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Structural Properties of Markov Decision Processes
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Structural Properties of Markov Decision Processes

e
Goal

We study some important properties of value functions and MDPs.

m Bellman equation
m Bellman operator
m Monotonicity
m Contraction
m Focus on discounted tasks
m We show important consequences such as

m The uniqueness of the solution to the Bellman equations
m Error bounds on value error

m Fixed point of T is the optimal value function

We refer to these frequently in studying and analyzing
RL/Planning algorithms.
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Structural Properties of Markov Decision Processes

Learning Objectives

You need to

m Remember: Bellman Equation, Bellman Operator, Greedy
Policy, Banach Fixed Point theorem

m Understand: What do Bellman equation encode and why do
we use them? What do contraction and monotonicity mean?

m Apply: Contraction property
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Structural Properties of Markov Decision Processes

‘—Bellman Equations

Bellman Equations

5/85



Structural Properties of Markov Decision Processes

‘—Bellman Equations
Bellman Equations for Value Functions of a Policy 1
Return Q @ KR Q
\ I o) ’b ) 2 e -
Jy“/
Environmant G‘q‘

state
policy | reward

\‘. R X1~ P(| X, Ar)
Ao~ (X0 | A ~  XuR
e~ mCIX) ) A ©9- "R, ~ R(IX AL
';(@E—ﬁsz
action * “L' . ?
L
Agent (Planner)

Consider the sequence of rewards (R1, R, ...) generated after the

agent starts at state X; = x and follows policy 7. Given the
discount factor 0 < v < 1, the return is
G? =S Z’}/k_tRk.
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Structural Properties of Markov Decision Processes

‘—Bellman Equations
Bellman Equations for Value Functions of a Policy

Recursive Property of Return

Comparing GT and GT, |, we observe that

l GF = Ri+1GL,. < (1)

Interpretation: The return at the current time is equal to the
immediate reward plus the discounted return at the next time step.

m Return is a random variable (r.v.).

m If we repeat the experiment from the same state z, the return

would be different.
m Its distribution, however, is the same.

—

m Q: When would repeated runs lead to the same return?
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Structural Properties of Markov Decision Processes

‘—Bellman Equations

Bellman Equations for Value Functions of a Policy <

From Return to the Bellman E

Y-t
We take (conditional) expectation of G (conditioned on state z),
and expand the return as in (1):

\V(2) = E[G] | X; = a]
=E [Rt +9GE | Xe =

=E[R( +7E.|
Rl P

Neither side is random anymore!
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Structural Properties of Markov Decision Processes

Bellman Equations for Value Functions of a Policy
Expanding E [V (X:11) | Xi = 7]

What does E [V™(Xy41) | Xe= ean?
It is the expected value of V™ (X;+1) when
m the agent is at state T at time ¢
m chooses action A ~ 7(-|z)

m goes to a state Xt+1 ~ P(- @@
That is:

S E[V(Xu) |Xt—3: :Q‘ @ AV ). (3)
(Wn

For countable state—actlon spaces, we h §S\)C(x XL ’“(‘1»\/ ((X,)

_ = EVI(Xi) | Xe =a] = E Ix(;% alz)V7(a").
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Structural Properties of Markov Decision Processes

‘—Bellman Equations

Bellman Equations for Value Functions of a Policy

r
)
L

Bellman Equation for a Policy |

By (2) and (3), we get that for any x € X', we have

= Vw( _’_ ODdxaz

This is the Bellman equation for a po||cy .

Interpretation: The value of following a policy 7 starting from the
state x is the reward that the 7-following agent receives at that
state plus the discounted average (expected) value that the agent

receives at lthe\next state \/C[X ) +/j_ + XBJ 9\/(0(0 +(‘/ \7(@7)]

'L 4 c5
‘”'qw \/C([ J= -1+ K[O G\frxa-fo';\/m]

o-5
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Structural Properties of Markov Decision Processes

‘—Bellman Equations
Bellman Equations for Value Functions of a Policy

Bellman Equation for a Policy 7

Using th@notation:
Vi(z) =r"(x) + 'y/@dx/b:)‘/”(:v/). (

Or even more compactly, “[

V=T YT =

Recall that (P™)(Alz) £ [, P(dylz, a)m(dalz)Lye 4y
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Structural Properties of Markov Decision Processes

Bellman Equations for Value Functions of a Policy
Bellman Equation for a Policy 7 (Q™)

The Bellman equation for the action-value function Q™:

@ (z.0) = r(z.0) + 7 [ PEle,0) V")

—

— r(@a) +7 [ Pler.@)r(dd )@ (0, (5)
T
More compactly: = @ ( T
o = (P (L, )
with the understanding that V™ and Q™ are related as

V7(z) = fﬂ'(da|$)Q”(:c,a).

