Theorem A.1), the iteration converges.

5Based on this naming convention, the Q-Learning algorithm could be called SARS!
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Now suppose that we do not have access to Lθt, but only its noise contaminated
Lθt + ηt with ηt ∈ Rd being a zero-mean noise. We perform the following instead:

θt+1 ← (1− αt)θt + αt(Lθt + ηt). (4.19)

This iterative process is similar to (4.1), with the difference that the latter concerns
the estimation of a mean given an unbiased noisy value of the mean, while here we
are dealing with a noisy evaluation of an operator L being applied to θt.

As discussed in Section 4.1 and in particular (4.1), if we choose a constant learning
rate α, the variance of the estimate θt would not go to zero. That is why we use an
iteration-dependent αt.

Let us consider a more general update than above. The generalization is that we
allow some dimensions of θ to be updated while the others remain the same. This
asynchronous update occurs in algorithms such as Q-Learning or TD, so we would
like to have a model that captures the behaviour of those algorithms.

The algorithm model is as follows: Assume that at time t, the i-th component of
θt is updated as

θt+1(i)← (1− αt(i))θt(i) + αt(i) [(Lθt)(i) + ηt(i)] , (4.20)

with the understanding that αt(j) = 0 for j 6= i (components that are not updated).
We denote the history of the algorithm up to time t by Ft:

6

Ft = {θ0, θ1, . . . , θt} ∪ {η0, η1, . . . , ηt−1} ∪ {α0, α1, . . . , αt}.

Note that ηt is not included because it has not happened just before performing this
step.

We need to make some assumptions on the noise.

Assumption A1

(a) For every i and t, we have E [ηt(i)|Ft] = 0.

(b) Given any norm ‖·‖ on Rd, there exist constants c1, c2 such that for all i and t,
we have

E
[
|ηt(i)|2|Ft

]
≤ c1 + c2 ‖θt‖2 .

6The σ-algebras (σ(Ft))t is called filtration in stochastic process or martingale theory.
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The first assumption simply indicates that the noise ηt should be zero-mean,
conditioned on the information available up to time t. The second assumption is the
requirement that the variance of the noise is not too much. The variance is allowed
to depend on parameter θt though.

The following result provides the condition for the convergence of the SA iteration
to its fixed point.

Theorem 4.2 (Convergence of the Stochastic Approximation – Proposition 4.4
of Bertsekas and Tsitsiklis 1996). Let (θt) be the sequence generated by (4.20). As-
sume that

1. (Step Size) The step sizes αt(i) (for i = 1, . . . , d) are non-negative and satisfy

∞∑
t=0

αt(i) =∞,
∞∑
t=0

α2
t (i) <∞.

2. (Noise) The noise ηt(i) satisfies Assumption A1.

3. The mapping L is a contraction w.r.t. ‖·‖∞ with a fixed point of θ∗.

Then θt converges to θ∗ almost surely.

Remark 4.3. Proposition 4.4 of Bertsekas and Tsitsiklis [1996] is slightly more
general than what we have here as it allows L to be a weighted maximum norm
pseudo-contraction. We do not need that generality here.

4.8 Convergence of Q-Learning

We use Theorem 4.2 to prove the convergence of the Q-Learning algorithm for finite
state-action MDPs. The Q-Learning update rule (4.15) has the same form as the
SA update rule (4.20), if we identify θ with Q ∈ RX×A, and the operator L with
the Bellman optimality operator T ∗. The index i in the SA update plays the role
of the selected (Xt, At). And the noise term ηt(i) would be the difference between
(T ∗Qt)(Xt, At) and the sample-based version Rt + γmaxa′∈AQt(Xt+1, a

′). In order
to prove the convergence of the Q-Learning, we have to verify the conditions of
Theorem 4.2.

Theorem 4.3. Suppose that for all (x, a) ∈ X ×A, the step sizes αt(x, a) satisfy

∞∑
t=0

αt(x, a) =∞,
∞∑
t=0

α2
t (x, a) <∞.
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Furthermore, assume that the reward is of bounded variance. Then, Qt converges to
Q∗ almost surely.

Proof. Suppose that at time t, the agent is at state Xt, takes action At, gets to
X ′t ∼ P(·|Xt, At) and Rt ∼ R(·|Xt, At). The update rule of the Q-Learning algorithm
can be written as

Qt+1(Xt, At)← (1−αt(Xt, At))Qt(Xt, At)+αt(Xt, At) [(T ∗Qt)(Xt, At) + ηt(Xt, At)] ,

with ηt(Xt, At) = (Rt + γmaxa′∈AQt(X
′
t, a
′))− (T ∗Qt)(Xt, At), and

Qt+1(x, a)← Qt(x, a) (x, a) /∈ (Xt, At).

We have already established that T ∗ is a γ-contraction mapping, so condition (3)
of the theorem is satisfied. Condition (1) is assumed too. So it remains to verify the
conditions (2) on noise ηt, which are conditions (a) and (b) of Assumption A1.

Let Ft be the history of algorithm up to and including when the step size
αt(Xt, At) is chosen, but just before X ′t and Rt are revealed. We have, similar to
what we had seen before in (4.12),

E [ηt(Xt, At)|Ft] = E
[
Rt + γmax

a′∈A
Qt(X

′
t, a
′) | Ft

]
− (T ∗Qt)(Xt, At) = 0.

This verifies condition (a).
To verify (b), we provide an upper bound on E [η2

t (Xt, At)|Ft]:

E
[
η2
t (Xt, At) | Ft

]
= E

[∣∣∣(Rt − r(Xt, At))+

γ

(
max
a′∈A

Qt(X
′
t, a
′)−

∫
P(dx′|Xt, At) max

a′∈A
Qt(x

′, a′)

) ∣∣∣2 | Ft]

≤ 2Var [Rt | Xt, At] + 2γ2Var

[
max
a′∈A

Qt(X
′, a′) | Xt, At

]
.

We have

Var

[
max
a′∈A

Qt(X
′, a′) | Xt, At

]
≤ E

[∣∣∣∣max
a′∈A

Qt(X
′, a′)

∣∣∣∣2 | Xt, At

]
≤ max

x,a
|Qt(x, a)|2

≤
∑
x,a

|Qt(x, a)|2 = ‖Qt‖2
2 .
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If we denote the maximum variance of the reward distribution over the state-
action space max(x,a)∈X×AVar [R(x, a)] by σ2

R, which is assumed to be bounded, we
have

E
[
η2
t (Xt, At) | Ft

]
≤ 2(σ2

R + γ2 ‖Qt‖2
2).

Therefore, we can choose c1 = 2σ2
R and c2 = 2γ2 in condition b.

All conditions of Theorem 4.2 are satisfied, so Qt converges to Q∗ (a.s.).

A few remarks are in order. The step size condition is state-action dependent,
and it should be satisfied for all state-action pairs. If there is a state-action pair
that is not selected at all or only a finite number of times, the condition cannot be
satisfied. We need each state-action pair to be visited infinitely often. This is only
satisfied if the mechanism generating (Xt, At) is exploratory enough.

The state-action-dependence of the step size might be different from how the
Q-Learning algorithm is sometimes presented (e.g., Algorithm 1.1 in Chapter 1), in
which a single learning rate αt is used for all state-action pairs. A single learning
rate suffices if the agent happens to visit all (x, a) ∈ X × A frequent enough, for
example every M < ∞ steps. To see this, suppose we visit (x1, a1) every M steps.
When it is visited, its effective learning rate is α′t(x1, a1) = αt, and when it is not
visited, it is α′t(x1, a1) = 0, as it is not updated. So

∑
t α
′
t(x1, a1) has the form of

· · ·+ αt + 0 + 0 + · · ·+ 0︸ ︷︷ ︸
M−1 times

+αt+M + · · · .

If αt = 1
t+1

, which satisfied the SA conditions, this would be
∑

t α
′
t(x1, a1) = 1

M
+

1
2M

+ . . . = 1
M

∑
1
t
, which has the same convergence behaviour as

∑
t≥1

1
t

=∞. The

same is true for
∑

t α
′
t
2(x1, a1) in comparison with

∑
1
t2

.
Another remark is that this result only provides an asymptotic guarantee, but it

does not show anything about the convergence rate, i.e., how fast Qt converges to
Q∗. There are some results for this.



Chapter 5

Value Function Approximation

In many real-world problems, the state-action space X ×A is so large that we cannot
represent quantities such as the value function or policy exactly.1 An example is
when X ⊂ Rd with d ≥ 1. Exact representation of an arbitrary function on Rd, or
even on R, on a computer is infeasible as these sets have an uncountable number of
members. Instead, we need to approximate those functions using a representation
that is feasible to manipulate on a computer. This is called function approximation
(FA). This chapter is about approximation of the value function. In a later chapter,
we focus on approximating the policy.

Function approximation is studied in several fields, including the approximation
theory, machine learning, and statistics, each with slightly different goals. In the
context of RL, the use of FA means that we would like to compute a value function
that is approximately the same as the true value function (i.e., V̂ π ≈ V π or V̂ ∗ ≈ V ∗),
or a policy that is π̂∗ ≈ π∗.

These function approximations should be easily represented on a computer. As
an example, we may use a linear function approximator defined based on a set of
basis functions, i.e.,

V̂ (x) = φ(x)>w =

p∑
i=1

φi(x)wi,

with w ∈ Rp and φ : X → Rp. So any V̂ belongs to the space of functions F
F =

{
x 7→ φ(x)>w : w ∈ Rp

}
. (5.1)

The function space F is called the value function space. In this example, it is a span
of a set of features. We simply call it a linear function space. Note that the linearity
is in the parameters w and not in the state x.

1Chapter’s Version: 0.04 (2021 March 18). Some results need to be typed.
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There are many other ways to represent the value function approximation V̂ (and
effectively, F). Some examples are

• Deep neural networks (DNN)

• reproducing kernel Hilbert spaces (RKHS), e.g., often used along Support Vec-
tor Machines (SVM) and other kernel methods.

• Decision trees and random forests

• Local methods such as smoothing kernels, k-nearest neighbours, etc.

5.0.1 The Choice of Value Function Approximator

How should we choose the value function approximation? Let us briefly talk about
two competing tradeoffs, without going into any detail or practical advice.

We want the FA to be expressive enough, so that a large range of possible func-
tions can be represented. In other words, we would like F to be such that for any
V π (or V ∗), we can find a V̂ ∈ F that is close to V π (or V ∗) w.r.t. some distance
function, e.g., ‖V̂ − V π‖p is small.

Consider the value function depicted in Figure 5.1, which has a subset of R as
its domain. One way to represent this function is to discretize its domain with the
resolution of ε, and then use a piecewise constant function to represent it. This
can be represented as a linear function approximator: Assume that the domain is
[−b,+b], we can define φi (for i = 0, 1, . . . , d2b

ε
e) as

φi(x) = I{x ∈ [−b+ iε,−b+ (i+ 1)ε)}.

Any function V can be approximated by a V̂ (x) = V̂ (x;w) = φ(x)>w with w ∈
Rd 2b

ε
e+1. So we need O(1

ε
) parameters to describe such a function. Let us denote

such a function space by Fε.
The approximation quality depends on the regularity or structure of the value

function V . If we allow V to change arbitrary, we cannot hope to have a good
approximation. But if it has some regularity, for example being an L-Lipschitz
function, we can see that there is always a piecewise V̂ of the form just described
that is O(Lε) close to it. In other words, we have that for any V that is L-Lipschitz,

inf
V̂ ∈Fε

∥∥∥V̂ − V ∥∥∥
∞
≤ Lε.

This is called the approximation error or bias of this function space. It quantifies
the expressivity of the function space. Note that the approximation error depends on
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Figure 5.1: Approximating a function (blue) with a piecewise constant function
(green) based on an ε-discretized state space

the structure of the function approximator (e.g., piecewise constant) as well as the
class of functions that is being approximated, e.g., L-Lipschitz functions here. If we
decrease ε, the function space Fε becomes more expressive, and its approximation
error decreases.

If the domain was X = [−1,+1]d for d ≥ 1, we would need O( 1
εd

) parameters
to describe such a function. This increases exponentially fast as a function of d.
For example, if d = 1, we need a 20-dimensional θ to represent such a function;
if d = 2, we need a 400-dimensional vector, and if d = 10, we need a ≈ 1013-
dimensional vector. This latter one is clearly infeasible to store on most computers.
Note that d = 10 is not a very large state space for many real-world applications.
This exponential growth of the number of parameters required to represent a high-
dimensional function is an instance of the curse of dimensionality.2

Other than the expressivity of the function space F , we also need to pay attention

2The curse of dimensionality has other manifestations too. For example, computing integrals
in high-dimensions requires an exponential increase in computation. We shall see another example
of it later.
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to the statistical aspect of estimating a function within this function space using a
finite number of data points. The estimation accuracy depends on some notion of
complexity or size of F . Quantifying this requires some further development, which
we shall do later in a simplified setting, but roughly speaking, the statistical error

behaves as O(
√

log |F|
n

), where n is the number of data points used in the estimation.

This is called estimation error or variance.

In the choice of function approximator, we have to consider both the approxi-
mation capability of F and the statistical complexity of estimation. This balance
between the approximation vs. estimation error (or bias vs. variance) is a well-known
tradeoff in supervised learning and statistics. We also have a very similar problem
in the RL context too. We shall quantify it in analyzing one of the algorithms.

5.1 Value Function Computation with a

Function Approximator

Let us develop some general approaches for the value function computation when we
are restricted to use functions from a value function space F . Most of the approaches
are based on defining a loss function that should be minimized in order to find an
approximate value function. The presentation focuses on the population version of
these loss functions, when we have access to the model, akin to the setup of Chapter 3
when we knew P and R. In the next sections, we describe how the data can be used
to compute the value functions. Many of those methods are essentially use the
empirical loss function instead of the population one.

5.1.1 Approximation Given the Value Function

The simplest approach is perhaps when we happen to know V π (or Qπ, V ∗, Q∗), and
we want to represent it with a function V ∈ F . Our goal can then be expressed as
finding V ∈ F such that

V ≈ V π.

To make the approximate symbol≈ quantified, we have to pick a distance function
between function V and V π, i.e., d : B(X ) × B(X ) → R. Given such a distance
function, we can express our goal as

V ← argmin
V ∈F

d(V, V π).
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A commonly used family of distances are based on the Lp-norm w.r.t. a (proba-
bility) measure µ ∈M(X ) (A.1) in Appendix A.2. We can then have

V ← argmin
V ∈F

‖V − V π‖p,µ . (5.2)

A common choice is the L2-norm, which should remind us of the mean squared loss
function commonly used in regression.

A reasonable question at this point is that how can we even have access to V π?
If we do know it, what is the reason for approximating it after all? We recall from
them MC estimation (Section 4.3) that we can indeed estimate V π at a state x by
following π, and the estimate is unbiased (for initial-state and first-visit variants). So
even though we may not have V π(x), we can still have V π(x)+ε(x) with E [ε(x)] = 0.
When the state space is large (e.g., continuous), we cannot run MC for all states,
but only a finite number of them. The role of FA is then to help us generalize from
a finite number of noisy data points to the whole state space.

We can also design approaches that benefit from the structural properties of the
value function, which we studied in Chapter 2. We used those properties to design
algorithms such as VI, PI, and LP in Chapter 3. All these methods have variants that
work with FA. They are generally called Approximate VI, VP, LP and are simply
referred to as AVI, API, ALP. These methods are also sometimes called approximate
dynamic programming.

5.1.2 Approximate Value Iteration (Population Version)

Recall that VI (Section 3.3) is defined by

Vk+1 ← TVk,

with T being either T π or T ∗. One way to develop its approximate version is to
perform each step only approximately, i.e., find Vk+1 ∈ F such that

Vk+1 ≈ TVk.

We can think of different distance function, as before. A commonly used one is based
on the Lp-norm, and most commonly the L2-norm. In that case, we start from a
V0 ∈ F , and then at each iteration k of AVI we solve

Vk+1 ← argmin
V ∈F

‖V − TVk‖p,µ . (5.3)

The procedure for the action-value function is similar with obvious modifications.
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It is notable that even though Vk ∈ F , after the application of the Bellman
operator T on it, it may not be within F anymore. Therefore, we may have some
function approximation error at each iteration of AVI. The amount of this error
depends on how expressive F is and how much T can push a function within F
outside that space.

5.1.3 Bellman Error (or Residual) Minimization
(Population Version)

We can cast the goal of approximating V π as finding a V ∈ F such that the Bellman
equation is approximately satisfied. We know that if we find a V such that V = T πV ,
that function must be equal to V π. Under FA, we may not achieve this exact equality,
but instead have

V ≈ T πV, (5.4)

for some V ∈ F . We can think of different ways to quantify the quality of approxi-
mation. The Lp-norm w.r.t. a distribution µ is a common choice:

V ← argmin
V ∈F

‖V − T πV ‖p,µ = ‖BR(V )‖p,µ . (5.5)

The value of p is often selected to be 2. This procedure is called the Bellman Residual
Minimization (BRM). The same procedure works for the action-value functionQ with
obvious change. This procedure is different from AVI in that we do not mimic the
iterative process of VI (which is convergent in the exact case without any FA), but
instead directly go for the solution of the fixed-point equation.

A geometric viewpoint might be insightful. Consider the space of all functions
B(X ), and F as its subset. When F is the set of linear functions (5.1), its geometry
is the subspace spanned by φ. The subspace can be visualized as a plane. The
following argument, however, is not specialized to linear FA.

Given V ∈ F , we apply T π to it in order to get T πV . In general, T πV is not
within F , so we visualize it with a point outside the plane. Figure 5.2 shows a
few V s and their corresponding Bellman residuals. BRM minimizes the distance
‖V − T πV ‖2,µ among all functions in V ∈ F .

If it happens that there exists a V ∈ F that makes ‖V − T πV ‖2,µ = 0, and if
we assume that µ(x) > 0 for all x ∈ X , we can conclude that V (x) = (T πV )(x) for
x ∈ X (a.s.). This is the Bellman equation, so its solution is V = V π. But if it is
not, which is the general case, the minimizer V of (5.5) is not the value function V π.
Nevertheless, it still has some good approximation properties.
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Figure 5.2: The Bellman operator may take value functions from F to a point outside
that space. BRM finds V ∈ F with the minimal distance.

Recall from Proposition 2.7 that

‖V − V π‖∞ ≤
‖V − T πV ‖∞

1− γ .

