
Lecture 1: Introduction

Lecture 1: Introduction
(INF8250AE: Introduction to Reinforcement Learning)

Amir-massoud Farahmand

Polytechnique Montréal & Mila

1 / 66

Lecture 1: Introduction

Table of Contents

1 RL Problem

2 Markov Decision Process (MDP)

3 From Immediate to Long-Term Reward

4 Optimal Policy and Optimal Value Function

5 An Instance of an RL Algorithm: Q-Learning
Exploration vs. Exploitation

6 Logistics

7 References

2 / 66

Lecture 1: Introduction

RL Problem

Reinforcement Learning

Figure: An agent ...

3 / 66

Lecture 1: Introduction

RL Problem

Reinforcement Learning

Figure: ... observes the world ...

4 / 66

Lecture 1: Introduction

RL Problem

Reinforcement Learning

Figure: ... takes an action and its states changes ...

5 / 66

Lecture 1: Introduction

RL Problem

Reinforcement Learning

Figure: ... with the goal of achieving long-term rewards.

6 / 66

Lecture 1: Introduction

RL Problem

Reinforcement Learning: Examples

Robot manipulator

Perceive: cameras, sensors for joint angles, force sensors, etc.
Act: Joint position or velocity
Goal: Build a car as fast as possible

Smart HVAC (Heating, Ventilation, and Air Conditioning)
system

Perceive: thermometers, humidity sensors, CO2 meters,
infrared cameras (temperature profiles)
Act: vary temperature, humidity, and airflow rates of vents
Goal: Maintain comfortable indoor environment efficiently

7 / 66

Lecture 1: Introduction

RL Problem

Reinforcement Learning in the News

Figure: Some recent success stories!

8 / 66

Lecture 1: Introduction

RL Problem

(Potential) Applications of RL

RL
Applications

Games

Smart
Vehicles

Auto.
driving

Energy
Mgmt

Health
care

Robotics

House

Reconn.

Extra-
planet.

Adaptive
treat.

strategy

Epilepsy

Sustain.

Smart
grids

Smart
ads.

Person.
ads.

Recom.
systems

Finance

Portfolio
optimiz.

Option
trading

Smart
Cities &
Building

Adaptive
public
trans.

HVAC

Real-
time

Strategy

Atari

Go

Figure: And a lot of potential applications

9 / 66

Lecture 1: Introduction

RL Problem

This course ...

This course is about reinforcement learning (RL) and sequential
decision-making under uncertainty with an emphasis on theoretical
understanding.
We build the foundation, step by step, prove many results, and try
to gain an understanding of why many algorithms are designed the
way they are, and why they work.

10 / 66

Lecture 1: Introduction

RL Problem

Reinforcement Learning: Problem and Methods

Reinforcement Learning (RL) refers to both a type of problem and
a set of computational methods.

Problem: How to act so that some notion of long-term
performance is maximized?

Methods: What kind of computation does an agent need to
do in order to ensure that its actions lead to good (or even
optimal) long-term performance?

Remark

Historically, only a subset of all computational methods that
attempt to solve the RL problem are known as the RL methods.
For example, Q-Learning is; evolutionary computation methods are
not.

11 / 66

Lecture 1: Introduction

RL Problem

RL Problem and Agent-Environment Interaction

In RL, we often talk about an agent and its environment, and their
interaction.

12 / 66

Lecture 1: Introduction

RL Problem

RL Problem and Agent-Environment Interaction

Agent: decision maker and/or learner

robot
medical diagnosis and treatment system
air conditioning system

Environment: anything outside the agent
with which it interacts and attempts to
control.

physical world outside the robot
patient’s body
room

13 / 66

Lecture 1: Introduction

RL Problem

RL Problem and Agent-Environment Interaction

At time t = 1, 2, . . . , the interaction of the agent
and the environment is as follows:

the agent observes its state Xt in the
environment.

Examples: position of the robot, vital
information of a patient, the room
temperature, etc.

The agent picks an action At according to its
policy π, e.g., At = π(Xt) or At ∼ π(·|Xt).

The state of the agent in the environment
changes and becomes Xt+1 according to
transition probability kernel (or distribution),
i.e., Xt+1 ∼ P(·|Xt, At).

The agent also receives a reward signal Rt,
i.e., Rt ∼ R(·|Xt, At).

14 / 66

Lecture 1: Introduction

RL Problem

RL Problem and Agent-Environment Interaction

State: A variable that summarizes whatever
has happened to the agent so far.
Policy: Action selection mechanism. Usually a
mapping from states to actions. It can be
deterministic (At = π(Xt)) or stochastic
(At ∼ π(·|Xt)).
Transition probability kernel: Describes the
dynamics. For example, a set of
electromechanical equations describing how
the position of the robot (including its joints)
change when a certain command is sent to its
motor. Or how the patient’s physiology
changes after the administration of the
treatment.