The difference with the Bellman equation for V™ is that the choice
of action at the first time step is pre-specified, instead of being
selected by policy .
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Structural Properties of Markov Decision Processes

‘—Bellman Equations
Bellman Equations for Optimal Value Functions

Optimal Policy and Value Function

*

e V=V
//\/_\
\</\/\vﬂ1

Recall that the optimal policy 7* is a policy that satisfies 7* > 7
for any (stationary Markov) policy . It satisfies
R A

@ argma@
mell

Given an optimal policy, the optimal value function would be V™" .
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Structural Properties of Markov Decision Processes
‘—Bellman Equations
Bellman Equations for Optimal Value Functions

Bellman Equations for Optimal Value Functions

Does the optimal value function V™" satisfy a recursive relation
similar to the Bellman equation for a policy 77

Short answer: Yes!
But we have to be a bit careful. Why?! We have to go through a

few steps of argument.
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Structural Properties of Markov Decision Processes

‘—Bellman Equations

Bellman Equations for Optimal Value Functions

Bellman Equations for Optimal Value Functions

— —_—

The argument goes through three claims:
There eX|sts a umque value function V* that satisfies the

followmg equatlon For any x v € 4 X, we have /

'%V :@{(xa—i-’y/de]a:aV* }

This equation is called the Bellman optimality equation for

value function
is indeed the same the optimal value function
When 7 _is restricted to be within the space of stationary
pofi
Fof discounted continuing MDPs, we can always find a
stationary policy that is optimal within the space of all
stationary and non-stationary policies. "1 : Finile .
In summary: Z“Jexists and is equal to V'™ .0 "'t V’“’t—
== Vt
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Structural Properties of Markov Decision Processes

‘—Bellman Equations
Bellman Equations for Optimal Value Functions

Bellman Equations for Optimal Value Functions (Q*)

Optimal action-value function:

@ (.0) = r(wa) + 7 [ P, mex @), (1)
a7 e =

L J
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Structural Properties of Markov Decision Processes

‘—Bellman Equations

Bellman Equations for Optimal Value Functions

Solutions of the Bellman Equations?

We have defined the Bellman equations for a fixed policy 7 and
the Bellman optimality equation. Some reasonable questions:
mls ther d solution V™ (or Q”) satisfying (4) and (5)?
m Is there onfy one solution V* (or Q* ) satisfying the Bellman
optimality equations (6) and (7)?

We shall prove that their solutions are unique. We need some tools
before doing so.
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Structural Properties of Markov Decision Processes

‘—From Optimal Value Function to Optimal Policy through Greedy Policy

Greedy Policy
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Structural Properties of Markov Decision Processes

‘—From Optimal Value Function to Optimal Policy through Greedy Policy

Optimal Policy from the Optimal Value Function

m If we know V* or Q*, we can find an optimal policy 7*.
m It is a deterministic policy.

m For any = € X, the optimal policy is "(‘,}S —

{680
argmax Q*(z,a) ’ﬁ‘” ,o«vj:‘ 7 )
acA T

— argmax {f(m', a)+7 / Pz, a)V*(g;’)} .

acA
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Structural Properties of Markov Decision Processes
‘—From Optimal Value Function to Optimal Policy through Greedy Policy

Optimal Policy from the Optimal Value Function

7 (x) = argmax {r(:c, a) + V/P(dx/bs, a)V*(x/)} .
acA
Interpretation: Suppose that the agent is at state x. To act
optimally,
m It needs to act optimality both at the current time step (Now)
and in the Future time steps.