This shows that if we find a good solution V to BRM w.r.t. the supremum norm,
the error of ‖V − V π‖∞ is also small (amplified by a factor of 1

1−γ though, which

can be large when γ is close to 1). We do not need the knowledge of V π to find this
approximation, as opposed to (5.2). Minimizing the Bellman error is enough.

The result of Proposition 2.7, however, is for the supremum norm, and not
the Lp(µ)-norm of (5.5). We could define the optimization problem as minimizing
‖V − T πV ‖∞. Even though we could in principle solve the minimizer of ‖V − T πV ‖∞,
working with an Lp-norm, especially the L2-norm, is more common in ML, both be-
cause of algorithmic reasons and theoretical ones.3 Instead of changing the optimiza-
tion problem, we provide a similar error bound guarantee w.r.t. an Lp-norm. Here
we pick µ to be the stationary distribution of π, instead of any general distribution,
which we denote by ρπ.

5.1.3.1 Stationary Distribution of Policy π

The stationary (or invariant) distribution of a policy π is the distribution that does
not change as we follow π. To be more clear, assume that we initiate the agent at

3Providing a guarantee on the supremum of the Bellman residual requires extra conditions on
sampling distribution, e.g., it should be bounded away from zero.



92 CHAPTER 5. VALUE FUNCTION APPROXIMATION

X1 ∼ ρ ∈ M(X ). The agent follows π and gets to X2 ∼ Pπ(·|X1). The probability
distribution of X2 being in a (measurable) set B is

P {X2 ∈ B} =

∫
ρ(dx)Pπ(B|x),

or for countable state space, the probability of being in state y is

P {X2 = y} =
∑
x∈X

ρ(x)Pπ(y|x).

If the distribution of X2 is the same as the distribution of X1, which is ρ, we say
that ρ is the stationary distribution induced by π. We denote this distribution by
ρπ to emphasize its dependence on π. By induction, it would be the distribution of
X3, X4, . . . too.

This distribution satisfies P {X1 = y} = P {X2 = y}, which means that

ρπ(y) =
∑
x∈X

Pπ(y|x)ρπ(x), (5.6)

or

ρπ(B) =

∫
ρ(dx)Pπ(B|x). (5.7)

For countable state spaces, we can write it in the matrix form too. If we denote
Pπ by an n× n matrix with [Pπ]xy = Pπ(y|x), we have

ρπ(y) =
∑
x

Pπxyρπx, ∀y ∈ X

so

ρπ> = ρπ>Pπ. (5.8)

Note that ρπ is the left eigenvector corresponding to eigenvalue with value 1 of matrix
Pπ (or likewise, it would be the right eigenvector of Pπ>).

An important property of the stationary distribution is that the Markov chain
induced by π converges to the stationary distribution ρπ, under certain conditions,
even if the initial distribution is not ρπ. That is, for any µ ∈M(X ), we have that

µ(Pπ)k → ρπ.
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We can show that the Bellman operator T π is a γ-contraction w.r.t. the L2(ρπ).
This is a special property of the stationary distribution as T π is not generally a
contraction w.r.t. L2(µ) for a distribution µ (as opposed to its being contraction for
the supremum norm). This property is going to be crucially important in designing
TD-like algorithms with FA.

Lemma 5.1. The Bellman operator T π is a γ-contraction w.r.t. ‖·‖2,ρπ .

Proof. For any V1, V2 ∈ B(X ), we have that

‖T πV1 − T πV2‖2
2,ρπ =∫

ρπ(dx)

∣∣∣∣(rπ(x) + γ

∫
Pπ(dx′|x)V1(x′)

)
−
(
rπ(x) + γ

∫
Pπ(dx′|x)V2(x′)

)∣∣∣∣2 =∫
ρπ(dx)

∣∣∣∣γ ∫ Pπ(dx′|x)(V1(x′)− V2(x′)

∣∣∣∣2 ≤
γ2

∫
ρπ(dx)Pπ(dx′|x) |V1(x′)− V2(x′)|2 =

γ2

∫
ρπ(dx′) |V1(x′)− V2(x′)|2 = γ2 ‖V1 − V2‖2

2,ρπ ,

where we used the Jensen’s inequality to get the inequality and the definition of the
stationary distribution in the penultimate equality.

5.1.3.2 Stationary Distribution Weighted Error Bound for BEM

We are ready to prove the following error bound. This is similar to Proposition 2.7
with the difference that it upper bounds the L1-norm of the value approximation
error, weighted according to the stationary distribution ρπ, to the Lp(ρ

π) norm of
the Bellman residual, instead of the same quantities measured according to their
supremum norms.

Proposition 5.2. Let ρπ be the stationary distribution of Pπ. For any V ∈ B(X )
and p ≥ 1, we have

‖V − V π‖1,ρπ ≤
‖V − T πV ‖p,ρπ

1− γ .

Proof. For any V , we have that

V − V π = V − T πV + T πV − V π

= (V − T πV ) + (T πV − T πV π). (5.9)
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The second term, evaluated at a state x, is

(T πV )(x)− (T πV π)(x) = γ

∫
Pπ(dy|x)(V (y)− V π(y)).

We take the absolute values of both sides of (5.9), use the obtained form of the
second term, and integrate w.r.t. ρπ, to get that∫

|V (x)− V π(x)| dρπ(x) ≤
∫
|V (x)− (T πV )(x)|dρπ(x) +

γ

∫
dρπ(x)

∣∣∣∣∫ Pπ(dy|x)(V (y)− V π(y))

∣∣∣∣ .
By Jensen’s inequality, we have∫

|V (x)− V π(x)| dρπ(x) ≤
∫
|V (x)− (T πV )(x)|dρπ(x) +

γ

∫
dρπ(x)Pπ(dy|x) |V (y)− V π(y)| .

Because ρπ is the stationary distribution, by (5.7) the second integral in the RHS
can be simplified as∫

dρπ(x)Pπ(dy|x) |V (y)− V π(y)| =
∫

dρπ(x) |V (x)− V π(x)| .

So

‖V − V π‖1,ρπ ≤ ‖V − T πV ‖1,ρπ + γ ‖V − V π‖1,ρπ .

After re-arranging, we get the result for p = 1. By Jensen’s inequality, we have
that ‖V − T πV ‖1,ρπ ≤ ‖V − T πV ‖p,ρπ , for any p ≥ 1.

5.1.4 Projected Bellman Error (Population Version)

Another loss function is defined based on the idea that the distance between a value
function V ∈ F and the projection of T πV onto F should be made small. That is,
we find a V ∈ F such that

V = ΠFT
πV, (5.10)

where ΠF is the projection operator onto F . This should be compared with (5.4),
where there is no projection back to F .
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Let us formally define the projection operator before we proceed. The projection
operator ΠF ,µ is a linear operator that takes V ∈ B(X ) and maps it to closest point
on F , measured according to its L2(µ) norm. That is,

ΠF ,µV , argmin
V ′∈F

‖V ′ − V ‖2,µ .

If the choice of distribution µ is clear from the context, we may omit it. By definition,
ΠF ,µV ∈ F . Moreover, the projection of any point on F onto F is itself, i.e., if V ∈ F ,
we have ΠF ,µV = V . We later show that if F is a subspace, the projection operator
is a non-expansion.

We can define a loss function based on (5.10). We can use different norms. A
common choice is to use the L2(µ)-norm:

‖V − ΠFT
πV ‖2,µ . (5.11)

This is called Projected Bellman Error or Mean Square Projected Bellman Error
(MSPBE).

We find the value function by solving the following optimization problem:

V ← argmin
V ∈F

‖V − ΠFT
πV ‖2,µ . (5.12)

Note that as V ∈ F , we can write

V − ΠF ,µT
πV = ΠF ,µV − ΠF ,µT

πV = ΠF ,µ(V − T πV ) = −ΠF ,µ(BR(V )).

So the loss ‖V − ΠFT
πV ‖2,µ can also be written as ‖ΠF ,µ(BR(V ))‖2,µ, the norm of

the projection of the Bellman residual onto F .
Comparing the projected Bellman error with the Bellman residual minimiza-

tion (5.5), we observe that the difference is that the latter does not compute the
distance between the projected T π, but instead, computes the distance of V with
T πV . Figure 5.3 visualizes this difference. This figure is a good mental image on
what each of these algorithms try to achieve.

Since the projection itself is an optimization problem (i.e., finding a function with
a minimal distance to a function space), we can think of the PBE as simultaneously
solving these two coupled (or nested) optimization problems:

V ← argmin
V ′∈F

∥∥∥V ′ − Ṽ (V ′)
∥∥∥2

2,µ
,

Ṽ (V ′)← argmin
V ′′∈F

‖V ′′ − T πV ′‖2
2,µ . (5.13)
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BRM

PBE (Minimized by LSTD)
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Figure 5.3: The Bellman operator may take value functions from F to a point outside
that space. BRM finds V ∈ F with the minimal distance.

The second optimization problem finds the projection Ṽ (V ′) of T πV ′ onto F ; the
first optimization problem finds a V ′ ∈ F that is closest to Ṽ (V ′), the projected
function.

When F is a linear function space, the projection has a closed-form solution, and
we can “substitute” the closed-form solution of Ṽ (V ′) in the first one. For more
general spaces, however, the solution may not be simple.

We remark is passing that we have regularized variants of the objectives too,
which are suitable for avoiding overfitting when F is a very large function space.

There are different approaches to solve (5.13), some of which may not appear to
be related as first glance. In the next section, we describe the main idea behind a
few of them discussing the abstract problem of solving a linear system of equation.
Afterwards, we get back to the PBE minimization problem (5.12) and suggest a few
approaches (at the population level). These approaches would be a basis for several
data-driven methods, as we shall see in Sections 5.2 and 5.3.
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5.1.4.1 Solving Ax ≈ b: A Few Approaches

Suppose that we want to solve a linear system of equations

Ax ≈ b, (5.14)

with A ∈ RN×d, x ∈ Rd, and b ∈ RN (N ≥ d). When N > d, this is an overde-
termined system so the equality may not be satisfied. Nonetheless, there are several
approaches to solve this overdetermined linear system of equations, at least approx-
imately.

One is to formulate it as an optimization problem:

x∗ ← argmin
x∈Rd

‖Ax− b‖2
2 = (Ax− b)>(Ax− b). (5.15)

We can use our favourite numerical optimizer to solve it, e.g., Gradient Descent
(GD). As the gradient of (Ax− b)>(Ax− b) is

A>(Ax− b),

the GD procedure would be

xk+1 ← xk − αA>(Axk − b).

We can use more advanced optimization techniques too. This approach finds a x∗

that minimizes the squared error loss function.
We can also solve for the zero of the gradient:

A>Ax = A>b⇒ x∗ = (A>A)−1A>b, (5.16)

assuming the invertibility of A>A. For this approach, we need to have a method to
invert the matrix A>A.

If N = d, another approach is to use a fixed-point iteration algorithm. We can
rewrite Ax = b as

(I− A)x+ b = x.

This is of the form of a fixed-point equation Lx = x with L : Rd → Rd being the
mapping x 7→ (I− A)x+ b. If it happens that L is a contraction mapping, which is
not always the case, the Banach fixed point theorem (Theorem A.1) shows that the
iterative procedure

xk+1 ← Lxk = (I− A)xk + b (5.17)
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converges to x∗, the solution of Ax∗ = b.
It is also possible to define a slightly modified procedure of

xk+1 ← (1− α)xk + αLxk. (5.18)

This makes it similar to the iterative update rule (4.18), from which we got the
synchronous SA update rule (4.19) and later the asynchronous SA update rule (4.20)
in Section 4.7.

Comparing the linear system of equations (5.14) with having V ≈ ΠFT
πV (5.10),

which was our starting point to obtain the PBE, suggests a few ways to find a
value function. The PBE minimization (5.12) is more like the optimization-based
approach (5.15). We may wonder what happens if we use a direct solution similar
to (5.16) or an iterative procedure similar to (5.18). We explore these possibilities
next.

Exercise 5.1. Express the condition required for convergence of (5.17) as a property
of A.

Exercise 5.2. Can you think of other ways to solve Ax = b using an iterative
approach?

5.1.4.2 Least Square Temporal Difference Learning (LSTD)
(Population Version)

Instead of minimizing ‖V − ΠFT
πV ‖2,µ over value functions V ∈ F , we provide a

direct solution similar to (5.16). For the rest of this section, we consider F to be a
linear FA with basis functions (or features) φ1, . . . , φp. So the value function space
is F =

{
x 7→ φ(x)>w : w ∈ Rp

}
(5.1).

Our objective in this section is to find a value function that satisfies

V (x) = (ΠF ,µT
πV ) (x), ∀x ∈ X , (5.19)

where V is restricted to be in F .
To make our treatment simpler, we assume that X is finite and has N states,

potentially much larger than p. Hence, each φi is an N -dimensional vector. We
denote Φ ∈ RN×p as the matrix of concatenating all features:

Φ =
[
φ1 · · · φp

]
.

The value function corresponding to a weight w ∈ Rp is then VN×1 = ΦN×pwp
(we occasionally specify the dimension of vectors and matrices through subscripts).
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Solving (5.19) when V = V (w) = Φw ∈ F means that we have to find a w ∈ R
such that

Φw = ΠF ,µT
πΦw. (5.20)

First, we re-write this in a matrix form, and then solve it using linear algebraic
manipulations.

In order to provide an explicit form for the projection operator, let us first note
that the µ-weighted inner product between V1, V2 ∈ RN is

〈V1 , V2 〉µ =
∑
x∈X

V1(x)V2(x)µ(x) = V >1 MV2, (5.21)

with M = diag(µ). The L2(µ)-norm ‖V ‖2,µ of V ∈ RN can be written in the matrix
form as well:

‖V ‖2
2,µ = 〈V , V 〉µ =

∑
x∈X

|V (x)|2µ(x) = V >MV.

The projection operator onto a linear F would be

ΠF ,µV = argmin
V ′∈F

‖V ′ − V ‖2
2,µ

= argmin
w∈Rp

‖Φw − V ‖2
2,µ

= argmin
w∈Rp

(Φw − V )>M(Φw − V ).

Taking the derivative and setting it to zero, we get that

Φ>M(Φw − V ) = 0⇒ w = (Φ>MΦ)−1Φ>MV,

assuming that Φ>MΦ is invertible. Therefore, the projected function is Φw, i.e.,

ΠF ,µV = Φ(Φ>MΦ)−1Φ>MV. (5.22)

We also have

(T πΦw)N×1 = rπN×1 + γPπN×NΦN×pwp.

Combining all these, we get that (5.19) in the matrix form is

Φw =
[
Φ(Φ>MΦ)−1Φ>M

]
[rπ + γPπΦw] . (5.23)

Two approaches, parallel to (5.16) and (5.18), are to either solve this directly or
use an iterative solver based on the fixed-point iteration procedure.

Let us start with the direct solution approach.
To simplify the equation, we use the following result.
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Proposition 5.3. If ΦAx∗ = Φb and Φ>MΦ is invertible, we have Ax∗ = b.

Proof. Multiply both sides of ΦAx∗ = Φb by Φ>M to get

Φ>MΦAx∗ = Φ>MΦb.

As Φ>MΦ is assumed to be invertible, we have

Ax∗ = (Φ>MΦ)−1Φ>MΦb = b.

Based on this proposition, we multiply both sides of (5.23) by Φ>M and simplify
as follows:

Φ>MΦw = Φ>MΦ(Φ>MΦ)−1Φ>M [rπ + γPπΦw]

= Φ>M [rπ + γPπΦw] .

⇒Φ>M [rπ + γPπΦw − Φw] = 0. (5.24)

We re-arrange this to [
Φ>MΦ− γΦ>MPπΦ

]
w = Φ>Mrπ.

Solving for w, we have

w =
[
Φ>M(Φ− γPπΦ)

]−1
Φ>Mrπ. (5.25)

This fixed-point equation shall be used to define the Least Square Temporal Dif-
ference (LSTD) method. This solution can be seen as the population version of it,
so with some non-standard naming convention, we refer to it as LSTD (Population)
as well.

Equation (5.24) provides a geometric viewpoint to what LSTD does. Comparing
with (5.21), this equation requires us to have

〈φi , T πV (w)− V (w) 〉µ = 0, ∀i = 1, . . . , p.

As BR(V (w)) = T πV (w)− V (w), this is also equivalent to

〈φi , BR(V (w)) 〉µ = 0, ∀i = 1, . . . , p.

So we are aiming to find a w such that the Bellman Residual BR(V (w)) is orthogonal
to the basis of F , when the orthogonality is measured according to the distribution
µ.
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5.1.4.3 Fixed Point Iteration for Projected Bellman Operator

Let us design two iterative approaches for finding the fixed-point of ΠF ,µT
π, see

(5.10). We attempt to design methods that look like an SA iteration, so when we
deal with the samples, instead of the true model, they can handle the noise. We
specifically focus on the case when the distribution µ is the stationary distribution
ρπ of π.

Approach #1 Consider

V̂k+1 ← (1− α)V̂k + αΠF ,ρπT
πV̂k, (5.26)

with an 0 < α ≤ 1. This can be seen as a fixed-point iterative method with the
operator

L : V 7→ [(1− α)I + αΠF ,ρπT
π]V.

This operator is a contraction w.r.t. L2(ρπ). To see this, by the triangle inequality
and the linearity of the projection operator ΠF ,ρπ and the Bellman operator T π, we
have

‖LV1 − LV2‖2,ρπ ≤ (1− α) ‖V1 − V2‖2,ρπ + α ‖ΠF ,ρπT π(V1 − V2)‖2,ρπ . (5.27)

The norm in the second term on the RHS can be upper bounded by noticing that
the projection operator ΠF ,ρπ is non-expansive w.r.t. the L2(ρπ) and the Bellman
operator T π is γ-contraction w.r.t. the same norm (Lemma 5.1):

‖ΠF ,ρπT π(V1 − V2)‖2,ρπ ≤ ‖T π(V1 − V2)‖2,ρπ

≤ γ ‖V1 − V2‖2,ρπ . (5.28)

This along with (5.27) shows that

‖LV1 − LV2‖2,ρπ ≤ [(1− α) + αγ] ‖V1 − V2‖2,ρπ .