15 / 66

Lecture 1: Introduction

RL Problem

RL Problem and Agent-Environment Interaction

Reward: A real number specifying the
immediate desirability of the choice of action
At at the state Xt (possibly leading to state
Xt+1) has been. Examples:

Positive if robot successfully picks up an
object, negative if it breaks the object.

Infection subsides

The room temperature becomes
comfortable.

Remark

The reward signal/function/distribution only
encodes the desirability of the action from the
immediate perspective. A good action now
may not be good in the long-term.

16 / 66

Lecture 1: Introduction

RL Problem

RL Problem and Agent-Environment Interaction

This process repeats and as a result, the agent
receives a sequence of state, actions, and
rewards:

X1, A1, R1, X2, A2, R2, · · · .

This sequence might terminate after a fixed
number of time steps (say, T), or until the
agent gets to a certain region of the state
space, or it might continue forever.

17 / 66

Lecture 1: Introduction

Markov Decision Process (MDP)

Markov Decision Process (MDP)

Let us formally define some important concepts that we require
throughout the course. Beforehand, some commonly used
notations:
Given a space Ω.

M(Ω): the space of all probability distributions defined over
the space Ω.

B(Ω): the space of all bounded functions defined over Ω

Examples: Ω = {1, 2, . . . , n},N,R,Rd, etc.
M(R): The space of distributions on the real line
B(R): The space of bounded functions on the real line

18 / 66

Lecture 1: Introduction

Markov Decision Process (MDP)

Markov Decision Process (MDP)

Definition

A discounted MDP is a 5-tuple
(X ,A,P,R, γ), where X is a
measurable state space, A is the
action space,
P : X ×A →M(X) is the
transition probability kernel with
domain X ×A,
R : X ×A →M(R) is the
immediate reward distribution,
and 0 ≤ γ < 1 is the discount
factor.

19 / 66

Lecture 1: Introduction

Markov Decision Process (MDP)

Markov Decision Process (MDP)

MDPs encode the temporal evolution of a discrete-time stochastic
process controlled by an agent.

Initial state X1 ∼ ρ with ρ ∈M(X).
Agent chooses action At ∈ A.
Agent goes to Xt+1 ∼ P(·|Xt, At) and receives reward
Rt ∼ R(·|Xt, At).

The process repeats. The trajectory is
ξ = (X1, A1, R1, X2, A2, R2, · · ·), which is random.

Remark

The reward distribution could also depend on the next-state Xt+1.
In that case, we would have a different reward kernel R′ and the
reward would be Rt ∼ R′(·|Xt, At, Xt+1). But we can absorb the
dynamics within R, i.e., R(·|x, a) =

∫
R′(·|x, a, x′)P(dx′|x, a).

20 / 66

Lecture 1: Introduction

Markov Decision Process (MDP)

Markov Decision Process (MDP)

This is a general framework.
State space:

Finite: X = {x1, x2, . . . , xn} (or X = {1, 2, . . . , n}) with
n <∞
Infinite but countable: X = {x1, x2, . . . } (or X = N)
Continuous: X ⊂ Rd

Dynamics:

Stochastic

Deterministic

21 / 66

Lecture 1: Introduction

Markov Decision Process (MDP)

Some Examples

When X = {x1, x2, . . . , xm}, the transition probability kernel
P(·|·, a) is a matrix for any a ∈ A. For example,

P(·|·, a1) =
[
0.9 0.1
0.2 0.8

]
, P(·|·, a2) =

[
0.8 0.2
0.1 0.9

]
.

a dynamical system described by xt+1 = f(xt, at) where
x ∈ Rm, a ∈ Rn, and f : Rm × Rn → Rm. For example,

f(x, a) = cx+ a, f(x, a) = ax(1− x)

Q: What is P(·|x, a)?

Remark

A deterministic dynamical system always behave exactly the same
given the same starting state and action. They can be described by
the transition function f : X ×A → X and xt+1 = f(xt, at).

22 / 66

Lecture 1: Introduction

Markov Decision Process (MDP)

Policy

Definition

A policy is a sequence π̄ = {π1, π2, . . .} such that for each t,

πt(at|X1, A1, X2, A2, . . . , Xt−1, At−1, Xt)

is a stochastic kernel on A given X ×A× · · · × X ×A× X︸ ︷︷ ︸
2t−1 elements

satisfying

πt(A|X1, A1, X2, A2, . . . , Xt−1, At−1, Xt) = 1

for every (X1, A1, X2, A2, . . . , Xt−1, At−1, Xt).

23 / 66

Lecture 1: Introduction

Markov Decision Process (MDP)

Policy

Definition

If πt is parametrized only by Xt, that is

πt(·|X1, A1, X2, A2, . . . , Xt−1, At−1, Xt) = πt(·|Xt),

π̄ is a Markov policy.
If for each t and (X1, A1, X2, A2, . . . , Xt−1, At−1, Xt), the policy
πt assigns mass one to a single point in A, π̄ is called a
deterministic (nonrandomized) policy; if it assigns a distribution
over A, it is called stochastic or randomized policy.
If π̄ is a Markov policy in the form of π̄ = (π, π, . . .), it is called a
stationary policy.