m Suppose that we know that the agent is going to act
optimally in the Future. This means that when it get to the

next state X' ~P(-[z,a), \f‘gxf \/’X' ;
m it follows the optimal policy 7*. ) = V(K )
m The value of following the optimal policy is going to be
V*(X"). -
m (continued ...)
20/85
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Structural Properties of Markov Decision Processes

‘—From Optimal Value Function to Optimal Policy through Greedy Policy

Optimal Policy from the Optlmal V lue Function
7 (r) = argmax

4,0\‘({7"“
oo [ )

Interpretation: Suppoif that the agent is state x. To act optimally,
PK_

m Since we do not ﬁ:ow where the agent will be at the next
time step, the expected performance of acting optimally in the
Future is [ P(da’|z, a)V*(2').

m As we are dealing with discounted tasks, the performance of
the agent at the current state x is going to be

(m a +7f73 (da' |z, a)V*(2).

| To act optlmally Now, the agent should choose an action that

maximizes this value.
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Structural Properties of Markov Decision Processes

‘—From Optimal Value Function to Optimal Policy through Greedy Policy

Greedy Policy

The mapping that selects an action by choosing the maximizer of

the (action-) value function is called the greedy policy.
n Fj B(X x A), the greedy policy _
Tg X X B(X x A) = Als '13%%31L)(21\> if:;ix%j(?ll’G;A)

7 7rg(x Q) = ari;gélaxQ T, a) &\ + @

m For V € B(X), the greedy policy is
mg(z; V') = argmax {r(x, a) + fy/P(dx’\x, a)V(:I;’)} .
— aEA

m We use ’q_(V) and g @ to denote fun(;tlons from X to A.

*' mg (V) = my(Q V Al = \/ \/
m Q: What is the dlfference between greedy policy and e-greedy
policy?
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Structural Properties of Markov Decision Processes

‘—From Optimal Value Function to Optimal Policy through Greedy Policy

Greedy Policy

Intuition behind the greedy policy:
m Action selection based on the local information.
m Does not look at all of the future possibilities.

m Only one step ahead (for V') or even no-step ahead (for @) in
order to pick the action. This is myopic.

m Given V* or Q*, however, the selected action is going to be
the optimal one.

m This is because the optimal value functions encodes the
information about the future, so we do not need to explicitly
consider all possible futures.
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Structural Properties of Markov Decision Processes

‘—Bellman Operators

Bellman Operators
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Structural Properties of Markov Decision Processes

‘—Bellman Operators

Bellman Operators

m The Bellman equations can be seen as the fixed point equation
of certain operators known as the Bellman operators.

m What this means become clear soon.

m Let us review what an operator is.

m An operator (or mapping) L : Z — Z takes a member of
space Z and returns another member of Z.
mIf Z=Rand L:z+ 22 So L(5) = 25 (this is the usual
function). - -
m If Z is the space of smooth functions defined on domain R,
L: ,is the differentiation operator. So _
L(sin(x)P= cos(x).

®
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Structural Properties of Markov Decision Processes

‘—Bellman Operators

al g

T—
’((,l/ /%/VTL

Bellman Operators

Definition (Bellman Operators for policy 7)
an operators

iven a policy( )X — M(A
: B(X) — B(X) and TT ) /= B(X x A) are defined
the mappings that take V_(or @) and return new functions

defined for all z € X' (for V) or all (z,a) € X x A (for Q): '\TI
- Vg)

TV)(@) £ (@) + 7 [ Plde'o, ayr(dala)V (),

Q) Ll s [ Pl (el ),
(r(
TV =V
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Structural Properties of Markov Decision Processes

‘—Bellman Operators

Bellman Operators

(\lL“ \‘” (2]g ”Jv,\uﬁ

[Yll T)'L
If 7 is deterministic:

(TV)(x) £ +7/7’ (de'|a, w(2))V ('),
(T™Q)(z,a) = r(z,a) —i—’y/P (da'|z, a)Q(a’, m(2')).
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Structural Properties of Markov Decision Processes

‘—Bellman Operators

Bellman Operators and Bellman Equation

Recall that

= VT(x) =1r"(x) + /P(da:'|:v, a)w(dalx)V7™ ('),

——

— Q™ (z,a) =r(z,a) + 'y/P(dx’|x,a)w(da’]m’)Q’T(x', a).