If 0 < α ≤ 1, L is a contraction.
Therefore, the iterative method (5.26) is going to be convergent. Note that its

projection operator is w.r.t. ‖·‖2,ρπ , the L2-norm induced by the stationary distribu-
tion of π. The convergence property may not hold for other µ 6= ρπ.

Let us use a linear FA, defined by the set of features φ to write V̂k = Φwk. With
a linear FA, we can use the explicit formula (5.22) for the projection operator ΠF ,ρπ .
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We use D = diag(ρπ), instead of M , in order to emphasize the dependence on ρπ.
The iteration (5.26) can be written as

V̂k+1 = Φwk+1 ← (1− α)Φwk + αΦ(Φ>DπΦ)−1Φ>Dπ [rπ + γPπΦwk] .

Multiply both sides by Φ>Dπ, we get

(Φ>DπΦ)wk+1 ← (1− α)(Φ>DπΦ)wk + α(Φ>DπΦ)(Φ>DπΦ)−1Φ>Dπ [rπ + γPπΦwk] .

Assuming that Φ>DπΦ is invertible, we can write the dynamics of (wk) as

wk+1 ← (1− α)wk + α(Φ>DπΦ)−1Φ>Dπ [rπ + γPπΦwk] . (5.29)

This is a convergent iteration and converges to the fixed point of Φw = ΠF ,µT
πΦw (5.19).

This is the same as the LSTD’s solution (5.25).
A potential challenge with this approach is that it requires a one-time inversion of

a p× p matrix (Φ>DπΦ) =
∑

x ρ
>(x)φ>(x)φ(x), which is O(p3) operation4 (a naive

approach). When we move to the online setting, where this matrix itself is updated
as every new data point arrives, a naive approach of updating the matrix and re-
computing its inverse, would be costly. There are ways to improve the efficiency of
the computation of the inversion, which we shall discuss later.

Exercise 5.3. Why didn’t we use the supremum norm, instead of the L2(ρπ) in (5.28),
in showing that ΠF ,ρπT

π is a contraction? We know that T π is a contraction w.r.t.
the supremum norm after all.

Approach #2 (First Order). Another iterative method can be obtained from (5.24):

Φ>Dπ [rπ + γPπΦw − Φw] = 0. (5.30)

A solution to this is the same as the LSTD solution. As mentioned earlier, this is
aiming to find w such that the Bellman residual is orthogonal to each φi, weighted
according to ρπ.

To define an iterative procedure, note that if Lw = 0, we also have αLw = 0.
Adding an identity to both sides does not change the equation, so we have

w + αLw = w.

4This complexity is not optimal. The Strassen algorithm has the computational complexity of
O(n2.807). The Coppersmith-Winograd algorithm has the complexity of O(n2.375), though it is not
a practical algorithm.
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This is in the form of a fixed-point equation for a new operator L′ : w 7→ (I +αL)w.
The fixed point of L′ is the same as the solution of Lw = 0. So we may apply
wk+1 ← L′wk = (I + αL)wk, assuming L′ is a contraction.

If we choose L : w 7→ Φ>Dπ [rπ + γPπΦw − Φw], we get the following iterative
procedure, which is somewhat similar to (5.18):

wk+1 ← wk + αΦ>Dπ [rπ + γPπΦwk − Φwk]

=(I− αA)wk + αΦ>Dπrπ, (5.31)

with

A = Φ>Dπ(I− γPπ)Φ.

This iterative procedure is not a convex combination of ΠF ,ρπT
π with the identity

matrix, as (5.26) was, so the condition for convergence does not follow from what
we had before. Despite that, we can show that for small enough value of α, it is
convergent.

5.1.4.4 Convergence of the Fixed Point Iteration (5.31)

Proposition 5.4. Assume that ρπ > 0. There exists α0 > 0 such that for any step
size α < α0, the iterative procedure (5.31) is convergent to the fixed point of ΠF ,ρπT

π.

Proof. For the dynamical system (5.31) to be convergent (or stable), we need to have
all the eigenvalues of I−αA to be within the unit circle (in the complex plane), i.e.,

|λ(I− αA)) < 1.

The eigenvalues λi of I − αA are located at 1 − αλi(A), where λi(A) is the
corresponding eigenvalue of A. If A has any negative eigenvalue, the value of 1 −
αλi(A) would be outside the unit circle (for any α > 0). Therefore, all eigenvalues of
A should be positive. Moreover, α should be small enough such that |1−αλi(A)| < 1
for all i.

Let us establish that A is a positive definite matrix, in the sense that for any
y ∈ Rp,

y>Ay > 0.

This entails the positiveness of the eigenvalues of A.
Instead of showing

y>Ay > 0 = y>ΦDπ(I− γPπ)Φy > 0, (5.32)
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we can show that for any z ∈ RN ,

z>Dπ(I− γPπ)z > 0. (5.33)

If the latter is true for any z, it is also true for z = Φy, which guarantees (5.32).
For the first term, as Dπ is a diagonal matrix diag(ρπ), we have

z>Dπz =
∑
i,j

ziD
π
i,jzj =

∑
i

z2
i ρ

π
i = ‖z‖2

2,ρπ > 0. (5.34)

For the negative term −γz>DπPπz, we show that its size is not too large (and
in fact, smaller than ‖z‖2

2,ρπ), so the whole summation remains positive. Consider

z>DπPπz. We have that

[DπP ]ij =
∑
i,k

Dπ
ikPπkj = ρπi Pπij.

So

z>DπPπz =
∑
i,j

zi[D
πP ]ijzj =

∑
i,j

ziρ
π
i Pπijzj. (5.35)

We upper bound this using the Cauchy-Schwarz inequality:5∑
i,j

ziρ
π
i Pπijzj =

∑
i,j

zi
√
ρπi
√
ρπi Pπijzj =

∑
i

zi
√
ρπi︸ ︷︷ ︸

,ai

√
ρπi
∑
j

Pπijzj︸ ︷︷ ︸
,bj

≤
√∑

i

z2
i ρ

π
i

√√√√∑
i

ρπi

(∑
j

Pπijzj
)2

. (5.36)

We upper bound the second term in the RHS. By Jensen’s inequality and the
stationarity of ρπ (which entails that ρπj =

∑
i ρ

π
i Pπij), we obtain

∑
i

ρπi

(∑
j

Pπijzj
)2

≤
∑
i

ρπi
∑
j

Pπijz2
j =

∑
j

z2
j

∑
i

ρπi Pπij =
∑
j

z2
j ρ

π
j = ‖z‖2

2,ρπ .

This, along with (5.36), allows us to upper bound (5.35) by

z>DπPπz ≤ ‖z‖2
2,ρπ

5For summation, the Cauchy-Schwarz inequality state that
∑
i aibj ≤

√∑
i a

2
i

√∑
i b

2
i .
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Plugging this inequality and (5.34) in (5.33), we get that for any z 6= 0 and
ρπ > 0,

z>Dπ(I− γPπ)z ≥ (1− γ) ‖z‖2
2,ρπ > 0.

This also shows that y>Ay > 0, as argued earlier. The positive definiteness of A
entails that all of its eigenvalues have positive real components.6

We can find a step size α such that the eigenvalues of I − αA are within unit
circle. To see this, suppose that λi(A) = ai + jbi with ai > 0. We need to have
|1− αλi(A)| < 1 for all i = 1, . . . , p. We expand

|1− αλi(A)|2 < 1⇔ |1− αai|2 + |αb|2 = 1 + (αai)
2 − 2αai + (αbi)

2 < 1.

After simplifications, we get that the inequality is ensured if

α <
2ai

a2
i + b2

i

=
2ai

|λi(A)|2 .

As ai > 0, we can always pick an α to satisfy these conditions (for i = 1, . . . , p)
by selecting it such that

α < α0 = min
i=1,...,p

2ai
a2
i + b2

i

=
2Re[λi(A)]

|λi(A)|2 .

5.1.4.5 Error Bound on the LSTD Solution

Suppose that we find a value function V that is the fixed point of the projected
Bellman error w.r.t. ρπ, i.e.,

V = ΠF ,ρπT
πV.

For the linear FA, the LSTD method (population) (5.25) and the fixed point itera-
tions (5.26) and (5.31) find this solution. Let us call this the TD solution VTD. How
close is this value function to the true value function V π?

If the value function space F cannot represent V π precisely, which is often the
case under function approximation, we cannot expect to have a small error. The
smallest error we can hope is ‖ΠF ,ρπV π − V π‖, the distance between V π and its
projection. The TD solution is not as close to V π as the projection of V π onto F ,
but it can be close to that. The next result provides an upper bound for the quality
of the TD solution.

6Refer to https://math.stackexchange.com/a/325412 for a proof.

https://math.stackexchange.com/a/325412
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Proposition 5.5. If ρπ is the stationary distribution of π, we have

‖VTD − V π‖2,ρπ ≤
‖ΠF ,ρπV π − V π‖2,ρπ√

1− γ2
.

Proof. As VTD = ΠF ,ρπT
πVTD, we have

VTD − V π = VTD − ΠF ,ρπV
π + ΠF ,ρπV

π − V π

= ΠF ,ρπT
πVTD − ΠF ,ρπV

π + ΠF ,ρπV
π − V π.

Take the absolute values of both sides, square it, and take the integral w.r.t. ρπ to
get that

‖VTD − V π‖2
2,ρπ = ‖ΠF ,ρπT πVTD − ΠF ,ρπV

π‖2
2,ρπ + ‖ΠF ,ρπV π − V π‖2

2,ρπ +

2 〈ΠF ,ρπVTD − ΠF ,ρπV
π , ΠF ,ρπV

π − V π 〉ρπ . (5.37)

Consider the inner product term. The vector ΠF ,ρπVTD − ΠF ,ρπV
π is a member of

F . The vector ΠF ,ρπV
π − V π is the difference between V π and its projection (or the

orthogonal complement of V π), so it is orthogonal to to F . Therefore, their inner
product is zero.

We provide an upper bound on ‖ΠF ,ρπT πVTD − ΠF ,ρπV
π‖2

2,ρπ . We replace V π

with T πV π, and benefit from the non-expansiveness of ΠF ,ρπ and the γ-contraction
of T π (Lemma 5.1) and (both w.r.t. L2(ρπ)) to get that

‖ΠF ,ρπT πVTD − ΠF ,ρπV
π‖2

2,ρπ = ‖ΠF ,ρπT πVTD − ΠF ,ρπT
πV π‖2

2,ρπ

≤ ‖T πVTD − T πV π‖2
2,ρπ

≤ γ2 ‖VTD − V π‖2
2,ρπ .

Therefore, we can upper bound (5.37) as

‖VTD − V π‖2
2,ρπ ≤ γ2 ‖VTD − V π‖2

2,ρπ + ‖ΠF ,ρπV π − V π‖2
2,ρπ ,

which leads to the desired result after a re-arrangement.

5.2 Batch RL Methods

We use ideas developed in the previous section to develop RL algorithms that work
with function approximators. The key step is to find an empirical version of the
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relevant quantities and estimate them using data. For example, many of the afore-
mentioned methods require the computation of TV . If the model is not known, this
cannot be computed. We have to come up with a procedure that estimate TV based
only on data.

In this section, we consider the batch data setting. Here the data is already
collected, and we are interested in using it to estimate quantities such as Qπ or Q∗.
To be concrete, suppose that we have

Dn = {(Xi, Ai, Ri, X
′
i)}ni=1, (5.38)

with (Xi, Ai) ∼ µ ∈ M(X × A), and X ′i ∼ P(·|Xi, Ai) and Ri ∼ R(·|Xi, Ai). The
data could be generated by following a behaviour policy πb and having trajectories
in the form of (X1, A1, R1, X2, A2, R2, . . . ). In this case, X ′t = Xt+1.

In the batch setting, the agent does not interact with the environment while it is
computing Qπ, Q∗, etc. This can be contrasted with the online method such as TD
or Q-Learning, where the agent updates its estimate of the value function as each
data point arrives.

Of course, the boundary between the batch and online methods is blurry. We
might have methods that collect a batch of data, process them, and then collect
a new batch of data, possibly based on a policy resulted from the previous batch
processing computation.

In this section, we develop several batch RL methods based on what we learned
in the previous section. In the next section, we develop some online RL methods.

5.2.1 Value Function Approximation Given the Monte
Carlo Estimates

Suppose that we are given a batch of data in the form of

Dn = {(Xi, Ai, G
π(Xi, Ai))}ni=1,

with Gπ(Xi, Ai) being a return of being at state Xi, taking action Ai, and following
the policy π afterwards. Here we suppose that the distribution of (Xi, Ai) ∼ µ. The
return can be obtained using the initial-state only MC by selecting (Xi, Ai) ∼ µ and
then following π until the end of episode (in the episodic case). Or we can extract
this information from the trajectory obtained by following the policy π using the
first-visit MC (Section 4.3).
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We encountered the following population loss function in Section 5.1.1 (but for
V instead of Q):

Q← argmin
Q∈F

‖Q−Qπ‖2,µ . (5.39)

There are two differences with the current setup. The first is that we do not have a
direct access to the distribution µ and only have samples from it. The second is that
we do not know Qπ itself and only we have unbiased estimate Gπ at a finite number
of data points.

Let us focus on the latter issue. We show that having access to unbiased noisy
estimate of Qπ does not change the solution of the minimization problem. For any
Q, we can decompose the expectation E

[
|Q(X,A)−Gπ(X,A)|2

]
(with (X,A) ∼ µ),

as

E
[
|Q(X,A)−Gπ(X,A)|2

]
= E

[
|Q(X,A)−Qπ(X,A) +Qπ(X,A)−Gπ(X,A)|2

]
= E

[
|Q(X,A)−Qπ(X,A)|2

]
+

E
[
|Qπ(X,A)−Gπ(X,A)|2

]
+

2E [(Q(X,A)−Qπ(X,A)) (Qπ(X,A)−Gπ(X,A))] .

The first term is ‖Q−Qπ‖2,µ, the same as the population loss (5.39). The second
term is

E [Var [Gπ(X,A) | X,A]] ,

the average (w.r.t. µ) of the (conditional) variance of the return. Note that this is
not a function of Q. Let us consider the inner product term. We take the conditional
expectation w.r.t. (X,A) and use the fact thatQ(X,A) andQπ(X,A) are measurable
functions of (X,A) to get7

E [(Q(X,A)−Qπ(X,A)) (Qπ(X,A)−Gπ(X,A))] =

E [E [(Q(X,A)−Qπ(X,A)) (Qπ(X,A)−Gπ(X,A)) | X,A]] =

E [(Q(X,A)−Qπ(X,A)) (Qπ(X,A)− E [Gπ(X,A) | X,A])] .

As E [Gπ(X,A) | X,A] is equal to Qπ(X,A), the inside of second parenthesis in the
last equality is zero. So the value of this whole term is zero.

7Here we use the property of the conditional expectation that if f is an X-measurable function,
E [f(X)Z|X] = f(X)E [Z|X]. In words, conditioned on X, there is no randomness in f(X), so it
can be taken out of the expectation.
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Therefore, we have that

argmin
Q∈F

E
[
|Q(X,A)−Gπ(X,A)|2

]
=

argmin
Q∈F

{
E
[
|Q(X,A)−Qπ(X,A)|2

]
+ E [Var [Gπ(X,A) | X,A)]]

}
=

argmin
Q∈F

‖Q−Qπ‖2
2,µ ,

as the variance term E [Var [Gπ(X,A) | X,A)]] is not a function of Q, so it does not
change the minimizer. If we could find the minimizer of E

[
|Q(X,A)−Gπ(X,A)|2

]
,

the solution would be the same as the minimizer of (5.39).
Nonetheless, we cannot compute the expectation because we do not know µ, as

already mentioned. We only have samples from it. A common solution in ML to
address this issue is to use the empirical risk minimization (ERM), which prescribes
that we solve

Q̂← argmin
Q∈F

1

n

n∑
i=1

|Q(Xi, Ai)−Gπ(Xi, Ai)|2 . (5.40)

This is indeed a regression problem with the squared error loss.
This loss function can be seen as using the empirical measure µn instead of µ. The

empirical measure, given data {(Xi, Ai)}ni=1, is defined as the probability distribution
that assigns the following probability to any (measurable) set B ⊂ X ×A:

µn(B) ,
1

n

n∑
i=1

I{(Xi, Ai) ∈ B}.

With this notation, the optimization above can be written as

Q̂← argmin
Q∈F

‖Q−Gπ‖2
2,µn

.

We occasionally may use ‖Q−Gπ‖2
2,Dn or ‖Q−Gπ‖2

2,n to denote this norm (see
Appendix A.2).

How close is this Q̂ to the minimizer of ‖Q−Qπ‖2,µ? And how close is it going
to be from Qπ? What is the effect of the number of samples n? And what about the
effect of the function space F?

Studying such questions is the topic of statistical learning theory (SLT). In this
particular case, when the problem reduces to a conventional regression problem, we
can benefit from the standard results in SLT. We only provide a simplified analysis,
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which do not require much previous background. You can refer to Györfi et al. [2002]
for detailed study of several nonparametric regression methods, van de Geer [2000]
for thorough development of the empirical processes, required for the analysis of
SLT methods, and [Steinwart and Christmann, 2008] for the analysis of SVM-style
algorithms and RKHS function spaces.

Assumption A2 We assume that

(a) Zi = (Xi, Ai) (i = 1, . . . , n) are i.i.d. samples from distribution µ ∈M(X ×A).

(b) The reward distribution R(·|x, a) is Rmax-bounded for any (x, a) ∈ X ×A.

(c) The functions in F are Qmax = Rmax

1−γ bounded.

(d) The function space has a finite number of members |F| <∞.

Among all these assumptions, Assumption A2(d) is not realistic, as the function
space that we deal with have uncountably infinite number of members. This is,
however, only for the simplification of analysis, and allows us to prove a result without
using tools from the empirical process theory. This simplification is not completely
useless though. In fact, some of the results that can deal with an uncountably infinite
function space F are based on first covering the original function space by finite-sized
Fε and then showing that the finite covering incurs a controlled amount of error O(ε).
This is called the covering argument.

Theorem 5.6 (Regression). Consider the solution Q̂ returned by solving (5.40).
Suppose that Assumption A2 holds. For any δ > 0, we then have∥∥∥Q̂−Qπ

∥∥∥2

2,µ
≤ inf

Q∈F
‖Q−Qπ‖2

2,µ + 8Q2
max

√
2(ln(6|F|) + 2 ln(1/δ)

n
,

with probability at least 1− δ.