A policy π(·|x) is a stationary Markov policy. We often work with
such policies. If it is also deterministic, we denote it by π(x).

24 / 66

Lecture 1: Introduction

Markov Decision Process (MDP)

Policy-Induced Transition Kernels

An agent is “following” a Markov stationary policy π whenever At

is selected according to the policy π(·|Xt), i.e., At = π(Xt)
(deterministic) or At ∼ π(·|Xt) (stochastic).
The policy π induces two transition probability kernels
Pπ : X →M(X) and Pπ : X ×A →M(X ×A). For a
(measurable) subset A of X and a (measurable) subset B of
X ×A and a deterministic policy π, denote

(Pπ)(A|x) ≜
∫
X
P(dy|x, π(x))I{y∈A},

(Pπ)(B|x, a) ≜
∫
X
P(dy|x, a)I{(y,π(y))∈B}.

25 / 66

Lecture 1: Introduction

Markov Decision Process (MDP)

Policy-Induced Transition Kernels

When we have a countable state-action space, we sometimes use
summation instead of integrals. For example,

(Pπ)(A|x) ≜
∑
y∈X
P(y|x, π(x))I{y∈A} =

∑
y∈A
P(y|x, π(x)).

So for a particular y ∈ X , we have (Pπ)(y|x) = P(y|x, π(x)).
Also we can extend the definition of Pπ to following a policy for
m-steps (m ≥ 1) inductively. We use (Pπ)m to denote such a
transition kernel.

26 / 66

Lecture 1: Introduction

From Immediate to Long-Term Reward

From Immediate to Long-Term Reward

RL problem: How to act so that some notion of long-term
performance is maximized.
Q: What does long-term mean? How to quantify it?

27 / 66

Lecture 1: Introduction

From Immediate to Long-Term Reward

Immediate Reward Problem

At each round of interaction with its environment

An agent starts at a random state X1 ∼ ρ ∈M(X)
It chooses action A1 = π(X1) (deterministic policy), and
receives a reward of R1 ∼ R(·|X1, A1).

We call each of these rounds an episode. Here the episode only
lasts one time-step.
Q: How should this agent choose its policy in order to maximize its
“performance”?
Q: What does performance mean?

28 / 66

Lecture 1: Introduction

From Immediate to Long-Term Reward

Immediate Reward Problem

At each round of interaction with its environment

An agent starts at a random state X1 ∼ ρ ∈M(X)
It chooses action A1 = π(X1) (deterministic policy), and
receives a reward of R1 ∼ R(·|X1, A1).

We can talk about average (expected) reward that the agent
receives within one episode as the measure of performance.
Average is over repeated interactions with the environment.
If we define the performance in this way, answering the question of
how the agent should act to maximize this notion of performance
is easy.

29 / 66

Lecture 1: Introduction

From Immediate to Long-Term Reward

Immediate Reward Problem

Let us define expected reward as

r(x, a) ≜ E [R|X = x,A = a] .

In order to maximize the expected reward, the best action depends
on the state the agent initially starts with. At state x, it should
choose

a∗ ← argmax
a∈A

r(x, a).

This is the best, or optimal, action at state x.
The optimal policy π∗ : X → A:

π∗(x)← argmax
a∈A

r(x, a). (1)

Optimal policy is only a function of the agent’s state x. It does
not depend on the initial distribution ρ.

30 / 66

Lecture 1: Introduction

From Immediate to Long-Term Reward

Finite Horizon Tasks

The agent interacts with the environment for a fixed T ≥ 1
number of steps.

At each round (episode),

The agent starts at X1 ∼ ρ ∈M(X).
It chooses action A1 = π(X1) (or A1 ∼ π(·|X1) for a
stochastic policy).
The agent goes to the next-state X2 ∼ P(·|X1, A1) and
receives reward R1 ∼ R(·|X1, A1).
(this process repeats for several steps until ...)
The agent gets to the last state XT ∼ P(·|XT−1, AT−1),
chooses action AT = π(XT) (or AT ∼ π(·|XT) for a
stochastic policy), and receives RT ∼ R(·|XT , AT).

So we receive a reward sequence (R1, R2, . . . , RT).
Q: How should we evaluate the performance of the agent as a
function of the reward sequence?

31 / 66

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

Lecture 1: Introduction

From Immediate to Long-Term Reward

Finite Horizon Tasks

A common choice for performance is to compute the sum of
rewards:

Gπ ≜ R1 + . . .+RT . (2)

The r.v. Gπ is called the return of following policy π.
Here the rewards received at all time steps are treated the same.
The agent just adds them together.

32 / 66

SoloGen

Lecture 1: Introduction

From Immediate to Long-Term Reward

Finite Horizon Tasks

Another choice is to consider discounted sum of rewards. Given a
discount factor 0 ≤ γ ≤ 1, we define the return as

Gπ ≜ R1 + γR2 + . . .+ γT−1RT . (3)

Whenever γ < 1, the reward that is received earlier contributes
more to the return. Intuitively, this means that such a definition of
return values earlier rewards more.