—

Using the Bellman operator 7™, we can write them compactly as
T U
VT =‘T>v VA Y
Qgﬁ =] -W' "‘T:Uj \\/ L——9‘6F1:6<§§\/

This is a compact form of the Bellman equations.
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Structural Properties of Markov Decision Processes

‘—Bellman Operators

Bellman Optimality Operators

Definition (Bellman Optimality Operators)

The Bellman operators T* : B(X) — B(X) and
T* : B(X x A) = B(X x A) are defined as the mapping

(TV)(x) £ max{ (z,a) +7/7? dz'|z, a@}
Z(T*Q)(m a)—rx a +7/7D d$|a

defined for all x € X (for V') or all (z,a) € X x A (for Q).
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Structural Properties of Markov Decision Processes

‘—Bellman Operators

Bellman Optimality Operators and Bellman Optimality
Equation

Comparing the definition of the Bellman optimality operators with
the Bellman equations

ac

ax {r(az, a)+ / P(da!|z, a)V* (z)

@ (.0) = rla.a) +7 [ P2, 0) max @ (o', ),

we see that AT T
T
_rv, V= ”Vvv
’ Q" =T"Q". BT G
—_—
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Bellman Operators
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Structural Properties of Markov Decision Processes

‘—Properties of the Bellman Operators

Properties of the Bellman Operators

The Bellman operators have some important properties. The
properties that matters for us the most are

m Monotonicity
/\

m Contraction
—_—
They are used in

m basic proofs such as the existence and uniqueness of the
solution to the Bellman equations.

m (directly or indirectly) design of many RL/Planning
algorithms.
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Structural Properties of Markov Decision Processes

‘—Properties of the Bellman Operators

Monotonicity

Monotonicity

For two functions V3, V2 € B(X), we use V3 < V3 if and only if
Vi(z) < Va(x) for all x € X. o

V(z)

-

m V3 <Viand V3 < V5,
m Neither V5 < V7, nor Vi < V5.
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Structural Properties of Markov Decision Processes

‘—Properties of the Bellman Operators
M

onotonicity

Monotonicity

Lemma (Monotonicity)

Fix a policy w. If V1,V5 € B(X), and Vi < Vs, then we have

—_—
TV, <T7Vs,
_:172”*Lﬁ,5; TVs.

34/85


SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen


Structural Properties of Markov Decision Processes

‘—Properties of the Bellman Operators
Monotonicity

Monotonicity (Proof)

We only prove the first claim. Let us expand T7Vi. As
Vi(z') < Va(a') for any 2/ € X, we get that for any z € X,

TV@) = (o) +7 [ P i)

S S

<r7(@) 4y [ PR Vle) = (TV) (o)

Therefore, T™V; < T7V5.
~—
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Structural Properties of Markov Decision Processes
‘—Properties of the Bellman Operators
Review of Contraction Mapping and Its Properties

Contraction Mapping and Banach Fixed Point Theorem

Another important property of the Bellman operators is their
property.

Vhat does that mean?

Let us review some mathematical background before proving that
the Bellman operators are contraction. We quote several results
from Hunter and Nachtergaele [2001].
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Structural Properties of Markov Decision Processes

Properties of the Bellman Operators
Revi . - .

eview of Contraction Mapping and Its Properties

Metric

Definition (Metric)

A metric or a distance function on Z is a function d: Z x Z — R
with the following properties:

m d(z,y) >Ofora|lxy€Z;andd(a: y) = 0 if and only if
T =y. oL

m d(e.y) = d(y,z) for all z,y € Z (symmetry).4 =

md(z,y) <d(z,z)+d(zy) for all z,y,z € Z (triangle
inequality).

A metric space @, d) is a set Z equipped with a metric d.

Example

|

Let Z =R and d(z,y) = [z — y|. These together define a metric
space (R, d). - ’
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Structural Properties of Markov Decision Processes

Properties of the Bellman Operators

Review of Contraction Mapping and lts Properties
N tract pping t jic \ ‘I&
orm
AR\

A norm on a linear space Z is a function ||-|| : Z — R with the
following properties: -

m (non-negative) For all x € Z, ||z|| > 0.
m (homogenous) For all z z € Zand AeR, [Az|| = A ]|=]]-
m (triangle inequality) For all WEZ [lztyl < HxH + Hy||

m (strictly positive) If for a x 6 Z, we have that =0, it
implies that « = 0.