Proof.

5.2.2 Approximate Value Iteration

Designing an empirical version of AVI (Section 5.1.2) is easy. The iteration of (5.3),

Qk+1 ← argmin
Q∈F

‖Q− TQk‖2,µ =

∫
|Q(x, a)− (TQ)(x, a)|2 dµ(x, a), (5.41)



5.2. BATCH RL METHODS 111

cannot be computed as (1) µ is not known, and (2) TQk cannot be computed as
P is not available under the batch RL setting (5.38). We can use samples though,
similar to how we converted the population-level loss function (5.39) to the empirical
one (5.40) in Section 5.1.1. Let us do it in a few steps.

First, note that if we are only given tuples in the form of (X,A,R,X ′), we cannot
compute

(T πQ)(X,A) = r(X,A) + γ

∫
P(dx′|X,A)Q(x′, π(x′)),

or similar for (T ∗Q)(X,A). We can, however, form an unbiased estimate of them.
We use the empirical Bellman operator applied to Q (4.9) and (4.13), which would
be

(T̂ πQ)(X,A) = R + γQ(X ′, π(X ′)),

(T̂ ∗Q)(X,A) = R + γmax
a′∈A

Q(X ′, a′).

For any integrable Q, they satisfy

E
[
(T̂Q)(X,A)|X,A

]
= (TQ)(X,A),

for any (X,A).
Similar to Section 5.2.1, replacing TQk with T̂Qk does not change the optimizer.

Given any Z = (X,A), we have

E
[∣∣∣Q(Z)− (T̂Qk)(Z)

∣∣∣2 | Z] = E
[∣∣∣Q(Z)− (TQk)(Z) + (TQk)(Z)− (T̂Qk)(Z)

∣∣∣2 | Z]
= E

[
|Q(Z)− (TQk)(Z)|2 | Z

]
+

E
[∣∣∣(TQk)(Z)− (T̂Qk)(Z)

∣∣∣2 | Z]+

2E
[
(Q(Z)− (TQk)(Z))

(
(TQk)(Z)− (T̂Qk)(Z)

)
| Z
]
.

As E
[
(T̂Qk)(Z) | Z

]
= TQk(Z), the last term is zero. Also conditioned on Z,

the function Q(Z) − (TQk)(Z) is not random, so E
[
|Q(Z)− (TQk)(Z)|2 | Z

]
=

|Q(Z)− (TQk)(Z)|2. Therefore, we get that

E
[∣∣∣Q(Z)− (T̂Qk)(Z)

∣∣∣2 | Z] = |Q(Z)− (TQk)(Z)|2 + E
[∣∣∣(TQk)(Z)− (T̂Qk)(Z)

∣∣∣2 | Z]
= |Q(Z)− (TQk)(Z)|2 + Var

[
(T̂Qk)(Z) | Z

]
. (5.42)
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Taking expectation over Z ∼ µ, we have that

E
[∣∣∣Q(Z)− (T̂Qk)(Z)

∣∣∣2] = E
[
E
[∣∣∣Q(Z)− (T̂Qk)(Z)

∣∣∣2 | Z]]
= E

[
|Q(Z)− (TQk)(Z)|2

]
+ E

[
Var

[
(T̂Qk)(Z) | Z

]]
.

The term E
[
|Q(Z)− (TQk)(Z)|2

]
is ‖Q− TQk‖2

2,µ. So we get that

argmin
Q∈F

E
[∣∣∣Q(Z)− (T̂Qk)(Z)

∣∣∣2] = (5.43)

argmin
Q∈F

{
‖Q− TQk‖2

2,µ + E
[
Var

[
(T̂Qk)(Z) | Z

]]}
= (5.44)

argmin
Q∈F

‖Q− TQk‖2
2,µ , (5.45)

as the term E
[
Var

[
(T̂Qk)(Z) | Z

]]
is not a function of Q, hence it does not change

the minimizer. So instead of (5.41), we can minimize E
[∣∣∣Q(Z)− (T̂Qk)(Z)

∣∣∣2].
We do not have µ though. As before we can use samples and form the empirical

loss function. The result is the following ERM problem:

Q̂← argmin
Q∈F

1

n

n∑
i=1

∣∣∣Q(Xi, Ai)− (T̂Qk)(Xi, Ai)
∣∣∣2 =

∥∥∥Q− T̂Qk

∥∥∥2

2,Dn
. (5.46)

This is the AVI procedure, also known as the Fitted Value Iteration (FVI) or
Fitted Q Iteration (FQI) algorithm. This is the basis of the Deep Q-Network (DQN)
algorithm, where one uses a DNN to represent the value function space.

5.2.3 Bellman Residual Minimization

We may use data to define the empirical version of BRM (Section 5.1.3). Instead of

Q← argmin
Q∈F

‖Q− T πQ‖2
2,µ , (5.47)

we can solve

Q← argmin
Q∈F

1

n

n∑
i=1

∣∣∣Q(Xi, Ai)− (T̂ πQ)(Xi, Ai)
∣∣∣2 =

∥∥∥Q− T̂ πQ∥∥∥2

2,Dn
. (5.48)
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Here we used data Dn to both convert the integration w.r.t. µ to an integration
w.r.t. µn (or summation), and substitute T πQ to its empirical version T̂ πQ. Note
that we have Q in both terms inside the norm, as opposed to only the first term
in FQI (5.46). This appearance of Q in both terms causes an issue though: the
minimizer of ‖Q − T πQ‖2

2,µ and ‖Q − T̂ πQ‖2
2,µ are not necessarily the same for

stochastic dynamics. To see this, we compute E
[
|Q(Z)− (T̂ πQ)(Z)|2 | Z

]
for any

Q and Z = (X,A) (by conditioning on Z, the randomness in the expectation is over
the next-state X ′, and not the choice of Z) as follows:

E
[∣∣∣Q(Z)− (T̂ πQ)(Z)

∣∣∣2 | Z] = E
[∣∣∣Q(Z)− (T πQ)(Z) + (T πQ)(Z)− (T̂ πQ)(Z)

∣∣∣2 | Z]
= E

[
|Q(Z)− (T πQ)(Z)|2 | Z

]
+

E
[∣∣∣(T πQ)(Z)− (T̂ πQ)(Z)

∣∣∣2 | Z]+

2E
[
(Q(Z)− (T πQ)(Z))

(
(T πQ)(Z)− (T̂ πQ)(Z)

)
| Z
]
.

Given Z, there is no randomness in |Q(Z)− (T πQ)(Z)|2, so E
[
|Q(Z)− (T πQ)(Z)|2 | Z

]
=

|Q(Z)− (T πQ)(Z)|2. Moreover, the inner product term is zero because it is equal to

(Q(Z)− (T πQ)(Z))
(

(T πQ)(Z)− E
[
(T̂ πQ)(Z) | Z

])
=

(Q(Z)− (T πQ)(Z)) ((T πQ)(Z)− (T πQ)(Z)) = 0.

Therefore,

E
[∣∣∣Q(Z)− (T̂ πQ)(Z)

∣∣∣2 | Z] = |Q(Z)− (T πQ)(Z)|2 + Var
[
(T̂ πQ)(Z) | Z

]
.

In contrast with AVI/FQI (5.42), the second term is a function of Q too. By taking
the expectation w.r.t. Z ∼ µ, we get that

argmin
Q∈F

E
[∣∣∣Q(Z)− (T̂Q)(Z)

∣∣∣2] = argmin
Q∈F

{
‖Q− TQ‖2

2,µ + E
[
Var

[
(T̂Q)(Z) | Z

]]}
6= argmin

Q∈F
‖Q− TQ‖2

2,µ . (5.49)

For stochastic dynamical systems, the variance term is non-zero, whereas for deter-
ministic ones, it is zero. By replacing T πQ with T̂ πQ in BRM in stochastic dynamics,
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we obtain a solution that is not the same as minimizer of the Bellman error within
the function space F .

Let us take a closer look at the variance term. For simplicity, assume that the
reward is deterministic, so Ri = r(Xi, Ai). In that case

Var
[
(T̂ πQ)(Z) | Z

]
=

E

[∣∣∣∣(r(Z) + γQ(X ′, π(X ′)))−
(
r(Z) + γ

∫
P(dx′|Z)Q(x′, π(x′))

)∣∣∣∣2 | Z
]

=

γ2E

[∣∣∣∣Q(X ′, π(X ′)−
∫
P(dx′|Z)Q(x′, π(x′)

∣∣∣∣2 | Z
]
.

This is the variance of Q at the next-state X ′. Having this variance term in optimiza-
tion (5.49) encourages finding Q that has small next-state variance. For example,
if Q is constant, this term would be zero. If Q is varying slowly as a function of
state x (i.e., a smooth function), it is going to be small. This induced smoothness is,
however, not desirable because it is not a smoothness that is natural to the problem,
but imposed by the biased objective. Moreover, it is not controllable in the sense
that we can change its amount by a hyperparameter. If it was controllable, we could
use it as a way to regularize the value function estimate, which would be useful, for
example, to avoid overfitting.

5.2.4 LSTD and Least Square Policy Iteration (LSPI)

Starting from the PBE, we got several approaches to approximate V π. One of them
was based on solving V = (ΠF ,µT

πV ) (5.19) with V being a linear FA with VN =
ΦN×pwp (Section 5.1.4.2). We showed that the solution to this equation is

wTD = A−1
p×pbp×1

with

A = Φ>M(Φ− γPπΦ),

b = Φ>Mrπ.

We need to use data Dn in order to estimate these. The way becomes more clear
if we expand A and b in terms of summation (or integration, more generally). As M
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is a diagonal matrix, we have

Aij =
[
Φ>M(Φ− γPπΦ)

]
ij

=
N∑
m=1

Φ>imµ(m) (Φ− γPπΦ)mj ,

bi =
N∑
m=1

Φ>imµ(m)rπm

Or expanded more explicitly in terms of state x and next-state x′,

A =
∑
x∈X

µ(x)φ(x)

(
φ(x)− γ

∑
x′∈X

Pπ(x′|x)φ(x′)

)>
,

b =
∑
x∈X

µ(x)φ(x)rπ(x).

These forms suggest that we can use data to estimate A and b. Given Dn =
{(Xi, Ri, X

′
i)}ni=1 with Xi ∼ µ ∈ M(X ), and X ′i ∼ Pπ(·|Xi) and Ri ∼ Rπ(·|Xi)

(cf. (5.38)), we define the empirical estimates Ân and b̂n as

Ân =
1

n

n∑
i=1

φ(Xi) (φ(Xi)− γφ(X ′i))
>
,

b̂n =
1

n

n∑
i=1

φ(Xi)Ri.

We have

E
[
φ(Xi) (φ(Xi)− γφ(X ′i))

>
]

=

E
[
E
[
φ(Xi) (φ(Xi)− γφ(X ′i))

>
]
| Xi

]
=

E
[
φ(Xi) (φ(Xi)− γE [φ(X ′i) | Xi])

>
]

=

E
[
φ(Xi) (φ(Xi)− γ(PπΦ)(Xi))

>
]

= A.

This shows that Ân is an unbiased estimate of A. If Xi ∼ µ are selected inde-
pendently, by the LLN, we get that Ân → A (a.s.) (assuming the bounded fourth
moment on the features). Similar guarantee holds when Xi are not independent, but
comes from a Markov chain induced by following a policy.8 Showing that b̂n is an
unbiased estimate of b is similar.

8For instance, we can show that if the chain is positive Harris, LLN holds for functions that
belong to L1(ρπ) (Theorem 17.1.7 of Meyn and Tweedie 2009).



116 CHAPTER 5. VALUE FUNCTION APPROXIMATION

Exercise 5.4. Show that b̂n is an unbiased estimate of b.

We can also have the LSTD estimation procedure for the action-value function.
We briefly show how relevant quantities can be represented and what the LSTD
solution looks like.

We represent Q(x, a) = φ>(x, a)w in the matrix form as

QN×1 = ΦN×pwp

with N = |X × A| and

Φ =
[
φ1 · · · φp

]
.

with

φi =



φi(x1, a1)
...

φi(x1, a|A|)
φi(x2, a1)

...
φi(x|X |, a|A|)


,

and P as the |X × A| × |X | matrix

[P ](x,a),x′ = P(x′|x, a),

and Ππ as |X | × |X × A| matrix with

[Πpi]x,(x,a) = π(a|x).

Then, the Bellman equation can be written as(
IN×N − γPN×|X |Ππ |X |×N

)
Qπ
N×1 = rN×1.

Let µ ∈ M(X × A). We define MN×N = diag(µ). The solution of the LSTD
solution (population version) is

w =
[
Φ>M(Φ− γPΠπΦ)

]−1
Φ>Mr = A−1b. (5.50)

Obtaining the empirical version of A and b is similar to what we already discussed.
This is also known as LSTDQ, but we use LSTD to refer to solution for either V or
Q, as the principle is the same.
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Figure 5.4: Approximate Policy Iteration

Algorithm 5.1 LSPI

Require: Dn = {(Xi, Ai, Ri, X
′
i}ni=1 and initial policy π1.

1: for k = 1, 2, . . . , K do
2: Q̂πk ← LSTD(Dn, πk) . Policy Evaluation
3: πk+1 ← πg(Q̂

πk) . Policy Improvement
4: end for
5: return Q̂πK and πK+1.

We can use LSTD to define an an approximate PI (API) procedure (Figure 5.4) to
obtain a close to optimal policy as shown in Algorithm 5.1. This is a policy iteration
algorithm that uses LSTD to evaluate a policy. It is approximate because of the use
of a function approximation and a finite number of data point.

We may also collect more data during LSPI. For example, as we obtain a new
policy, we can follow it to collect new data points. Note that LSTD is an off-policy
algorithm because it can evaluate a policy π that is different from the one collecting
data.

LSTD and LSPI are considered as sample efficient algorithms. They are, how-
ever, not computationally cheap. The matrix inversion Âp×p is O(p3), if computed
naively. If we want to perform it in an online fashion, as new samples arrive, the
computational cost can be costly: O(np3). Note that we may use Sherman-Morrison
formula (or the matrix inversion lemma) to compute Â−1

n incrementally based on the
previous inverted matrix Â−1

n−1.
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5.3 Online RL Methods

In the online setting, the agent updates the value function as it interacts with the
environment. We can use the update rules derived in Section 5.1.4.3 in order to
design a SA procedure.

First, we consider the weight update rule (5.29):

wk+1 ← (1− α)wk + α(Φ>DπΦ)−1Φ>Dπ [rπ + γPπΦwk] .

In order to convert this to a SA procedure, we need to empirically estimate Φ>DπΦ
and Φ>Dπ [rπ + γPπΦwk]. We have

(Φ>DπΦ)p×p =
∑
x∈X

ρπ(x)φ(x)φ>(x)

= E
[
φ(X)φ>(X)

]
, X ∼ ρπ.

So if we have t data points X1, . . . Xt with Xi ∼ ρπ, the stationary distribution of π,
we can estimate it by a matrix Ât

Ât =
1

t

t∑
i=1

φ(Xi)φ
>(Xi).

This matrix is an unbiased estimate of (Φ>DπΦ), and converges to it under usual
conditions of LLN.

We also have

Φ>Dπ [rπ + γPπΦwk] =
∑
x∈X

ρπ(x)φ(x)

(
rπ(x) + γ

∑
x′∈X

Pπ(x′|x)φ>(x′)wk

)
. (5.51)

If Xt ∼ ρπ, X ′t ∼ Pπ(·|Xt), and Rt ∼ Rπ(·|Xt), the r.v.

φ(Xt)
(
Rt + γφ>(X ′t)wt

)
is an unbiased estimate of (5.51).

These suggest a SA procedure that at each time step t, after observing Xt, Rt, X
′
t,

updates the weight wt to wt+1 by

wt+1 ← (1− αt)wt + αtÂ
−1
t φ(Xt)

(
Rt + γφ>(X ′t)wt

)
(5.52)
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with

Ât =
1

t

[
(t− 1)Ât−1 + φ(Xt)φ

>(Xt)
]

=

(
1− 1

t

)
Ât−1 +

1

t
φ(Xt)φ

>(Xt).

The inversion of Ât is expensive, if done naively. We can use Sherman-Morrison
formula to incrementally update it (Section A.5) as

(Ât)
−1 = Â−1

t−1 −
Â−1
t−1φ(Xt)φ

>(Xt)Â
−1
t−1

1 + φ>(Xt)Â
−1
t−1φ(Xt)

.

This requires a matrix-vector multiplication and is O(p2). The per-sample com-
putational cost of (5.52) is then O(p2). This is significantly higher than the O(1)
computational cost of the TD update for a problem with finite state-action spaces for
which the value function can be represented exactly in a lookup table (for example,
see Algorithm 4.3).

This comparison, however, may not be completely fair. The computational cost
of evaluating V (x) at any x for a finite state problem with an exact representation
was O(1) itself, but the computational cost of evaluating the value function with
a linear FA with p features (i.e., V (x;w) = φ>(x)w) is O(p). A better baseline is
perhaps to compare the cost of update per time step with the cost of computation
of V for a single state. We can then compute

computational cost of update per sample

computational cost of computing the value of a single state
.

For TD with a finite state(-action) space with the exact representation, the ratio
is O(1). For the method (5.52), the ratio is O(p). This shows a more graceful
dependence on p, but it still scales linearly with the number of features.

We can have a better computational cost using the other update rule (5.31) we
derived in Section 5.1.4.3. The population version is

wk+1 ← wk + αΦ>Dπ [rπ + γPπΦwk − Φwk] .

If Xt ∼ ρπ, X ′t ∼ Pπ(·|Xi), and Rt ∼ Rπ(·|Xi), we use the r.v.

φ(Xt)
(
Rt + γφ>(X ′t)wt − φ(Xt)wt

)
= φ(Xt)δt,
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with δt = Rt + γφ>(X ′t)wt − φ(Xt)wt, the TD error, is an unbiased estimate of
Φ>Dπ [rπ + γPπΦwk − Φwk]. Therefore, the SA update rule would be

wk+1 ← wk + αtφ(Xt)δt. (5.53)

This is the TD Learning with linear FA.
We have shown that the population version of this update rule under X ∼ ρπ con-

verges in Proposition 5.4. We do not show it for the SA version, but we might suspect
that it does because it follows a noise contaminated version of a stable/convergent
dynamical system. With proper choice of the step size sequence (αt), we can expect
convergence. This indeed true, as shown by Tsitsiklis and Van Roy [1997].