A cookie today is better than a cookie tomorrow, and a
cookie tomorrow is better than a cookie a week later.
Financial interpretation (inflation rate).
Marshmallow test (delayed gratification).

Smaller values of γ makes the agent more myopic.

Remark

The discount factor is a part of the problem definition.

33 / 66

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

Lecture 1: Introduction

From Immediate to Long-Term Reward

From Return to Value Function

The return (3) (and (2) as a special case) is a random variable. To
define a performance measure that is not random, we compute its
expectation.

V π(x) ≜ E

[
T∑
t=1

γt−1Rt|X1 = x

]
.

This is the expected value of return if the agent starts at state x
and follows policy π. The function V π : X → R is called the value
function of π.

34 / 66

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

Lecture 1: Introduction

From Immediate to Long-Term Reward

From Return to Value Function

Let us look at the case of T = 1 a bit closer. The value function
V π at state x is

V π(x) = E [R1|X = x] .

This is similar to r(x, a) = E [R|X = x,A = a] with the difference
that r(x, a) is conditioned on both x and a, whereas V π is
conditioned on x.
In V π, the choice of action is determined by the policy π, i.e., at
state x, a = π(x) or A ∼ π(·|x).
If we define

rπ(x) ≜ E [R|X = x]

with A ∼ π(·|x), we get that rπ = V π.
For T > 1, V π captures the long-term (discounted) average of the
rewards, instead of the expected immediate reward captures by rπ.

35 / 66

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

Lecture 1: Introduction

From Immediate to Long-Term Reward

How to Get the Optimal Policy?

Let us focus on T = 1 again.
Recall from before that for the immediate reward maximization
problem, the optimal policy was

π∗(x)← argmax
a∈A

E [R|X = x,A = a] .

Getting the optimal policy from V π “seems” less straightforward.

36 / 66

SoloGen

SoloGen

Lecture 1: Introduction

From Immediate to Long-Term Reward

How to Get the Optimal Policy?

We need to search over the space of all deterministic or stochastic
policies. If we denote the space of all stochastic policies by

Π = {π : π(·|x) ∈M(A), ∀x ∈ X }

we need to find
π∗ ← argmax

π∈Π
V π.

It turns out that this problem is not too difficult when T = 1.
As the values of V π at two different states x1, x2 ∈ X do not have
any interaction with each other, we find the optimal policy at each
state separately.

37 / 66

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

Lecture 1: Introduction

From Immediate to Long-Term Reward

How to Get the Optimal Policy?

For each x ∈ X ,

V π(x) =

∫
R(dr|x, a)π(da|x) =

∫
π(da|x)r(x, a).

Find a π(·|x) that maximizes V π(x) means that

sup
π(·|x)∈M(A)

∫
π(da|x)r(x, a).

38 / 66

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

Lecture 1: Introduction

From Immediate to Long-Term Reward

How to Get the Optimal Policy?

sup
π(·|x)∈M(A)

∫
π(da|x)r(x, a).

The maximizing distribution can concentrate all its mass at the
action a∗ that maximizes r(x, a) (assuming it exists). Therefore,

π∗(a|x) = δ(a− argmax
a′∈A

r(x, a′))

(or equivalently, π∗(x) = argmaxa′∈A r(x, a′)) is an optimal policy
at state x. This is for T = 1.
For T > 1, the problem would be more complicated.

39 / 66

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

Lecture 1: Introduction

From Immediate to Long-Term Reward

Episodic Tasks

In some scenarios, there is a final time T that the episode ends (or
terminates), but it is not fixed a priori.

Chess

Finding a goal within a maze

Robot successfully picks an object

The episode terminates whenever the agent reaches a certain state
xterminal within the state space, i.e., it terminates whenever
XT = xterminal. The length of the episode T is a random variable.

40 / 66

SoloGen

SoloGen

SoloGen

Lecture 1: Introduction

From Immediate to Long-Term Reward

Episodic Tasks

The definition of the return and value functions is as before:
For 0 ≤ γ ≤ 1, we have

Gπ ≜
T∑
t=1

γt−1Rt,

and

V π(x) ≜ E [Gπ|X1 = x] .

Remark

If γ < 1, these definitions are always well-defined. If γ = 1, we
need to ensure that the termination time T is finite. Otherwise,
the summation might be divergent (just imagine that all Rt are
equal to 1).

41 / 66

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

Lecture 1: Introduction

From Immediate to Long-Term Reward

Continuing Tasks

Sometimes the interaction between the agent and its environment
does not break into episodes that terminates. It goes on
continually forever.

Life-long robot

Chemical plant that is supposed to work for a long time

An approximate model for finite-horizon problem with very
large T .