Remark

We can use a norm to define a distan een two points in a
linear space Z by defining d(z,y) = ||z — yl|. ) This gives us a
metric space (Z,d).
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Structural Properties of Markov Decision Processes
‘—Properties of the Bellman Operators
Review of Contraction Mapping and Its Properties

Norm

Let Z =R% (d > 1). The following norms are often used:

o
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Structural Properties of Markov Decision Processes

‘—Properties of the Bellman Operators

Review of Contraction Mapping and Its Properties

Norm ' 7\4\—_‘_‘/’—\”/1\
/ tlr =~

:
Considér the space of continuous functions with domain [0, 1]. It is
denoted by C([0,1]). This plays the rule of Z. We define the
following norm for a function f € C(][0,1]):

-G

This is called the supremum or uniform norm. Given this norm,
(€([0,1]), ||/l ) would be a normed linear space.
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Structural Properties of Markov Decision Processes

‘—Properties of the Bellman Operators
Review of Contraction Mapping and Its Properties

Norm (C((L) _q Y e ):07 [] CCJ; ()

et den =1 =1 5 w1

Telet) e 40
For V e B(X) and Q € B(X x A), their supremum norms are

1@l = sup  |Q(z,a)l,

(z,a)eX x A

This is simply the maximum value of the value function V' or
action-value function () over the state or state-action spaces.
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Structural Properties of Markov Decision Processes

‘—Properties of the Bellman Operators
eview of Contraction Mapping and Its Properties

R

Contraction Mapping

Definition (Contraction Mapping)
be a metric space. A mapping L: Z — Z is a

Let (2
contraction mapping (or contraction) if there exists a constant

(;’1 such that for all z1, 20 € Z, we have
A(L(z1), L(z2)) S’ad(zy

0<a
Lz
L o
&
=~ S :i
Y/
N]
i

42 /85



SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen


Structural Properties of Markov Decision Processes

‘—Properties of the Bellman Operators

Review of Contraction Mapping and Its Properties

Contraction Mapping

Example

Let Z =R and d(z1, 22) = |21 — 22|. Consider the mapping

LGoasfoa€R
For any z1, 29 € R, we have

d(L(z1), L(z2)) = {L(21) — L(22)| = |az1 — az
= |al|z1 — 22| = |ald(21, 22).

—

So if |a| < 1, this is a contraction mapping.
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Structural Properties of Markov Decision Processes
‘—Properties of the Bellman Operators
Review of Contraction Mapping and Its Properties

Why Do We Care About Contraction Mapping?

Some reasons:
m It describes the stability behaviour of a dynamical system.!
m Stability is related to the uniqueness of where the dynamical
system converges.
m The contraction property can be used to show the uniqueness
of solution of certain equations. -

m The contraction property can sometimes be used when solving
.__/_\
equations.

!There are several notions of stability used in control theory.
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Structural Properties of Markov Decision Processes
Review of Contraction Mapping and Its Properties
Why Do We Care About Contraction Mapping?

As an example of its relation to stability, let 20 € Z and consider a
mapping L i}w for some a € R. Define the dynamlcal system

The dynamical system described by this mapping generates

20

Z1 = azg (_j

Zo = az1 = a2z0

Zk = QZkp—1 — akZ().

—_— PN -—
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Structural Properties of Markov Decision Processes
‘—Properties of the Bellman Operators
Review of Contraction Mapping and Its Properties

Why Do We Care About Contraction Mapping?

Zk = akzo.

—

mf |_g_]_< 1, z_converges to zero, no matter what’_zQ_i;s.

mf a/:__l, we have z; = zg. So depending on zg, it converges
to different points.

m Fora= -1, the sequence would oscillate between +z3 and
—Z0-

m If |a| > 1, the sequence diverges (unless zp = 0).

—_—

The case of converge is the same as the case of L being a
contraction map.
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Structural Properties of Markov Decision Processes
‘—Properties of the Bellman Operators
Review of Contraction Mapping and Its Properties

Why Do We Care About Contraction Mapping?