It is worth mentioning that this convergence holds only when Xt ∼ ρπ, the
stationary distribution of π. If its distribution is not the same, the TD with linear
FA might diverge. This is contrast with the TD for finite state problems where the
conditions of convergence were much easier and we did not have divergence.

The same method works for learning an action-value function Qπ of policy π
using an approximation

Q(x, a) = Q(x, a;w) = φ(x, a)>w.

For Xt ∼ ρπ, At = π(Xt), X
′
t ∼ P(·|Xt, At), and Rt ∼ R(·|Xt, At), we can update

the weights as

wk+1 ← wk + αtφ(Xt, At)δt, (5.54)

with the TD error

δt = Rt + γφ(X ′t, π(X ′t))
>wt − φ(Xt, At)

>wt.

We may use a similar procedure for the control problem and define SARSA-like
and Q-Learning-like algorithms with linear FA. For SARSA, the update uses the
tuple (Xt, At, Rt, X

′
t, A

′
t) with At ∼ π(·|Xt) and A′t ∼ π(·|X ′t), and π being a policy

that is close to being greedy w.r.t. Qt, e.g., an ε-greedy policy πε(Qt). The update
would be the same with the difference that the TD error would be

δt = Rt + γφ(X ′t, A
′
t)
>wt − φ(Xt, At)

>wt.

We may also form a Q-Learning-like algorithm by having

δt = Rt + γmax
a′∈A

φ(X ′t, a
′)>wt − φ(Xt, At)

>wt
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Even though the agent may be following a policy π and have samples Xt ∼ ρπ

and At ∼ π(·|Xt) (or similar for the deterministic policy), the policy being evaluated
is the greedy policy πg(·;Qt). The evaluated policy may not be the same as π. This
is an off-policy samplings scenario. The convergence guarantee for TD with linear
FA, shown by Tsitsiklis and Van Roy [1997], does not hold here. In fact, Q-Learning
with linear FA might divergence.

5.3.1 Semi-Gradient Viewpoint

We motivated the TD method with linear FA by starting from V = ΠF ,ρπT
πV with

V = Φw, and devised an iterative SA procedure for its computation. One may also
see it as an SGD-like procedure, with some modifications, as we explain here. This
is the approach followed by Sutton and Barto [2019].

Suppose that we know the true value function V π, and we want to find an approx-
imation V̂ , parameterized by w (the same setup as we had earlier in Section 5.1.1).
The population loss is

V ← argmin
V ∈F

1

2

∥∥∥V π − V̂ (w)
∥∥∥2

2,µ
. (5.55)

Using samples Xt ∼ µ, we can define an SGD procedure that updates wt as
follows:

wt+1 ←wt − αt∇w

[
1

2

∣∣∣V π(Xt)− V̂ (Xt;wt)
∣∣∣2]

=wt + αt

(
V π(Xt)− V̂ (Xt;wt)

)
∇wV̂ (Xt;wt).

If the step size αt is selected properly, the SGD converges to the stationary point if
the objective of (5.55). If we use a linear FA to represent V̂ , the objective would be
convex, so wt converges to the global minimum of the objective. In this formulation,
V π(Xt) acts as the target, in the supervised learning sense.

When we do not know V π, we may use a bootstrapped estimate instead:

(T̂ πVt)(Xt) = Rt + γVt(X
′
t) = Rt + γV̂ (Xt;wt).

With this substitution, the update rule would be

wt+1 ← wt + αt

(
Rt + γV̂ (X ′t;wt)− V̂ (Xt;wt)

)
∇wV̂ (Xt;wt).
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For linear FA, we have V̂ (x;w) = φ>(x)w, and we get the update rule

wt+1 ←wt + αt

(
Rt + γV̂ (X ′t;wt)− V̂ (Xt;wt)

)
φ(Xt)

=wt + αtδtφ(Xt).

This is the same update rule that we had before for TD with linear FA (5.53).
The substitution of V π(Xt) with (T̂ πVt)(Xt) does not follow from the SGD of any

loss function. The TD update is not a true SGD update.
One may wonder why we do not perform SGD on

1

2

∣∣∣V̂ (Xt;wt)− (T̂ πV̂ (wt))(Xt)
∣∣∣2

instead. Certainly, we can write

wt+1 ←wt − αt∇w

[
1

2

∣∣∣V̂ (Xt;wt)− (T̂ πV̂ (wt))(Xt)
∣∣∣2]

=wt − αt
(
V̂ (Xt;wt)− (T̂ πV̂ (wt))(Xt)

)(
∇wV̂ (Xt;wt)−∇w(T̂ πV̂ (wt))(Xt)

)
=wt − αt

(
V̂ (Xt;wt)− (T̂ πV̂ (wt))(Xt)

)(
∇wV̂ (Xt;wt)− γ∇wV̂ (X ′t;wt)

)
With linear FA, this becomes

wt+1 ←wt − αt
(
φ(Xt)

>wt − (Rt + γφ(X ′t)
>wt

)
(φ(Xt)− γφ(X ′t))

=wt − αtδt · (φ(Xt)− γφ(X ′t))

This is similar to the TD update, with the difference that instead of φ(Xt),
we have φ(Xt) − γφ(X ′t). The issue, however, is that this empirical loss function
1
2
|V̂ (Xt;wt) − (T̂ πV̂ (wt))(Xt)|2 is biased, as explained in Section 5.2.3. Minimizing

it does not lead to the minimizer of the Bellman error.



Chapter 6

Policy Search Methods

6.1 Introduction

So far we have described methods for computing the optimal policy, either exactly
or inexactly, that are based on the computation of the value function.1 Given Q∗, we
can compute the optimal policy by computing its greedy policy. In these methods,
only the value function was explicitly represented, and the policy could be computed
based on it.

There are also methods that are based on the explicit representation of the pol-
icy, as opposed to value function, and optimizing the performance of the agent by
searching in the space of policies. We call these methods policy search algorithms.
These are the focus of this chapter. There are also hybrid methods that use the
explicit representation of both value and policy.

6.1.1 Policy Parametrization

Let us start from policy parametrization. Consider a stochastic policy πθ : X →
M(A) that is parameterized by a θ ∈ Θ. Here the set Θ is the parameter space, e.g.,
a subset of Rp. We also denote the space of all policy parameterized this way by ΠΘ:

ΠΘ = { πθ : X →M(A) : θ ∈ Θ } . (6.1)

This space depends on the mapping πθ and the space of parameters Θ.
There are many choices for how we can parameterize a policy πθ. A generic

example is based on the Boltzmann (or softmax) distribution. Given a function

1Chapter’s Version: 0.04 (2021 April 2). Some results need to be typed.
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fθ : X × A → R (e.g., a DNN or decision tree parameterized by θ), the density of
choosing action a at state x is

πθ(a|x) =
exp(fθ(x, a))∫

exp(fθ(x, a′))da′
.

A special case would be when fθ(x, a) = φ(x, a)>θ for some features φ : X ×A → Rp

and θ ∈ Rp, in which case we get

πθ(a|x) =
exp(φ(x, a)>θ)∫

exp(φ(x, a′)>θ)da′
.

When the action space A is discrete, πθ(a|x) denotes the probability of choosing
action a at state x (instead of it density), and for the linear parameterization of fθ,
we have

πθ(a|x) =
exp(φ(x, a)>θ)∑

a′∈A exp(φ(x, a′)>θ)
.

Another example is when πθ(·|x) defines a Normal distribution over action space
with θ parameterization its mean and covariance:

πθ(·|x) = N (µθ(x),Σθ(x)) .

If the action space is dA-dimensional, the mean is µθ : X → RdA and the covariance is
Σθ : X → SdA+ . Here SdA+ refers to the set of dA× dA positive semi-definite matrices.

This latest example shows one of the reasons that the explicit parameterization
of the policy and the policy search methods is appealing: Working with continuous
action spaces is easy. By simply parametrizing the mean and covariance of a Normal
distribution, we can easily select a continuous action from πθ. If we can come up with
methods to optimize a policy parametrized this way, this would be a viable approach
for working with MDPs continuous action spaces, potentially of high dimensions. In
comparison, continuous action space causes challenge for value-based methods such
as VI or PI that need to compute maxa∈AQ(x, a) (or a similar quantity). This is
an optimization in the action space, which is difficult when A is a high-dimensional
continuous space.

6.1.2 Performance Measure

The performance can be measured in various ways. Here we focus on the expected
return of following πθ, the value function. Our goal, as before, is to find a policy
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that maximizes this performance measure. We are, however, restricted to choosing
policies within ΠΘ (6.1).

For the moment, assume that we only care about the performance at state x ∈ X .
In that case, the goal of policy search would be

argmax
π∈ΠΘ

V π(x) = argmax
θ∈Θ

V πθ(x). (6.2)

The interpretation is that we are interested in finding a policy that if the agent starts
at this particular state x, its performance, measured according to its expected return,
is maximized.

Of course, if we find π∗ ∈ ΠΘ, not only it maximizes the value function at this
particular x, but also at any other x′ ∈ X . But if π∗ /∈ ΠΘ, we will not be able to
find a policy that maximizes the value at all states. In that case, we may want to
find a policy that is only good at our starting state x, and ignore the performance at
other states. In that case, the obtained policy is going to be initial-state-dependent.
That is, if we change x to another state x′ 6= x, the optimal policy within ΠΘ might
change.

More general than this extreme case of having a single initial state x is when the
initial state of the agent is distributed according to some distribution ρ ∈ M(X ).
The performance measure would then be the average of following πθ with the initial
state X1 ∼ ρ. We define

J(πθ) = Jρ(πθ) ,
∫
V πθ(x)dρ(x) = EX∼ρ [V πθ(X)] . (6.3)

The optimal policy maximizes the performance measure Jρ and we have Jρ(π
∗) ≥

Jρ(πθ) for any πθ ∈ ΠΘ. If π∗ /∈ ΠΘ, which is the case in general, the inequality is
strict. In policy search methods, however, we aim to find the maximizes of the
performance measure within ΠΘ. That is,

π̄ ← argmax
πθ∈ΠΘ

Jρ(πθ). (6.4)

The corresponding policy is denoted by θ̄, i.e., π̄ = πθ̄.
For different ρ, we may get different optimizers. If we want to emphasize the

dependence of the maximizer on ρ, we use π̄ρ. We may sometimes denote J(πθ) or
Jρ(πθ) simply by Jρ(θ).

6.1.3 Policy Search as an Optimization Problem

How can we solve the optimization problem (6.4) to find πθ that maximizes the
performance measure Jρ? In principle, this is an optimization problem, so we can
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benefit from the arsenal of optimization algorithms. Being an RL problem, however,
brings both challenges and opportunities. As an example of a challenge, the value
of Jρ is not readily available, and has to be estimated through interaction with the
environment. The special structure of the RL problem, such as the value function
satisfying the Bellman equation, provides an opportunity to design more elegant
algorithms than one would obtain if we merely consider the problem as a blackbox
optimization one. We discuss these in some detail and describe a few methods on
how the optimization problem can be solved.

Optimization methods, broadly speaking, can be categorized based on the infor-
mation they need about their objective. Zero-order methods only use the value of
the objective at various query points. For example, they compute Jρ(θ) at various
θs in order to guide the optimization process. First-order methods use the derivative
of the objective instead of, or in addition to, the value of the objective. They use
∇θJρ(θ) in order to guide the search. The quintessential first-order optimization
method is the gradient descent (and its stochastic variant), which has a counterpart
for the RL problems too.

6.2 Zero-Order Methods

We first consider the case when the policy parameter space Θ is finite. This helps
us understand some of the challenges. We then extend our discussion to case when
Θ is continuous function space.

6.2.1 Finite Policy Parameter Space

Assume that we are given a finite Θ = {θ1, . . . , θm} policy parameters. This defines
the finite policy space ΠΘ = {πθ : θ ∈ Θ}. We want to find the policy πθ ∈ ΠΘ such
that Jρ(πθ) is maximized (6.4).

If we can easily compute Jρ(πθ) for each θ ∈ Θ, this is an easy problem, at least
in principle.2 So the main issue is to compute Jρ(πθ).

The performance measure Jρ(πθ) is the expectation of V πθ(X) w.r.t. X ∼ ρ. We
can try to compute V πθ(x) for all x ∈ X , using any of the PE methods that we
have developed (either in the Planning or RL scenarios), and then take the weighted

2If m = |Θ| is a very large finite number, say 1040, this may not be feasible on a computer, but
that is another issue, which we ignore in this discussion.
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average according to ρ. If X is discrete, this would be

Jρ(πθ) =
∑
x∈X

ρ(x)V πθ(x).

If X is large, however, computing V πθ itself is not going to be easy, no matter
whether we know the model or not. Moreover, computing the integral

∫
V πθ(x)dρ(x)

is going to be challenging too, even if we know V πθ exactly.
An alternative is computing an unbiased estimate of Jρ(πθ) instead using MC

estimation. To see how it works, let us derive such an estimator in two steps.
In the first step, assume that we know V πθ and we want to estimate Jρ(πθ). If

we sample X ∼ ρ, we have that V πθ(X) is an unbiased estimate of Jρ(ρπ) as

E [V πθ ] =

∫
V πθ(x)dρ(x) = Jρ(πθ)

by the definition of Jρ(πθ) (6.3).
If we draw n independent samples X1, . . . , Xn ∼ ρ, the estimator

1

n

n∑
i=1

V πθ(Xi)

would be an unbiased as well, with a variance of

Var [V πθ(X)]

n
.

This variance goes to 0 as n increases. So by increasing the number of samples, we
can have a more accurate estimate of Jρ(πθ).

The variance Var [V πθ(X)] is a measure of dispersion of the value function across
states samples according to ρ. For example, if the value function is constant, it will
be zero, and if it is changing slowly as a function of the state, it would be small. On
the other hand, if the value function varies greatly, the variance is large. Note that
this variance is a function of the policy πθ, so for each πθ ∈ Πθ, we get a different
variance.

The second step is to replace V πθ(x) with the return Gπθ(x), which is an unbiased
estimate of the value itself. Computation of Gπθ(x) requires starting the agent from
state x and following πθ (i.e., performing a rollout from x) until the end of episode for
episodic tasks, or until infinity for continual tasks (see Exercise 3.2 and the comment
in Section 4.3).
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If X ∼ ρ, Gπθ(X) is an unbiased estimate of Jρ(πθ) as

EX∼ρ [Gπθ(X)] = EX∼ρ [E [Gπθ(X) | X]] = EX∼ρ [V πθ(X)] = Jρ(πθ).

If we draw n independently selected X1, . . . , Xn ∼ ρ, we can form

Ĵn(πθ) =
1

n

n∑
i=1

Gπθ(Xi), (6.5)

as an unbiased estimate of Jρ(πθ). The next result provides the variance of this
estimate.

Proposition 6.1. The estimator Ĵn(πθ) (6.5) is an unbiased estimator for Jρ(πθ)
and has the variance of

Var
[
Ĵn(πθ)

]
=

1

n
(E [Var [Gπθ(X) | X]] + Var [V πθ(X)]) .

Proof. The estimator is unbiased because

E

[
1

n

n∑
i=1

Gπθ(Xi)

]
=

1

n

n∑
i=1

E [E [Gπθ(Xi) | Xi]] =
1

n

n∑
i=1

E [V πθ(Xi) | Xi] =
n

n
Jρ(πθ),

as had already been established before.
As Xis are i.i.d., we have

Var

[
1

n

n∑
i=1

Gπθ(Xi)

]
=

1

n
Var [Gπθ(X1)] . (6.6)

We could use the law of total variance to decompose Var [Gπθ(X)] (with X ∼ ρ).
Instead of using that result, we prove it directly. We have

Var [Gπθ(X)] = E
[
Gπθ(X)2

]
− (E [Gπθ(X)])2. (6.7)

We expand each term. For the term E [Gπθ(X)2], we have

E
[
Gπθ(X)2

]
= E

[
E
[
Gπθ(X)2 | X

]]
.

Its inner expectation is

E
[
Gπθ(X)2 | X

]
= Var [Gπθ(X) | X] + (E [Gπθ(X) | X])2

= Var [Gπθ(X) | X] + V πθ(X)2,
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as V πθ(x) = E [Gπθ(x) | x] by definition. Therefore,

E
[
Gπθ(X)2

]
= E [Var [Gπθ(X) | X]] + E

[
V πθ(X)2

]
. (6.8)

For the second term (E [Gπθ(X)])2, notice that we have

E [Gπθ(X)] = E [E [Gπθ(X) | X]] = E [V πθ(X)] . (6.9)

Substituting (6.8) and (6.9) in (6.7), we get

Var [Gπθ(X)] = E [Var [Gπθ | X]] +
(
E
[
V πθ(X)2

]
− (E [V πθ(X)])2

)
= E [Var [Gπθ | X]] + Var [V πθ(X)] .

This along with (6.6) get us to the stated result.

This result shows that if we have a finite number of parameters in Θ, we can
estimate Jρ(πθi) ≈ Ĵn(πθi)±OP ( 1√

n
) for each θi ∈ Θ. We can use these estimates to

select the best among them:

π̂ = πθ̂ ← argmax
θ∈Θ

Ĵn(πθ). (6.10)

As there is an OP ( 1√
n
) error in estimation of each Jρ(πθ), the selected policy

π̂ may not be the same as the maximizer π̄ of (6.4). The error in selection can
happen if Jρ(π̂) and Jρ(π̄) are within OP ( 1√

n
) of each other, so their ranking of

their empirical estimate would be different than the ranking of their true value.
That is, Ĵn(π̂) > Ĵn(π̄) (which leads to preferring π̂ to π̄ according to the empirical
performance measure) even though Jρ(π̂) < Jρ(π̄). Even if we make an error in
selecting the best policy, the gap in their performance is within OP ( 1√

n
). The next

result and its proof make this statement and argument precise. Note that as we
increase n, the error in estimating Jρ(πθ) decreases and the probability of selecting
an optimal policy increases. This increased accuracy, however, is at the cost of
increased sample and computational complexity, which would be n|Θ| rollouts.