42 / 66

Lecture 1: Introduction

From Immediate to Long-Term Reward

Continuing Tasks

Consider the sequence of rewards (R1, R2, . . .) generated after the
agent starts at state X1 = x and follows policy π. Given the
discount factor 0 ≤ γ < 1, the return is

Gπ
τ ≜

∑
t≥τ

γt−τRt. (4)

43 / 66

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

Lecture 1: Introduction

From Immediate to Long-Term Reward

Continuing Tasks

Definition (Value Functions)

The (state-)value function V π and the action-value function Qπ

for a policy π are defined as follows: Let (Rt; t ≥ 1) be the
sequence of rewards when the process is started from a state X1

(or (X1, A1) for the action-value function) drawn from a positive
probability distribution over X (or X ×A) and follows the policy π
for t ≥ 1 (or t ≥ 2 for the action-value function). Then,

V π(x) ≜ E

[∞∑
t=1

γt−1Rt|X1 = x

]
,

Qπ(x, a) ≜ E

[∞∑
t=1

γt−1Rt|X1 = x,A1 = a

]
.

44 / 66

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

Lecture 1: Introduction

From Immediate to Long-Term Reward

Continuing Tasks

The value function V π evaluated at state x is the expected
discounted return of following the policy π from state x.

The action-value function Qπ evaluated at (x, a) is the
expected discounted return when the agent starts at state x,
takes action a, and then follows policy π.

Remark

If γ = 0, Qπ = E [R1|X1 = x,A1 = a]. This is the same as the
expected immediate reward r(x, a). The same way that we could
easily compute the optimal action using r(x, a) in the
finite-horizon problem with T = 1, we can use Qπ (in continual
task) in order to easily compute the optimal policy.

45 / 66

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

Lecture 1: Introduction

Optimal Policy and Optimal Value Function

Optimal Policy and Optimal Value Function

Q: What does it mean for an agent to act optimally?
Let us compare two (Markov stationary) policies π and π′:

We say that π is better than or equal to π′ (i.e., π ≥ π′) iff
V π(x) ≥ V π′

(x) for all states.
Optimal policy: If we can find a policy π∗ that satisfies
π∗ ≥ π for any π, we call it an optimal policy.
There may be more than one optimal policy, but their values
are the same.

<latexit sha1_base64="XvoABIzbADcjKGhieJUeaLCwoOg=">AAACPXicdVBLS8NAGNzUV62vVo9eFoviqSQi6LHYi8cW7APaUDabTbt0H2F3I5bQX+BVf4+/wx/gTbx6dZvmYFs68MEw8w0ME8SMauO6n05ha3tnd6+4Xzo4PDo+KVdOO1omCpM2lkyqXoA0YVSQtqGGkV6sCOIBI91g0pj73WeiNJXiyUxj4nM0EjSiGBkrtV6G5apbczPAdeLlpApyNIcV52oQSpxwIgxmSOu+58bGT5EyFDMyKw0STWKEJ2hE+pYKxIn206zpDF5aJYSRVPaEgZn6P5EirvWUB/aTIzPWq95c3OSZMZ8ta2wkFbUyxRuMlbYmuvdTKuLEEIEXZaOEQSPhfDoYUkWwYVNLELZ5iiEeI4WwsQOXBlkwbUjOkQj1zC7rre64Tjo3Nc+tea3bav0h37gIzsEFuAYeuAN18AiaoA0wIOAVvIF358P5cr6dn8VrwckzZ2AJzu8flPKv+g==</latexit>

<latexit sha1_base64="Wdb3C8OMZNxjbGCLrCvxlKaTMEs=">AAACQHicdVBLS8NAGNz4rPXV6tFLsCj1UhIR9FjsxWMF+4A2lM1m0yzdR9jdiCXkL3jV3+O/8B94E6+e3KY52JYOfDDMfAPD+DElSjvOp7WxubW9s1vaK+8fHB4dV6onXSUSiXAHCSpk34cKU8JxRxNNcT+WGDKf4p4/ac383jOWigj+pKcx9hgccxISBPVM6tZfrkaVmtNwctirxC1IDRRoj6rW5TAQKGGYa0ShUgPXibWXQqkJojgrDxOFY4gmcIwHhnLIsPLSvGxmXxglsEMhzXFt5+r/RAqZUlPmm08GdaSWvZm4ztMRyxY1OhaSGJmgNcZSWx3eeSnhcaIxR/OyYUJtLezZenZAJEaaTg2ByOQJslEEJUTabFwe5sG0JRiDPFCZWdZd3nGVdK8brtNwH29qzfti4xI4A+egDlxwC5rgAbRBByAQgVfwBt6tD+vL+rZ+5q8bVpE5BQuwfv8AOxqwvw==</latexit>

<latexit sha1_base64="FpPwJDDzSmlnUwsAtoeOOxu9sMs=">AAACWXicdVDLSsNAFJ3EV62vVpdugkVxVRIRdFnsxqWCrYWmlsn0th2cR5i5EUvIwq9xq58j/ozT2IVWPDBwOOeeO5eTpIJbDMMPz19ZXVvfqGxWt7Z3dvdq9f2u1Zlh0GFaaNNLqAXBFXSQo4BeaoDKRMB98tie+/dPYCzX6g5nKQwknSg+5oyik4a1wxjhGcs9eSIyKPLuQx6nfBgVxbDWCJthieAviRakQRa4Gda9k3ikWSZBIRPU2n4UpjjIqUHOBBTVOLOQUvZIJ9B3VFEJdpCXvxfBsVNGwVgb9xQGpfozkVNp7UwmblJSnNplby7+5+FUFr81MdGGO5mzf4yla3F8Oci5SjMExb6PHWciQB3Maw1G3ABDMXOEMpfnLGBTaihDV341LoN5W0tJ1cjOm42We/xLumfNKGxGt+eN1tWi4wo5JEfklETkgrTINbkhHcLIC3klb+Td+/Q9v+JXv0d9b5E5IL/gH3wBC1a4BA==</latexit>

<latexit sha1_base64="cQCJlwXcZX1ZzHrek4qrBIwN28o=">AAACWnicdVDLSsNAFJ3GZ+urVXe6CBbFVUmKoEvRjUsFWwVTy2R62w7OI8zciCVk49e41b8R/BgnaRda8cDA4Zx77lxOnAhuMQg+K97C4tLyymq1tra+sblVb2x3rU4Ngw7TQpv7mFoQXEEHOQq4TwxQGQu4i58uC//uGYzlWt3iJIGepCPFh5xRdFK/vh8hvGC5JxsZAJVn3ccsSni/nef9ejNoBSX8vySckSaZ4brfqBxFA81SCQqZoNY+hEGCvYwa5ExAXotSCwllT3QED44qKsH2svL73D90ysAfauOeQr9UfyYyKq2dyNhNSopjO+8V4n8ejmX+WxMjbbiTOfvHmLsWh2e9jKskRVBseuwwFT5qv+jVH3ADDMXEEcpcnjOfjamhDF37tagMZpdaSqoGtmg2nO/xL+m2W2HQCm9OmucXs45XyR45IMckJKfknFyRa9IhjLySN/JOPipfnudVvbXpqFeZZXbIL3i73wAiuHg=</latexit>

<latexit sha1_base64="kS2ePU7GIAMbttWkwh2wKWUw1Ig=">AAACe3icdVHLSiNBFK204yu+oi7dFIaBKBK6RVEQQXTjUsFEwY6hunKTFNajqbothqZ/Yb5mtjP/MR8zYKWThYl4oeDUOffcupxKUikchuG/SrDwY3FpeWW1ura+sblV295pO5NZDi1upLFPCXMghYYWCpTwlFpgKpHwmLzejPXHN7BOGP2AoxQ6ig206AvO0FPdWiNGeMdyTv4mjAQs8rhtUqSNS9p+yeNU+EtxUHRr9bAZlkW/gmgK6mRad93tykXcMzxToJFL5txzFKbYyZlFwSUU1ThzkDL+ygbw7KFmClwnL1cp6E/P9GjfWH800pL97MiZcm6kEt+pGA7dvDYmv9NwqIpZTg6MFZ4W/Bthblvsn3dyodMMQfPJsv1MUjR0nDHtCQsc5cgDxr1fcMqHzDKO/ieqcWnMb4xSTPdcUZ158n0SgI87mg/3K2gfN6OwGd2f1K+up8GvkD2yTxokImfkitySO9IinPwiv8kf8rfyP6gHh8HRpDWoTD27ZKaC0w+d8MWd</latexit>

46 / 66

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

Lecture 1: Introduction

Optimal Policy and Optimal Value Function

Optimal Policy and Optimal Value Function

If we denote Π as the space of all stationary Markov polices, this
means that

π∗ ← argmax
π∈Π

V π,

where one of the maximizers is selected in an arbitrary way.
The value function of this policy is the called the optimal
(state-)value function, and is denoted by V π∗

or simply V ∗.
We can also define the optimal policy based on Qπ, i.e.,

π∗ ← argmax
π∈Π

Qπ.

The optimal action-value function is denoted by Qπ∗
or Q∗.

47 / 66

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

Lecture 1: Introduction

Optimal Policy and Optimal Value Function

Optimal Policy and Optimal Value Function

For the immediate reward maximization problem (finite horizon
with T = 1), it is easy to find the optimal value function.
Recall that π∗(x)← argmaxa∈A r(x, a) (1), so for any x ∈ X ,

V ∗(x) = V π∗
(x) = max

a∈A
r(x, a).

It is clear that for any π : X → A,

V ∗(x) = max
a∈A

r(x, a) ≥ r(x, π(x)).

The conclusion would be the same for stochastic policies.