Proposition 6.2. Consider the maximizer of (6.10). Assume that the returns
Gπθ(x) are all Qmax-bounded for any θ ∈ Θ and x ∈ X . Furthermore, suppose
that |Θ| <∞. For any δ > 0, we have that

Jρ(θ̂) ≥ max
θ∈Θ

Jρ(θ)− 2Qmax

√√√√2 ln
(

2|Θ|
δ

)
n

,

with probability at least 1− δ.
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Proof. We bound the difference between Jρ(θ) and Ĵn(θ), for any θ ∈ Θ, using the
union bound and the Hoeffding’s inequality (Lemma A.3 in Appendix A). For any
θ′ ∈ Θ, we have

P
{∣∣∣Jρ(θ′)− Ĵn(θ′)

∣∣∣ > ε
}
≤ P

{⋃
θ∈Θ

{∣∣∣Jρ(θ)− Ĵn(θ)
∣∣∣ > ε

}}
≤
∑
θ∈Θ

P
{∣∣∣Jρ(θ)− Ĵn(θ)

∣∣∣ > ε
}

≤ 2|Θ| exp

(
− nε2

2Q2
max

)
.

Assigning the LHS to δ > 0, and solving for ε, we get that

ε ≤ Qmax

√√√√2 ln
(

2|Θ|
δ

)
n

.

Therefore, for any θ′ ∈ Θ, including θ̂ and θ̄, we have

∣∣∣Jρ(θ′)− Ĵn(θ′)
∣∣∣ ≤ Qmax

√√√√2 ln
(

2|Θ|
δ

)
n

, (6.11)

with probability at least 1− δ. For conciseness, let us denote the RHS by u(n, δ).

As Ĵn(θ̂) = Ĵn(πθ̂) is the maximizer of (6.10), we have

Ĵn(θ̂) ≥ Ĵn(θ), ∀θ ∈ Θ.

This includes θ = θ̃ ∈ Θ, the parameter of the best policy within Θ. So Ĵn(θ̂) ≥ Ĵn(θ̄).
This along with two applications of (6.11) show that for any δ > 0,

Jρ(θ̂) ≥ Ĵn(θ̂)− u(n, δ)

≥ Ĵn(θ̄)− u(n, δ)

≥ (Jρ(θ̄)− u(n, δ))− u(n, δ),

with probability at least 1− δ.
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Assigning the same number n of MC rollouts to all θ ∈ Θ may not be the best
strategy in selecting the optimal parameter in terms of the total number of required
rollouts. To see why, assume that for θ1 ∈ Θ, the performance measure Jρ(πθ1)
is much smaller than Jρ(πθ2) for another θ2 ∈ Θ. In this case, we can perhaps
eliminate θ1 from further consideration without spending many samples on accurately
estimate its Jρ(πθ1). More concretely, given n1 rollouts assigned to θ1, we can form
the confidence interval for Jρ(πθ1). For example, if we assume Qmax-bounded returns,
we can use the Hoeffding’s inequality to obtain that for any δ > 0,

Jρ(πθ1) ∈

Ĵn1(πθ1)−Qmax

√
2 ln(2/δ)

n1

, Ĵn1(πθ1) +Qmax

√
2 ln(2/δ)

n1

 ,

with probability at least 1 − δ. We have a similar result for Jρ(πθ2) with n2 rollout
assigned to it:

Jρ(πθ2) ∈

Ĵn2(πθ2)−Qmax

√
2 ln(2/δ)

n2

, Ĵn2(πθ2) +Qmax

√
2 ln(2/δ)

n2

 ,

with probability at least 1− δ. If it happens that

Ĵn1(πθ1) +Qmax

√
2 ln(2/δ)

n1

< Ĵn2(πθ2)−Qmax

√
2 ln(2/δ)

n2

,

we conclude that the best statistically possible performance of πθ1 is worse than
the worst statistically possible performance of πθ2 , with probability at least 1 − 2δ.
Hence, we can say that with high probability, πθ2 is a better policy than πθ1 . In
that case, there is no need to improve our estimate of πθ1 , as there is a better policy
already πθ2 identified.

This idea can be fully developed into an algorithm that adaptively adjusts the
number of rollouts ni assigned to each policy πi ∈ ΠΘ. Such an algorithm can be
more sample efficient in identifying a good policy than assigning the same number
of rollouts to all policies in the policy class. We do not develop it any further here
though, and refer an interested reader to relevant references.

6.2.2 Random Search

If Θ is not finite, we cannot evaluate Ĵn(πθ) for all θ ∈ Θ. There are several generic
methods for searching in a large parameter space, including random search, simulated
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Algorithm 6.1 Random Search

Require: Distribution ν ∈ M(Θ); Number of rollouts n; Maximum number of
iterations K

1: Draw a parameter θ1 = θ′1 ∼ ν
2: Evaluate Ĵn(πθ1)
3: for k = 2, 3, . . . , K do
4: Draw a parameter θ′k ∼ ν
5: Evaluate Ĵn(πθ′k)

6: if Ĵn(πθ′k) > Ĵn(πθk) then
7: θk ← θ′k
8: else
9: θk ← θk−1

10: end if
11: end for
12: return πθK

annealing, and various evolutionary algorithms. We briefly discuss random search in
this section and a particular type of evolutionary algorithm in the next one.

In random search (RS), we randomly pick m policy parameters θ1, . . . , θm ∈ Θ,
evaluate Ĵn(πθi), and pick the one with the highest value. The intuition of why this
works is that with large enough m, one of θi might hit close to the optimal

θ̂ ← argmax
θ∈Θ

Ĵn(πθ).

Moreover, if n is large enough, the difference between Ĵn(θ) and Jρ(θ) would be
small for all randomly selected θ. To be more concrete, if we denote the set of
randomly selected parameters by Θm = {θ1, . . . , θm}, we may use a result similar to
Proposition 6.2 to show that the gap between the true performance Jρ(θ̂m) of the
selected parameter

θ̂m ← argmax
θ∈Θm

Ĵn(πθ)

and maxθ∈Θm Jρ(πθ) is small.3 We do not prove this result in its complete form. But

we show that RS asymptotically chooses a θ whose Ĵn is arbitrary close to Ĵn(θ̂).
To show that RS hits close to the optimum, let us first specify the procedure

more precisely in Algorithm 6.1. The distribution ν ∈ M(Θ), which is an input to

3Proposition 6.2 assume that |Θ| < ∞. If we allow m → ∞ in a random search, we need to
modify that result.
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the algorithm, generates samples in the policy parameter space. We assume that
it assigns a positive probability to any (measurable) set A ⊂ Θ. This is required
because otherwise we may not draw any sample from the regions close to the optimal
point θ̂ after all. We define the set of points close to being optimal. For ε > 0, denote
the set of points in Θ that are ε-optimal (according to Ĵn) by

Mε =
{
θ : Ĵn(θ) > Ĵn(θ̂)− ε

}
.

Proposition 6.3. Consider the sequence (θk) generated by Algorithm 6.1. Assume
that the distribution ν ∈ M(Θ) is such that for any (measurable) set A ⊂ Θ, the
probability assigned to it is strictly positive, i.e., ν(A) > 0. Then, for any ε > 0,

lim
k→∞

P {θk ∈Mε} = 1.

Proof. By the k-th iteration of the algorithm, the probability of θk not being in Mε

is the same as the probability of none of θ′1, θ
′
2, . . . , θ

′
k being within Mε. Therefore,

P {θk /∈Mε} = P {θ′1 /∈Mε, θ
′
2 /∈Mε, . . . , θ

′
k /∈Mε}

=
k∏
i=1

P {θ′i /∈Mε}

=
k∏
i=1

(1− P {θ′i ∈Mε})

=
k∏
i=1

(1− ν(Mε)) = (1− ν(Mε))
k .

By assumption, ν(Mε) > 0, so (1− ν(Mε)) = p < 1. So, at the limit of k →∞,

P {θk /∈Mε} = lim
k→∞

pk = 0.

Therefore, as limk→∞ P {θk ∈Mε} = 1.

Despite this asymptotic guarantee, RS is not the most efficient way to search a
parameter space. The way it is presented here does not benefit from all previous
evaluation of the function when suggesting a new θ′k. That knowledge can be useful,
for example, by helping us focus on more promising regions of the search space,
instead of blindly sampling from the same distribution ν. This can be achieved by
adaptively changing the distribution νk to be a function of previous evaluations.
Next, we study one such example.
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Algorithm 6.2 Evolutionary Strategy (ES)(1 + 1)

Require: Initial point θ0 ∈ Θ; Number of rollouts n; Maximum number of iterations
K

Require: Initial standard deviation of mutation operator: σ1 > 0
Require: Adaptation parameters: c+ > 0 and c− < 0.

1: Evaluate Ĵn(πθ0)
2: for k = 1, 2, . . . , K do
3: Draw a perturbation η ∼ N (0, I)
4: θ′k ← θk + σkη . Mutation
5: Evaluate Ĵn(πθ′k)

6: if Ĵn(πθ′k) > Ĵn(πθk) then . Selection
7: θk+1 ← θ′k
8: σk+1 ← σke

c+

9: else
10: θk+1 ← θk−1

11: σk+1 ← σke
c−

12: end if
13: end for
14: return πθK

6.2.3 Evolutionary Algorithms

A large class of optimization methods are inspired by the process of evolution, in
which heritable characteristics of individuals in a population change over generations
due to processes such as natural selection. The evolution leads to the adaptation of
individuals, which means that they become better to live in their habitat.

By identifying a solution to an optimization problem as an individual in a pop-
ulation and the value of the function to be optimized for a particular solution as
the fitness of that individual, we can form an evolutionary process to optimize the
function. There are many variations in how we can do this. For example, there are
family of methods called Genetic Algorithms, Genetic Programming, Evolutionary
Strategy, etc.

Let us consider a simple algorithm called Evolutionary Strategy (ES)(1 + 1),
which is similar to RS, which is presented as Algorithm 6.2. Compared to RS, this
algorithm proposes a new θ′k by perturbing θk by a Gaussian noise around the current
θk. The magnitude of perturbation is adaptive. If the new θ′k is better than θk, the
standard deviation increases, and vice versa.

To see why this is an evolutionary algorithm, let us identify its elements with the
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usual components of an evolutionary process.
Each iteration k acts as a generation index. The parameter θk is the only indi-

vidual in the population. It acts as a parent for the next generation. The parameter
θ′k is the offspring of θk, generated through an asexual process. The addition of noise
η that perturbs θk in order to get θ′k is interpreted as the mutation, in which the
offspring’s genetic code (θ′k) is similar to its parent (θk) with the addition of some
mutation. The mutation in ES is a random vector. In this particular variant, it is
an isometric Gaussian with a standard deviation of σk.

The selection process is based on the competition between parent θk and its
offspring θ′k (so one can say that at some point we have two individuals in the popu-
lation). Only one of them, however, has the chance of forming the next generation,
and it can be either the parent or offspring.

A modification of this algorithm is called ES(1, λ) with λ > 1 being an integer
number. In that modification, the parent θk generates λ offsprings:

θ′k,j = θk + σkηj, j = 1, . . . , λ.

The competition would only be between the offsprings {θ′k,j}λj=1, and not with the
parent. Only one of the λ offsprings gets to the next generation. The ES(1+λ) would
be similar with the difference that the parent is also in the selection process, and if it
is better than all its offsprings, it can form the next generation. More generally, we
have ES(µ, λ) and ES(µ + λ) variants of ES, in which the population size is µ ∈ N
and there is a competition between either λ offsprings (ES(µ, λ)) or λ+ µ offsprings
and parents to form the next generation of µ individuals. There are various ways to
decide how one should pick the best µ out of them.

ES does not have any sexual reproduction. This means that each offspring is
not reproduced based on two (or more) parents, but is the result of a mutation of
the genetic code of a single one. There are algorithms that have a recombination
procedure that mimics the sexual reproduction, in which two parents (think of θk,i
and θk,j from the same population) contribute to generation of an offspring. One
such class of an algorithms is called Genetic Algorithms (GA). An example of such
a recombination would be to select two parents θk,i and θk,j, and reproduce the l-th
offspring by

θ′k+1,l ← alθk,i + (1− al)θk,j + ηl,

with al ∈ (0, 1), possibly selected randomly. This is a convex combination of the
parents, perturbed using a noise ηl.

Evolutionary algorithms can be quite complicated algorithms. Their performance
is often evaluated only empirically. Analyzing them theoretically can be quite com-



136 CHAPTER 6. POLICY SEARCH METHODS

plicated, and the current available results are limited to simple algorithms, such as
ES(1 + 1), which may not be the best performing ones in practice.

Studying evolutionary algorithms to solve RL problems is a niche area in the
RL community, although with a growing interest in recent years. Sometimes they
are not considered as a part of the RL research proper. Despite that, I briefly
mentioned them because I consider it useful for an RL researcher to be familiar with
the basic ideas in the evolutionary algorithms. Both evolution and learning have
been crucial adaptation mechanisms to get to the point where we have smart enough
species. Building AI agents with comparable capabilities to animals may require
borrowing ideas from both learning and evolution, each performing at different time
scale (within a life span of the agent vs. across generations of the agents).

6.3 First-Order Methods and the Policy

Gradient

The availability of the gradient of Jρ(πθ) w.r.t. θ allows us to design first-order
optimization methods that are potentially more efficient in finding an optimum of
the performance compared to zero-order methods. It is not obvious, however, that
the gradient computation is easy to achieve as the performance Jρ(πθ) depends on
V πθ , which is not a simple function of πθ. The value function is a complicated
function of the policy, reward distribution R and the transition dynamics P .

6.3.1 Finite Difference Approximation of the Policy
Gradient

One may resort to a Finite Difference (FD) approximation of the policy gradient,
which can be computed using the value of the performance objective itself.

Recall that given a function f : R→ R, the FD approximation of the derivative
f ′(x) = df

dx
(x) is

f ′FD(x) =
f(x+ ∆x)− f(x)

∆x
, (6.12)

where ∆x is a small number. This is called the forward difference approximation.
This is reasonable procedure. To see why, note that by the Taylor’s theorem, assum-
ing twice differentiability, we have

f(x+ ∆x) = f(x) + f ′(x)∆x+ f ′′(z)|x<z<x+∆x
(∆x)2

2!
.
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Therefore,

f ′(x) =
f(x+ ∆x)− f(x)

∆x
− f ′′(z)|x<z<x+∆x

(∆x)2

2!
.

Therefore, the error between the FD approximation (6.12) and f ′(x) is∣∣∣∣f ′′(z)
∣∣∣
x<z<x+∆x

(∆x)2

2!

∣∣∣∣ ,
that is, O((∆x)2).

More accurate result can be obtained using the central difference approximation:

f ′FD(x) =
f(x+ ∆x)− f(x−∆x)

2∆x
.

Exercise 6.1. Show that the error of the central difference approximation is O((∆x)3).

To compute the gradient of Jρ(πθ) w.r.t. θ ∈ Rp, we need to compute 2p evalua-
tions of Jρ:

∇θJρ(πθ) ≈ ∇(FD)
θ Jρ(πθ) =



Jρ(θ+εe1)−Jρ(θ−εe1)

2ε
...

Jρ(θ+εei)−Jρ(θ−εei)
2ε
...

Jρ(θ+εep)−Jρ(θ−εep)

2ε

 ,

where ei is a unit vector along dimension i of Rp.
As we have seen before, we cannot directly compute Jρ(πθ). We can only compute

Ĵn(πθ). So we need to replace each Jρ above with their corresponding Ĵn. This
requires 2pn rollouts in total.

Given the approximated gradient, which has error caused by both the FD ap-
proximation and using Ĵn instead of Jρ, we may use the gradient ascent to move
towards higher value of Jρ(πθ):

θk+1 ← θk + αk∇(FD)
θ Ĵn(πθk). (6.13)

Even though this is a feasible approach, as we see next, we can compute the gradient
more elegantly.
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6.3.2 Policy Gradient for the Immediate Reward Problem

Suppose that we want to find a policy πθ : X →M(A) with θ ∈ Rp that maximizes
the performance for the immediate reward problem (see Sections 1.3 and 4.2). Recall
that the interaction protocol is

• At episode t, Xt ∼ ρ ∼M(X )

• The agent chooses action At ∼ πθ(·|Xt)

• The agent receives reward Rt ∼ R(·|Xt, At).

• The agent starts the new (independent) episode t+ 1.

This is an RL setting as ρ and R are not directly available to the agent, but only
through samples.

The performance measure is

Jρ(πθ) =

∫
V πθ(x)dρ(x) =

∫
rπθ(x)dρ(x) =

∫
r(x, a)πθ(a|x)dρ(x)da,

as the value function V πθ for the immediate reward problem is the same as rπθ . Here
we consider the action space to be continuous and we assume that πθ(·|x) provides
a density over the state space. If we had a discrete action space, we would instead
have ∫

X
dρ(x)

∑
a∈A

r(x, a)πθ(a|x).

We may switch back and forth between continuous and discrete action spaces, if one
of them provides better intuition in a specific context.

Let us compute the gradient of Jρ(πθ) w.r.t. θ:

∇θJρ(πθ) =

∫
r(x, a)∇θπθ(a|x)dρ(x)da =

∫
dρ(x)

∫
r(x, a)∇θπθ(a|x)da

= EX∼ρ
[∫

r(X, a)∇θπθ(a|X)da

]
. (6.14)

For discrete action spaces, the inner integral should be replaced
∑

a∈A r(x, a)∇θπθ(a|x).
We call ∇θJρ(πθ) the Policy Gradient (PG).

If we can compute PG, we can update the policy parameters, for example, using
a gradient ascent method:

θk+1 ← θk + αk∇θJρ(πθk), (6.15)
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similar to what we have done using the FD approximation (6.13).
How can we compute this gradient? We build this gradually in several steps. At

each step, we relax some assumptions until we get to a procedure that can use the
data available by the interaction protocol above.

If we know ρ and r, we have all the necessary information for computing the
gradient. For each x ∈ X , we compute the summation (or integral) over all a ∈ A
of r(x, a)∇θπθ(a|x). And then, we weigh that term proportional to ρ(x) and take
average over all x.4 But this is not the RL setting described as the interaction
protocol at the beginning of the section, as we do not know ρ or r, but only have
sampled data from them.