48 / 66

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

Lecture 1: Introduction

Optimal Policy and Optimal Value Function

Optimal Policy and Optimal Value Function

When we go to continual tasks (or even finite horizon with T > 1),
we should ask several questions:

Does any optimal policy exist? Maybe no single policy can
dominate all others for all states.
For example, it is imaginable that at best we can only hope to
find a π∗ that is better than any other policy π only on a
proper subset of X .
Is the optimal policy necessarily a stationary policy?
Isn’t it possible to have a policy π̄ = {π1, π2, . . .} that
depends on the time step and acts better than any stationary
policy π̄ = {π, π, . . .}?
More pragmatic question: How can we find an optimal policy
(if it exists)?

49 / 66

SoloGen

Lecture 1: Introduction

Optimal Policy and Optimal Value Function

Optimal Policy and Optimal Value Function

When we go to continual tasks (or even finite horizon with T > 1),
we can ask several questions:

(Planning Problem) How can we find an optimal policy (if it
exists) given the model P and R?
(RL Problem) How we can learn π∗ (or a close approximation)
without actually knowing the MDP, but only have samples
coming from interacting with the MDP?

50 / 66

SoloGen

SoloGen

SoloGen

Lecture 1: Introduction

An Instance of an RL Algorithm: Q-Learning

Q-Learning

Before diving into RL algorithms:

Need to build necessary background

Sneak peek: Q-Learning

Q-Learning

Quintessential RL algorithm, introduced by Christopher
Watkins [Watkins, 1989, Chapter 7 – Primitive Learning]

Example of Temporal Difference (TD) learning [Sutton, 1988].

51 / 66

SoloGen

Lecture 1: Introduction

An Instance of an RL Algorithm: Q-Learning

Q-Learning

Require: Step size α ∈ (0, 1]
1: Initialize Q : X ×A → R arbitrary, except that for xterminal, set

Q(xterminal, ·) = 0.
2: for each episode do
3: Initialize X1 ∼ ρ
4: for each step t of episode do
5: At ∼ π(·|Xt),
6: Take action At, observe Xt+1 and Rt

7: Update Q(Xt, At) using the following update rule

Q(Xt, At)← Q(Xt, At)+α

[
Rt + γmax

a′∈A
Q(Xt+1, a

′)−Q(Xt, At)

]
.

8: end for
9: end for

52 / 66

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

Lecture 1: Introduction

An Instance of an RL Algorithm: Q-Learning

Exploration vs. Exploitation

Exploration vs. Exploitation

Variety of policies can be selected as π.
A commonly-used one is ε-greedy policy:

At =

{
argmaxa∈AQ(Xt, a) w.p. 1− ε

uniform(A) w.p. ε

Usually the value of ε is small and may go to zero as the agent
learns more about its environment.

53 / 66

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

Lecture 1: Introduction

An Instance of an RL Algorithm: Q-Learning

Exploration vs. Exploitation

Exploration vs. Exploitation

Another choice: Boltzmann (or softmax or Gibbs) policy:

πτ (a|S;Q) =
exp(Q(S, a)/τ)∑

a′∈A exp(Q(S, a′)/τ)

When the temperature τ → 0, it selects the action with highest
value.
Both are methods to balance exploration vs. exploitation.

54 / 66

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

Lecture 1: Introduction

An Instance of an RL Algorithm: Q-Learning

Exploration vs. Exploitation

Exploration vs. Exploitation

Exploration-Exploitation tradeoff: the agent should collect as much
information about the environment as possible (exploration), while
benefitting from the knowledge that has been gathered so far in
order to obtain a lot of rewards (exploitation).
Examples:

Restaurant Selection.

Exploitation: Go to your favourite restaurant
Exploration: Try a new restaurant

Online Banner Advertisements

Exploitation: Show the most successful advertisement
Exploration: Show a different advertisement

Game Playing

Exploitation: Play the move you believe is best
Exploration: Play an experimental move

55 / 66

SoloGen

SoloGen

Lecture 1: Introduction

An Instance of an RL Algorithm: Q-Learning

Exploration vs. Exploitation

Exploration vs. Exploitation

Without exploration, the agent may never find some good
actions. Q: Can you come up with an example?

Under certain conditions, including how the learning rate α
should be selected, the Q-Learning algorithm on finite
state-action MDPs can be guaranteed to converge to the
optimal action-value function Q∗.

The ε-greedy is one of the simplest and widely used methods
for trading-off exploration and exploitation.
Exploration-exploitation tradeoff is an important topic of
research.

56 / 66

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

Lecture 1: Introduction

Logistics

Logistics

57 / 66

Lecture 1: Introduction

Logistics

This Course

Introductory course on reinforcement learning.

The goal is to help you understand the mathematical
foundations of RL.

What you need to be successful?

mathematical maturity (comfortable going through proofs)
Probability theory, linear algebra, basics of analysis, statistics,
and supervised machine learning
Programming skills (Python)
Work hard!

58 / 66

SoloGen

SoloGen

Lecture 1: Introduction

Logistics

Course Information

Course Website:
https://amfarahmand.github.io/IntroRL/

Main source of information is the course webpage. Check
regularly!

We use Foundations of Reinforcement Learning as the main
textbook. I will release chapters are we progress.

YouTube videos from the previous offering of the course is
available. There is no guarantee that they are exactly the
same as what we cover this year, but they have enough
overlap that you should be able to use them to review the
material or keep up if you have to miss a class.

We will also use Moodle for announcements & grades &
discussions.

59 / 66

https://amfarahmand.github.io/IntroRL/
https://amfarahmand.github.io/IntroRL/docs/FRL.pdf
https://www.youtube.com/playlist?list=PLCveiXxL2xNbiDq51a8iJwPRq2aO0ykrq

Lecture 1: Introduction

Logistics

Course Information

We have two sessions per week.

Mondays: Lectures
Fridays: Labs

Run by own wonderful TAs: Ali Saheb Pasand and Manoosh
Samiei
Tutorials
TA Office Hours
Occasional lectures, if we are behind the schedule
(Possibly) Guest lectures

If you require additional academic accommodations, please
contact PolyMtl’s accessibility services. (I do not know the
link or how it exactly works yet.)

I know that life can be difficult. I try to be as accommodating
as possible.

60 / 66

SoloGen

SoloGen

Lecture 1: Introduction

Logistics

In the Classroom

Please ask questions. Don’t be shy! Asking questions helps
you learn better. I try to answer as many questions as I can.

Actively answer my questions and participate in discussions.
This is important for your learning.

It is OK to use your laptop or tablet during the lectures. It
might help your learning to annotate slides as we go through
them. Please do not take a call, watch videos, etc. that
distract you and others.

Minimize talking with others in the middle of lecture, as it
would be distracting to me and others. We will have breaks so
you can discuss among yourselves.

Recording or taking pictures in class is strictly prohibited
without the consent of your instructor. Please ask before
doing!

61 / 66

Lecture 1: Introduction

Logistics

Course Evaluation

Five (5) assignments (40%)

The lowest mark is dropped.
Combination of mathematical derivations, proofs, and
programming exercises.

Research Project (30%)

Proposal (5%), class presentation (5%), and written report
(20%)

Final Exam (20%)

December 5, 1:30PM

Reading research papers (10%)

Short 1-paragraph summary and two questions on how the
method(s) can be used or extended.

Bonus (5%)

Finding typos, etc. in the textbook or slides
Active class participation, etc. 62 / 66

SoloGen

Lecture 1: Introduction

Logistics

Collaboration and Assignments

Collaboration on the Homework Assignments is allowed, under
certain conditions:

You can discuss the assignment with another student (group of
two).
You can work on the code and mathematical derivations
together.
Each of you need to be able to explain the solution. For
assignments, you should not follow the divide-and-conquer
strategy: person A solving Q1 while person B solving Q2 is not
allowed; person A and person B sitting together and solving
Q1 and then Q2 is allowed.
In your submission, you need to be very clear about the
contribution of each individual. For example, you should say
we did a pair-programming or person A solved this part while
person B solved another part. Person A came up with an
about the proof, person B filled the gaps, and person A typed
the proof.

63 / 66

SoloGen

SoloGen

Lecture 1: Introduction

Logistics

Collaboration and Assignments

You need to form a team of 3–4 members to work on your
projects (the exact number will be determined after finalizing
the number of students enrolled).

Similar to the homework assignments, you need to report the
contribution of each collaborator.
You can use the help of a machine in writing the code for your
project. You can also use it to revise your writing. But you
should not delegate writing of the report to an LLM.
Instruction about the project will be posted.

For Reading research papers, you can discuss them with
others, but you need to read each paper yourself and write
down the summary and research suggestions yourself. Do not
delegate reading them or writing a summary to a machine.

64 / 66

SoloGen

SoloGen

SoloGen

SoloGen

Lecture 1: Introduction

Logistics

Collaboration with the Machines

LLMs are here and we cannot and do not want to ignore them.

You do not want to completely rely on LLMs while you are at the
learning stage. If you let LLMs do your work, you do not learn as
effectively.

You are discouraged to use LLMs in solving homework assignments.
The coding questions are usually simple enough that completing
them using LLMs would not give you any learning opportunities.
Same for the derivations.

You should not use LLMs to do the Reading assignments by asking
it to read and summarize the paper for you. You can, however,
discuss the paper with an LLM. I want you to actually read the
paper and write your own summary and ideas.

In the Projects, you can use LLM to help you in writing the code.
But not the report, except in improving its writing, if needed.

65 / 66

SoloGen

SoloGen

SoloGen

SoloGen

Lecture 1: Introduction

References

References

Richard S. Sutton. Learning to predict by the methods of temporal
differences. Machine Learning, 3(1):9–44, 1988.

Christopher J. C. H. Watkins. Learning from Delayed Rewards.
PhD thesis, King’s College, University of Cambride, 1989.

66 / 66

	RL Problem
	Markov Decision Process (MDP)
	From Immediate to Long-Term Reward
	Optimal Policy and Optimal Value Function
	An Instance of an RL Algorithm: Q-Learning
	Exploration vs. Exploitation

	Logistics
	References
	References