If we assume that r is known, but ρ can only be sampled, we can approximately
solve this problem by sampling Xi ∼ ρ (i = 1, . . . , n) and computing

1

n

n∑
i=1

(∑
a∈A

r(Xi, a)∇θπθ(a|Xi)

)
. (6.16)

or 1
n

∑n
i=1(
∫
r(Xi, a)∇θπθ(a|Xi)da) (continuous). As Xi ∼ ρ, this is an unbiased

estimate of

∇θJρ(πθ) = EX∼ρ

[∑
a∈A

r(X, a)∇θπθ(a|X)

]

or EX∼ρ
[∫
r(x, a)∇θπθ(a|x)da

]
(continuous).

This is still not feasible if r is unknown in our interaction protocol, which specifies
that when the agent is initialized at state x, it has to choose its action according to
A ∼ πθ(·|x).

The term
∑

a∈A r(x, a)∇θπθ(a|x) (or
∫
r(x, a)∇θπθ(a|x)da for continuous action

space) can be interpreted as the expectation of r(x,A)∇θπθ(A|x) when A is coming
from a uniform distribution with q(a) = 1

|A| (for a ∈ A) as∑
a∈A

r(x, a)∇θπθ(a|x) = |A|
∑
a∈A

q(a)r(x, a)∇θπθ(a|x). (6.17)

For the continuous case, we have∫
r(x, a)∇θπθ(a|x) = Vol(A)

∫
q(a)r(x, a)∇θπθ(a|x)da, (6.18)

4We are ignoring the computational challenge of doing this procedure if X or A are large (e.g.,
continuous) spaces. The emphasis is on what can be computed given the available information.
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with q(a) = 1
Vol(A)

.
If the actions were coming from a uniform distribution, we could easily form an

empirical estimate of these terms. But the actions in the interaction protocol comes
from distribution πθ(·|x), which in general is different distribution than a uniform
one. Therefore, we have some form of off-policy sampling scenario in the distribution
of actions.

There are a few ways to handle this though. One way is to estimate r(x, a) by
r̂(x, a) for all (x, a) ∈ X × A, and use the estimate instead in the computation of
the gradient. If |X × A| < ∞, we can form an estimate of r as follows. Given
Dn = (Xt, At, Rt)

n
t=1 with Xt ∼ ρ, At ∼ πθ(·|Xt), and Rt ∼ R(·|Xt, At), we define

r̂n(x, a) =

∑n
i=1RiI{(Xi, Ai) = (x, a)}∑n
i=1 I{(Xi, Ai) = (x, a)} .

For (x, a) with ρ(x) > 0 and πθ(a|x) > 0, there is a non-zero probability of observing
samples. In that case, as n→∞, r̂n → r. We can then use

1

n

n∑
i=1

(∑
a∈A

r̂n(Xi, a)∇θπθ(a|Xi)

)
, (6.19)

as an estimate of the policy gradient.
This approach can be considered as a model-based approach, in which the model

is estimated and used for the computation of some quantities, e.g., PG in this case.
Another approach, which turns out to be quite useful, is based on the observation

that for a function f : R→ R, we have

d log f(x)

dx
=

df
dx

(x)

f(x)
,

or more generally, for a function f : Rp → R,

∇x log f(x) =
∇xf(x)

f(x)
.

We use this identity to rewrite the term
∫
r(x, a)∇θπθ(a|x)da in (6.14) to∫

r(x, a)∇θπθ(a|x)da =

∫
r(x, a)πθ(a|x)∇θ log πθ(a|x)da

= EA∼πθ(·|x) [r(x,A)∇θ log πθ(A|x)] .
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Here the desired quantity can be written as the expectation of r(x,A)∇θ log πθ(A|x)
when A ∼ πθ(·|x). Notice that the sampling distribution is the same as the one agent
uses to choose its actions (i.e., πθ), as opposed to the uniform distribution in the pre-
vious formulation (6.17), (6.18), in which the underlying distribution was uniform.
Of course, the integrands differ. We are in the on-policy sampling scenario over the
choice of actions.

Therefore, if X ∼ ρ and A ∼ πθ(·|X), the random variable

r(X,A)∇θ log πθ(A|X) (6.20)

is an unbiased estimate of ∇θJρ(πθ), i.e.,

∇θJρ(πθ) = E [r(X,A)∇θ log πθ(A|X)]

= EX∼ρ
[
EA∼πθ(·|X) [r(X,A)∇θ log πθ(A|X) | X]

]
. (6.21)

This unbiasedness means that we can estimate the gradient of the performance
w.r.t. the parameters of the policy using data available through the interaction of
the agent with its environment. We may use this estimate in (6.15) to update the
policy parameters. The difference here, though, is that we are using an unbiased but
noisy estimate of the gradient. This makes it a stochastic gradient ascent.5

For conciseness of our further discussions, let us denote

g(x; θ) = EA∼πθ(·|x) [r(x,A)∇θ log πθ(A|x)] . (6.22)

The function g : X × Θ → Rp is the gradient of rπθ w.r.t. θ at state x, and is a
p-dimensional vector.

Despite its unbiasedness, the p-dimensional r.v. (6.20), has variance due to two
sources of randomness.

• The variance of estimating g(x; θ) = EA∼πθ(·|X) [r(X,A)∇θ log πθ(A|X) | X = x]
with a single sample r(X,A)∇θ log πθ(A|X).

• The variance of estimating EX∼ρ [g(X; θ)] using a single sample.

One can show that the variance along the i-th dimension of this r.v. is

Var

[
r(X,A)

∂ log πθ(A|X)

∂θi

]
= EX∼ρ

[
Var

[
r(X,A)

∂ log πθ(A|X)

∂θi
| X
]]

+ VarX∼ρ [gi(X; θ)] .

(6.23)

5We may refer to this procedure by SGD, instead of SGA, even though we are moving in the
ascent direction.
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If we knew r(x, a) and we could compute

g(x; θ) = EA∼πθ(·|x) [r(X,A)∇θ log πθ(A|X) | X = x] =

∫
r(x, a)∇θπθ(a|x)da,

we wouldn’t have the first source of variance, but we still would have the second one.
In that case, the variance would be

VarX∼ρ [gi(X; θ)]

These two sources of variance make our estimate of the gradient inaccurate. There
are ways to reduce them, as we shall discuss in the rest of this section.

Exercise 6.2. Prove the identity (6.23).

6.3.2.1 Variance Reduction – Randomness of States

Suppose we can compute g(x; θ) exactly for any given x ∈ X . The second source
of variance can be reduced if instead of a single sample g(X1; θ), we use multiple
independent samples X1, . . . , Xn, all distributed according to ρ, to estimate the PG:

∇θJρ(πθ) ≈
1

n

n∑
i=1

g(Xi; θ)

=
1

n

n∑
i=1

EA∼πθ(·|Xi) [r(Xi, A)∇θ log πθ(A|Xi)] .

The variance of this estimator, along dimension i, is

1

n
VarX∼ρ [gi(X; θ)] .

As n→∞, the variance goes to zero. This leads to more accurate estimate of the PG,
hence more accurate update of the policy. Nonetheless, if we have a budget of total
N interactions with the environment, and use n interactions to estimate the gradient,
we can only perform N

n
policy updates using SGD (we use t = 1, . . . , n to compute

an estimate of ∇θJρ(πθ1); update the policy to get θ2; we use t = n + 1, . . . , 2n to
compute an estimate of ∇θJρ(πθ2), and so on).
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6.3.2.2 Variance Reduction – Randomness of Actions

Let us consider the variance of estimating g(x; θ) (6.22), the contribution to PG by
state x, using a single sample r(x,A)∇θ log πθ(A|x) with A ∼ πθ(·|x). One way to
reduce this variance is based on the perhaps surprising observation that adding a
state-dependent function b : X → R to r(x, a) does not change the expectation. For
each dimension i, we have

E
[
∂ log πθ(A|x)

∂θi
b(x) | x

]
=

∫
πθ(a|x)

∂ log πθ(a|x)

∂θi
b(x)da

=

∫
∂πθ(a|x)

∂θi
b(x)da

= b(x)

∫
∂πθ(a|x)

∂θi
da

= b(x)
∂

∂θi

∫
πθ(a|x)da︸ ︷︷ ︸

=1

= 0,

where in the last equation we benefitted from the fact that the integral of a distribu-
tion is always constant (equal to one), so its derivative w.r.t. θi is zero. This shows
that

E
[
∂ log πθ(A|x)

∂θi
r(x,A) | x

]
= E

[
∂ log πθ(A|x)

∂θi
(r(x,A) + b(x)) | x

]
. (6.24)

For each dimension i of the PG, we can use a different state-dependent function.
Therefore, we can write that for any state-dependent function b : X → Rp, the
PG (6.21) is

∇θJρ(πθ) = E [r(X,A)∇θ log πθ(A|X)] = E [(r(X,A)1 + b(X))�∇θ log πθ(A|X)] ,

where 1 is a p-dimensional vector with all components equal to 1, and� is a pointwise
(Hadamard) product of two vectors, i.e., for u, v ∈ Rp, [u� v]i = uivi. Of course, if
we simply choose a scalar function b, which is often the case in practice, we have

∇θJρ(πθ) = E [(r(X,A) + b(X))∇θ log πθ(A|X)] .

The function b is called the baseline. It can be used in order to minimize the
variation of p-dimensional random vector. We may use the variance for this purpose.
As the variance is defined for a scalar r.v., a not a multivariate r.v., we use the
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summation of the variance of each dimension as our criteria. That is, we would like
to find a function b : X → Rp such that for all x ∈ X ,

min
b

p∑
i=1

Var

[
(r(x,A) + bi(x))

∂ log πθ(A|x)

∂θi
| x
]

=

Tr Cov ((r(X,A)1 + b(x))�∇θ log πθ(A|x) | x)

We have

p∑
i=1

Var

[
(r(x,A) + bi(x))

∂ log πθ(A|x)

∂θi
| x
]

=

p∑
i=1

E

[
(r(x,A) + bi(x))2

(
∂ log πθ(A|x)

∂θi

)2

| x
]
− E

[
(r(x,A) + bi(x))

∂ log πθ(A|x)

∂θi
| x
]2

.

We take derivative w.r.t. b(x) and make it equal to zero. Note that the second
term (expectation of PG squared) is independent of the choice of b(x), as shown
in (6.24), so its derivate w.r.t. b(x) is zero. For the first term, we have

p∑
i=1

∂

∂b(x)
E

[(
r2(x,A) + b2

i (x) + 2r(x,A)bi(x)
)(∂ log πθ(A|x)

∂θi

)2

| x
]

=

2

p∑
i=1

E

[
(bi(x) + r(x,A))

(
∂ log πθ(A|x)

∂θi

)2

| x
]

= 0.

As bi(x) is not a function of a, we can take it outside the expectation. The result is
that the optimal baseline, in terms of the variance criteria, is

bi(x) =

−E
[
r(x,A)

(
∂ log πθ(A|x)

∂θi

)2

| x
]

E
[(

∂ log πθ(A|x)
∂θi

)2

| x
] . (6.25)

We could choose a single scalar function b : X → R instead. In that case, the
solution would be

b(x) =
−E

[
r(x,A) ‖∇θ log πθ(A|x)‖2

2 | x
]

E
[
‖∇θ log πθ(A|x)‖2

2 | x
] .
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Exercise 6.3. What is the variance of

Var

[
(r(x,A) + bi(x))

∂ log πθ(A|x)

∂θi
| x
]

with the optimal choice of bi(x) (6.25)?

6.3.3 Policy Gradient for Continuing Tasks

We derive the PG for continuing tasks. The difference with the immediate reward
case is that the performance Jρ(πθ) depends on the dynamics Pπθ too. As we change
θ, the dynamics Pπθ changes as well. This seems to complicate the gradient compu-
tation. It turns out that despite this challenge, the PG can be written in an elegant,
and relatively easy to compute, form.

In order to present our results more compactly, we introduce some notations.
Recall from Definition 1.3 in Section 1.2 that Pπ(·|x; k) = Pπ(·|x)k is the probability
distribution of following policy π for k ≥ 0 steps. We introduce discounted future-
state distribution of starting from x ∈ X and following π as

ρπγ(·|x) = ργ(·|x;Pπ) , (1− γ)
∑
k≥0

γkPπ(·|x; k). (6.26)

It is easy to verify that ρπγ(·|x) is a valid probability distribution, e.g., ρπγ(X|x) = 1.
The relevant of this distribution becomes more clear if we note that

V π(x) = E

[∑
t≥0

γtRt|X0 = x

]
=
∑
t≥0

γtE [Rt|X0 = x] =
∑
t≥0

γt
∫
Pπ(dx′|x; t)r(x′)

=
1

1− γ

∫
ρπγ(dx′|x)r(x′) =

1

1− γEX′∼ρπγ (·|x) [r(X ′)] .

That is, the value function at a state x is the expected reward when X ′ is distributed
according to ρπγ(·|x).

One interpretation of this distribution is that the agent starts from state x and
at each time step, it decides to follow π with probability γ or terminates the episode
with probability 1− γ.

Based on this distribution, we can define discounted future-state distribution of
starting from ρ and following π as

ρπγ(·) = ργ(·|Pπ) ,
∫
ργ(·|x;Pπ)dρ(x).



146 CHAPTER 6. POLICY SEARCH METHODS

The performance measure J(πθ) (6.3) is then

J(πθ) = EX∼ρ [V πθ(X)] =
1

1− γEX∼ρπγ [r(X)] .

Theorem 6.4 (Policy Gradient Theorem – Sutton et al. 2000). Assume that πθ is
differentiable w.r.t. θ ∈ Θ. We have

∇θJρ(πθ) =
∑
k≥0

γk
∫

dρ(x)Pπθ(dx′|x; k)

∫
∇θπθ(a

′|x′)Qπθ(x′, a′)da′ (6.27)

=
1

1− γ

∫
ρπθγ (dx)

∫
πθ(a|x)∇θπθ(a|x)Qπθ(x, a)da (6.28)

=
1

1− γE [∇θ log πθ(A|X)Qπθ(X,A)] , with X ∼ ρπθγ , A ∼ πθ(·|X).

(6.29)

Proof. We write the value function at state x ∈ X as the expected value of the
action-value function, i.e., V πθ(x) =

∫
πθ(a|x)Qπθ(x, a)da. We take its derivative

w.r.t. θ and use the product rule to get

∇θV
πθ(x) =

∫
[∇θπθ(a|x)Qπθ(x, a) + πθ(a|x)∇θQ

πθ(x, a)] da. (6.30)

As Qπθ(x, a) = r(x, a) + γ
∫
P(dx′|x, a)V πθ(x′),

∇θQ
πθ(x, a) = γ

∫
P(dx′|x, a)∇θV

πθ(x′).

This alongside with (6.30) gives us the recursive Bellman-like equation for the gra-
dient of V πθ(x):

∇θV
πθ(x) =

∫
∇θπθ(a|x)Qπθ(x, a)da+ γ

∫
Pπθ(dx′|x)∇θV

πθ(x′). (6.31)

Expanding ∇θV
πθ(x′) likewise, we get that

∇θV
πθ(x) =

∫
∇θπθ(a|x)Qπθ(x, a)da+

γ

∫
Pπθ(dx′|x)

[
∇θπθ(a

′|x′)Qπθ(x′, a′)da′ + γ

∫
Pπθ(dx′′|x′)∇θV

πθ(x′′)

]
.

Following this pattern recursively, we get that
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∇θV
πθ(x) =

∑
k≥0

γk
∫
Pπθ(dx′|x; k)

∫
∇θπθ(a

′|x′)Qπθ(x′, a′)da′

=
1

1− γ

∫
ρπθγ (dx′|x)

∫
∇θπθ(a

′|x′)Qπθ(x′, a′)da′.

Also since ∇θπθ(a
′|x′) = πθ(a

′|x′)∇θ log πθ(a
′|x′), we can write the gradient as

∇θV
πθ(x) =

1

1− γ

∫
ρπθγ (dx′|x)

∫
πθ(a

′|x′)∇θ log πθ(a
′|x′)Qπθ(x′, a′)da′

=
1

1− γ

∫
ρπθγ (dx′|x)EA′∼πθ(·|X′) [∇θ log πθ(A

′|X ′)Qπθ(X ′, A′)] .

As Jρ(πθ) =
∫
V πθ(x)dρ(x), taking the average of x w.r.t. ρ, we get that

∇θJρ(πθ) =
1

1− γ

∫
ρπθγ (dx)

∫
πθ(a|x)∇θπθ(a|x)Qπθ(x, a)da

=
1

1− γE X∼ρπθγ
A∼πθ(·|X)

[∇θ log πθ(A|X)Qπθ(X,A)] ,

which is the desired result.

This theorem provides an elegant formula for the PG. It relates the PG to the
discounted future-state distribution ρπθγ , the action-value function Qπθ(x, a), and the
gradient of πθ (6.28).

To compute the PG in the RL setting, we have to estimate it using samples. The
formula (6.29) shows that if we get

• a state X sampled from ρπθγ ,

• an action A sampled from πθ(·|X), and

• know action-value Qπθ(X,A),

the random variables
∇θ log πθ(A|X)Qπθ(X,A)

is an unbiased estimate of the PG (cf. (6.20)). We can then use it in an SGD scheme
to improve the policy.

Sampling from ρπθγ is relatively straightforward in the on-policy sampling scenario
when the agent follows πθ. The formula (6.27) perhaps makes it more clear how it
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should be generated: The agent starts an episode from X0 ∼ ρ and follows πθ. We
get a sequence of states X0, X1, . . . . These would be samples from

∫
dρ(x)Pπθ(·|x; k)

for k = 0, 1, . . . . The distribution ρπθγ , however, has a γk factor for the k-th time
step, see (6.26). Its effect is that the contribution to the gradient from Xk, which is

E [∇θ log πθ(A|X)Qπθ(X,A)] =

∫
πθ(a|x)∇θπθ(a|x)Qπθ(x, a)da,

should be weighted by γk. Another way to directly sample from ρπθγ is to follow π,
but at each step terminate the episode with probability 1− γ.6

An action A sampled from πθ(·|X) is automatically generated when the agent
follows policy πθ (on-policy).

The remaining issue is the computation of Qπθ(X,A) for X ∼ ρπθγ and A ∼
πθ(·|X) using data. This is essentially a PE problem, and we may use various action-
value function estimators that we have developed so far.

A very simple approach is based on the MC estimate Qπθ(X,A). This would lead
to what is known as the REINFORCE algorithm by Williams [1992].7 In the on-
policy setting when the agent follows πθ, it generates the sequenceX0, A0, R0, X1, A1, R1, . . .
with At ∼ πθ(·|Xt). The return (1.13)

Gπ
t =

∑
k≥t

γk−tRk

provides an unbiased estimate of Qπθ(Xt, At). So we may replace the action-value
function at that state-action with this return from time t onward.

The return, however, is a high variance estimate of the action-value function. One
approach to reduce the variance of this MC estimate is to use a baseline. Another
approach is to use an action-value function estimator instead. For instance, we may
use the TD method (and its various variants), LSTD, and Fitted Value Iteration (for
PE, and not for Control – so the underlying Bellman operator would be T πθ instead
of T ∗) to estimate Q̂πθ and use it instead of Qπθ . Such a method is called an actor-
critic method, where the actor refers to the policy (and often PG method to improve
it) and the critic refers to the value function estimator used to criticize the policy

(actor). The use of a critic, however, may induce a bias as E
[
Q̂πθ(X,A)|X,A

]
may

be different from Qπθ(X,A), especially if we use a TD method (which introduces bias
because of bootstrapping) or a function approximator (for large state-action spaces).
Such a method would explicitly represent both policy and value function.

6This is usually ignores in practice.
7REINFORCE stands for REward Increment × Nonnegative Factor × Offset Reinforcement ×

Characteristic Eligibility.



Appendix A

Mathematical Background

A.1 Probability Space

For a space Ω, with σ-algebra σΩ, we define M(Ω) as the set of all probability
measures over σΩ. Further, we let B(Ω) denote the space of bounded measurable
functions w.r.t. (with respect to) σΩ and we denote B(Ω, L) as the space of bounded
measurable functions with bound 0 < L <∞.

We write ν1 � ν2 if ν2(A) = 0 implies that ν1(A) = 0 as well. For two σ-finite
measures ν1 and ν2 on some measurable space (Ω, σΩ), ν1 is absolutely continuous
w.r.t. ν2 if there is a non-negative measurable function f : Ω→ R such that µ1(A) =∫
fdν2 for all A ∈ σΩ. It is known that ν1 is absolutely continuous w.r.t. ν2 if and

only if ν1 � ν2. We write dν1

dν2
= f and call it the Radon-Nikodym derivative of ν1

w.r.t. ν2 [Rosenthal, 2006, Chapter 12].

A.2 Norms and Function Spaces

We use F : X → R to denote a subset of measurable functions.1 The exact specifi-
cation of this space should be clear from the context. We usually denote F as the
space of value functions.

For a probability distribution ν ∈ M(X ), and a measurable function V ∈ F , we
define the Lp(ν)-norm of V with 1 ≤ p <∞ as

‖V ‖pp,ν ,
∫
X
|V (x)|pdν(x). (A.1)

1This section is quoted almost verbatim from Section 2.1 of Farahmand [2011].
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When p = 2, this is the norm induced by the inner product 〈 · , · 〉 : F ×F → R:
For any V1, V2, we have

〈V1 , V2 〉ν =

∫
X
V1(x)V2(x)dν(x). (A.2)

It is clear that ‖V ‖2
2,ν = 〈V , V 〉ν .

The L∞(X )-norm is defined as

‖V ‖∞ , sup
x∈X
|V (x)|. (A.3)

If we want to emphasize that the probability distribution is defined on the state
space X , we use νX and ‖V ‖p,νX .

We define F |A| : X ×A → R|A| as a subset of vector-valued measurable functions
with the following identification:

F |A| =
{

(Q1, . . . , Q|A|) : Qi ∈ F , i = 1, . . . , |A|
}
.

We use Qj(x) = Q(x, j) (j = 1, . . . , |A|) to refer to the jth component of Q ∈ F |A|.
We often denote F |A| as a space of action-value functions. If there is no chance
of ambiguity, we may use F : X × A → R|A| for a space of action-value functions
though.

Let z1:n denote the Z-valued sequence (z1, . . . , zn). We define the empirical mea-
sure as the measure that assigns the following probability to any (measurable) set
B ⊂ Z:

νn(B) ,
1

n

n∑
i=1

I{Zi ∈ B}.

The empirical norm of function f : Z → R is then

‖f‖pp,z1:n
= ‖f‖pp,Dn , ‖f‖p,νn =

1

n

n∑
i=1

|f(zi)|p. (A.4)

When there is no chance of confusion about Dn, we may simply use ‖f‖pp,n. Based
on this definition, one may define ‖V ‖n (with Z = X ) and ‖Q‖n (with Z = X ×A).

If Dn = Z1:n is random with Zi ∼ ν, the empirical norm is random as well. For

any fixed function f , we have E
[
‖f‖p,n

]
= ‖f‖p,ν .
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We sometimes use the shorthand notation of ν|Q|p = ‖Q‖pp,ν (similar for νX and
other probability distributions). In this book, most results are stated for p = 1 or
p = 2. The symbols ‖·‖ν and ‖·‖n refers to an L2-norm.

Finally, define the projection operator ΠF |A|,ν : B(X ×A)→ B(X ×A) as

ΠF ,νQ , argmin
Q′∈F |A|

‖Q′ −Q‖2
ν

for Q ∈ B(X × A). The definition of ΠF ,νX : B(X ) → B(X ) is similar. If the
distribution νX or ν are clear from the context, we may simply write ΠF and ΠF |A|
instead.

A.3 Contraction Mapping

The contraction mapping (or operator) is a mapping that maps points (i.e., vectors,
functions) closer to each other. As the Bellman operators for discounted tasks are
contraction mapping, it is useful to have a good understanding on what such a
mapping is, and what their properties have. Our discussion here freely borrows
from Hunter and Nachtergaele [2001].

First, let us recall the definition of a metric space. Let Z be an arbitrary non-
empty set.

Definition A.1 (Metric – Definition 1.1 of Hunter and Nachtergaele 2001). A metric
or a distance function on Z is a function d : Z×Z → R with the following properties:

• d(x, y) ≥ 0 for all x, y ∈ Z; and d(x, y) = 0 if and only if x = y.

• d(x, y) = d(y, x) for all x, y ∈ Z (symmetry).

• d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ Z (triangle inequality).

Given a metric, we can define a metric space.

Definition A.2 (Metric Space). A metric space (Z, d) is a set Z equipped with a
metric d.

Example A.1. Let Z = R and d(x, y) = |x − y|. These together define a metric
space (R, d).

Example A.2. Let Z be a discrete set and define

d(x, y) =

{
0 x = y,

1 x 6= y.
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We often work with linear vector spaces and norms in this course. Let us define
them.

Definition A.3 (Linear Space – Definition 1.7 of Hunter and Nachtergaele 2001). A
linear space Z over the scalar field R (or C) is a set of points (or vectors), on which
operations of vector additions and scalar multiplications with the following properties
are defined:

(a) The set Z is a commutative group with the operation of + of vector addition,
that is,

• x+ y = y + x.

• x+ (y + z) = (x+ y) + z

• There exists an element 0 ∈ Z such that for any x ∈ Z, we have x+ 0 = x.

• For each x ∈ Z, there exists a unique vector −x ∈ Z such that x+(−x) = 0.

(b) For all x, y ∈ Z and a, b ∈ R (or C), we have

• 1.x = x.

• (a+ b)x = ax+ bx.

• a(bx) = (ab)x.

• a(x+ y) = ax+ by.

Next we define a notion of the length or size of a vector.

Definition A.4 (Norm – Definition 1.8 of Hunter and Nachtergaele 2001). A norm
on a linear space Z is a function ‖·‖ : Z → R with the following properties:

(a) (non-negative) For all x ∈ Z, ‖x‖ ≥ 0.

(a) (homogenous) For all x ∈ Z and λ ∈ R (or C), ‖λx‖ = |λ| ‖x‖.

(a) (triangle inequality) For all x, y ∈ Z, ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

(a) (strictly positive) If for a x ∈ Z, we have that ‖x‖ = 0, it implies that x = 0.

The same way that we used a metric space given a metric, we can define a normed
linear space given a norm.

Definition A.5 (Normed Linear Space). A normed linear space (Z, ‖·‖) is a linear
space Z equipped with a norm ‖·‖.
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We can use a norm to define a distance between two points in a linear space Z,
simply by defining d(x, y) = ‖x− y‖. This gives us a metric space (Z, d).

Example A.3. Let Z = Rd (d ≥ 1). The following norms are often used:

‖x‖p = p

√√√√ d∑
i=1

|xi|p, 1 ≤ p <∞,

‖x‖∞ = max
i=1,...,d

|xi|.

Example A.4. Consider the space of continuous functions with domain [0, 1]. It is
denoted by C([0, 1]). This plays the rule of Z. We define the following norm for a
function f ∈ C([0, 1]):

‖f‖∞ = sup
x∈[0,1]

|f(x)|.

This is called the supremum or uniform norm. Given this norm, (C([0, 1]), ‖·‖∞)
would be a normed linear space.

This norm is similar to ‖x‖∞ with x ∈ Rd (previous example), but it is for the
space of continuous functions.

We often use the supremum norm of value functions. For V ∈ B(X ) and Q ∈
B(X ×A), their supremum norms are

‖V ‖∞ = sup
x∈X
|V (x)|,

‖Q‖∞ = sup
(x,a)∈X×A

|Q(x, a)|,

We are ready to define the contraction mapping formally.

Definition A.6 (Contraction Mapping – Definition 3.1 of Hunter and Nachtergaele
2001). Let (Z, d) be a metric space. A mapping L : Z → Z is a contraction mapping
(or contraction) if there exists a constant 0 ≤ a < 1 such that for all z1, z2 ∈ Z, we
have2

d(L(z1), L(z2)) ≤ ad(z1, z2).

This is visualized in Figure A.1.

2Sometimes the condition of having a < 1 is called strict contraction [Berinde, 2007], and the
condition that d(L(z1), L(z2)) < d(z1, z2) is called contractive.
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Figure A.1: Visualization of an a-contraction mapping L.

Example A.5. Let Z = R and d(z1, z2) = |z1 − z2|. Consider the mapping L : z 7→
az for a ∈ R. We have Let us see if/when this mapping is a contraction or not.

For any z1, z2 ∈ R, we have

d(L(z1), L(z2)) = |L(z1)− L(z2)| = |az1 − az2| = |a||z1 − z2| = |a|d(z1, z2).

So if |a| < 1, this is a contraction mapping.

Exercise A.1 (?). Consider the same (R, | · |) as before, but let the mapping be
L : z 7→ az + b for a, b ∈ R. What is condition on a and b for this mapping to be a
contraction.

Exercise A.2 (??). Consider the same (R, | · |) as before, and let L : z 7→ az2 + b for
a, b ∈ R. Is this a contraction mapping for some choice of a and b? If yes, specify
a and b. If not, can you consider another space Z (a subset of R) that makes this a
contraction (possibly with an appropriate choice of a and b)?

Exercise A.3 (??). Consider Z = Rd. Given a matrix A ∈ Rd×d and a vector
b ∈ Rd, define the mapping L : z 7→ Az+ b. Using the vector norm ‖·‖p (1 ≤ p ≤ ∞,
define the metric dp(z1, z2) = ‖z1 − z2‖p. Then, dp(L(z1), L(z2)) = ‖Az1 − Az2‖p.

What is the condition that L is a contraction? Note that this depends on the
choice of p.

Exercise A.4 (??). Consider (R, | · |). Let r ≥ 0 and define the mapping

L : z 7→ rz(1− z).

When is this a contraction mapping?
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Why do we care about a contraction mapping? We have two reasons in mind.
The first is that we can describe the behaviour of a dynamical system depending

on whether the mapping describing it is a contraction or not. To be concrete, let
z0 ∈ Z and consider a mapping L : z 7→ az for some a ∈ R. Define the dynamical
system

zk+1 = Lzk, k = 0, 1, . . . .

The dynamical system described by this mapping generates

z0

z1 = az0

z2 = az1 = a2z0

...

zk = azk−1 = akz0.

If |a| < 1, zk converges to zero, no matter what z0 is. If a = 1, we have zk = z0. So
depending on z0, it converges to different points. For a = −1, the sequence would
oscillate between +z0 and −z0. And if |a| > 1, the sequence diverges (unless z0 = 0).

An interesting observation is that the case of converge is the same as the case of
L being a contraction map (see Example A.5). This is not an isolated example, as
we shall see. A dynamical system defined based on a contraction mapping converges.
We call such a system stable.3

The second reason we care about contraction is that we can sometimes use it
to solve equations. We can convert an equation that we want to solve (think of
solving f(z) = 0) as the fixed point equation, as we shall see. If it happens that the
underlying mapping is contraction, we can define an algorithm based on a dynamical
system in order to solve the equation. Let us make this idea more concrete.

Definition A.7 (Fixed Point). If L : Z → Z, then a point z ∈ Z such that

Lz = z

is called a fixed point of L.

In general, a mapping may have more one, many, or no fixed point.
Given an equation f(z) = 0, we can convert it to a fixed point equation Lz = z

by defining L : z 7→ f(z) + z. Then, if Lz∗ = z∗ for a z∗, we get that f(z∗) = 0, i.e.,
the fixed point of L is the same as the solution of f(z) = 0.

3There are various notions of stability in control theory. What we consider as stable is the same
as globally exponentially stable.
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Example A.6. Suppose that we want to solve cz + b = 0 for z ∈ R and constants
c, b ∈ R. We can choose L : z 7→ (c + 1)z + b. The mapping L is a contraction if
|c+1| < 1 (or −2 < c < 0). As a numerical example, if we want to solve −0.5z+1 = 0
(which has z∗ = 2), we can write it as L : z 7→ 0.5z + 1. If we start from z0 = 0, we
get the sequence of (z0, z1, . . . ) = (1, 1.5, 1.75, 1.875, 1.9375, 1.96875, . . . ).

Of course, this is a very simple example, and we may not use such an iterative
method to solve that equation.

The next theorem formalizes what we discussed about the convergence property
of a contraction mapping. This is a simple, yet very important, result. It is known
as the contraction mapping or Banach fixed point theorem.

Theorem A.1 (Banach Fixed Point Theorem – Theorem 3.2 of Hunter and Nachter-
gaele 2001). If L : Z → Z is a contraction mapping on a complete metric space
(Z, d), then there exists a unique z∗ ∈ Z such that Lz∗ = z∗.

Furthermore, the point z∗ can be found by choosing an arbitrary z0 ∈ Z and
defining zk+1 = Lzk. We have zk → z∗.

Note that the convergence is in norm, and it means that limk→∞ d(zk, z
∗) = 0.

There are extensions of this result, for example, when L is not a contraction per
se, but is non-expansion, i.e., d(L(z1), L(z2)) ≤ d(z1, z2). With a relaxed assumption
on the contraction property, we may lose some of the properties (e.g., uniqueness of
the fixed point) or we may need extra conditions on the space, e.g., its compactness.4

A.4 Matrix Norm and Some Properties of

Inverses

Let us recall some results from linear algebra regarding the matrix norm, and the
inverse of I− A and its matrix norm. The material here is mostly from Section 2.3
of Golub and Van Loan [2013].

The vector induced p-norm of a matrix A ∈ Rd×d is defined as

‖A‖p = sup
‖x‖p=1

‖Ax‖p .

4As an example, we quote Theorem 3.1 of Berinde [2007]: Let Z be a closed bounded convex
subset of the Hilbert space H and L : Z → Z be a non-expansion mapping. Then L has at least
one fixed point. This does not, however, mean that we can find it by an iterative application of L.
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The intuition is that we find a unit vector x ∈ Rd (according to the `p-norm) that
maximizes the sizes of the mapped vector Ax ∈ Rd, measured according to the same
`p-norm. We could generalize this definition to have different dimensions of domain
and range (Rd1 and Rd2) and use different vector norms to measure the length of the
vectors before and after mapping. As we do not use them such results, we do not
present them.

We have the following identities for the matrix norms:

• ‖A‖1 = max1≤j≤d
∑d

i=1 |ai,j| (maximum of the sum over rows)

• ‖A‖∞ = max1≤i≤d
∑d

j=1 |ai,j| (maximum of the sum over columns)

• ‖A‖2 =
√
λmax(A>A) (the maximum eigenvalue of A>A).

If A is a stochastic matrix, the sum over columns (next state) is equal to one. So

‖Pπ‖∞ = 1.

The following result shows that if a matrix A has a norm that is smaller than 1,
the inverse of I−A exists, it has a Neumann expansion, and we can provide a bound
on its norm.

Lemma A.2 (Lemma 2.3.3 of Golub and Van Loan 2013). If A ∈ Rd×d and ‖A‖p <
1, then I− A is non-singular, and

(I− A)−1 =
∞∑
k=0

Ak.

We also have ∥∥(I− A)−1
∥∥
p
≤ 1

1− ‖A‖p
.

The consequence of this result for us is that we can write

(I− γPπ)−1 =
∑
k≥0

(γPπ)k,

and conclude that ∥∥(I− γPπ)−1
∥∥
∞ ≤

1

1− γ .
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A.5 Incremental Matrix Inversion

There are some formulae that allow us to incrementally update a matrix inversion
(Section 2.1.4 of Golub and Van Loan 2013).

The Sherman-Morrison-Woodbury formula states that for a matrix Ad×d and two
d× k matrices U and V , we have

(A+ UV >)−1 = A−1 − A−1U(I + V >A−1U)−1V >A−1,

assuming that A and (I + V >A−1U) are invertible. As UV > is a k × k matrix (so
of rank at most k), A + UV > can be thought of as a rank-k update of the matrix
A. The update of its inverse requires the computation of the inverse of k× k matrix
(I + V >A−1U), which can be much cheaper that directly inverting the new d × d
matrix A+ UV > when k is smaller than d.

A special case of this formula is known as the Sherman-Morrison formula. It
states that for an invertible matrix Ad×d and vectors u, v ∈ Rd, the matrix A+ uv>

is invertible if and only if 1 + v>A−1u 6= 0. And if it is invertible, we can compute it
as (

A+ uv>
)−1

= A−1 − A−1uv>A−1

1 + v>A−1u
.

Note that the denominator is a scalar.

A.6 Concentration Inequalities

Lemma A.3. (Hoeffding’s Inequality) Let X1, . . . , Xn be independent real-valued
random variables bounded by B almost surely, i.e., |Xi| < B. For any ε > 0,
we have

P

{∣∣∣∣∣ 1n
n∑
i=1

(Xi − E [Xi])

∣∣∣∣∣ > ε

}
≤ 2 exp

(
− nε

2

2B2

)
.
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