Definition (Fixed Point)
If L:Z — Z, then a point z € Z such that V=0

is called a fixed point of L.
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Structural Properties of Markov Decision Processes

— Properties of the Bellman Operators

Review of Contraction Mapping and Its Properties

Why Do We Care,LAb Contraction Mapping?
==\ =T= //_’@
=1 7, 2= =\V_5 Z = (0)Z, 4= f—\—r 0-(—1:6

| =k
The concept of fixed pomtzr%d’tﬁe solution of an equatlon is
Zoy=Axlkal="D

closely related. ﬁ
Given an equat @ e can con\y;ert |\t to a fixed point

equation l_)_z = z by-de |n|ng ’sz— St 1= 2.5

25 - \2541=2.25
L z— f(2) + 2 26-—2‘29 | = 2\25

Then, if Lz* = 2* for a 2* Wﬂ }—0 i.e., the fixed

point of L is the same as the solution oqu( (L( O'Z‘\-)Q
_ w2k 0 L2 e~ferz=0%
(gt;zg . « (h-&:(\‘<: \ — 24<§%‘QC/

% f?
{1(325 —C—2 ::::E%? - L—Z- =z
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Structural Properties of Markov Decision Processes
‘—Properties of the Bellman Operators
Review of Contraction Mapping and Its Properties

Banach Fixed Point Theorem

Theorem (Banach/Fixed Point Theorem)

IfL:2Z2—Zis w mapping on &

metrlc space
(Z(d),) then there exists a unique z* € Z su { & =z

Furthermore the point z* can be “found by choosmg an arbltrary

zo € Z and defining zx11 = Lzy. We have z, — z*
—_— —_— —_— — -
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Structural Properties of Markov Decision Processes
Properties of the Bellman Operators
Review of Contraction Mapping and Its Properties

Simple Exercise

Suppose that we want to solve cz + b =4 for z € R and constants
c,beR.
m Choose a mapping L : R — R such that its fixed point is the
same as the solution of this equation.

m For what range of c is this mapping a contraction?

m Letc=—0.5 and b = 1. If we start from zy = 0, what is the
sequence of zy, z1, 29 that we obtain by computing
Rk+1 = sz ?
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Structural Properties of Markov Decision Processes

‘—Properties of the Bellman Operators
Contraction

Bellman Operator is a Contraction

Lemma (Contraction)
For any 7, the Bellman operator T™ is a ~y-contraction mapping.
The Bellman optimality operator T* is a ~y-contraction mapping.

They are specifically y-contraction w.r.t. the metric d defined
based on the supremum norm: d(Vl,VQ) = HV1 VQH (and
similar for Q). We have

ITV; — T%\?@‘/ 0%

1TQ1 — TQo
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Structural Properties of Markov Decision Processes

Contraction
Bellman Operator is a Contraction (Proof)

only show it for the Bellman operator
:B(X x A) = B(X x A).
Consider two action-value functions @1, @ 2 € B(X x A).

Consider the metric d(Q1, Q2) = HQ1 \@

We show the contraction w.r.t. this metric.

For any (z,a) € X x A, we have g(QGL @({i W(’/{)@@é
(T7Q1)(x,a) — (T7Q2)(z, )| = S?')(_fx,) (&E) |-B.a&)

[(x/a +’y/77 (da'|, ) (da’|o) Qu (o', a)]—

[r(%z) —i—’}'/P(da:’|:c,a)ﬂ(da'|x’)(:2i(m',a’)} ‘

:@/p(dx’yx, a)(dd’|2') (Q1(2',a") — Qa(a’, a’))‘ :
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Structural Properties of Markov Decision Processes

‘—Properties of the Bellman Operators
Contraction

Bellman Operator is a Contraction (Proof)

Let us upper bound the right-hand side (RHS).
We have an integral of the form | [ P(dz)f(z)| (or a summation
|>_; P(z) f(z)] for a countable state space). This can be upper

bounded as
0) < [ 1P @) = [ |P(a)|Fa))

,/ d@

= sup |/P

where we used [ P(dz) = 1.

7 | e

53/85


SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen


Structural Properties of Markov Decision Processes

‘—Properties of the Bellman Operators
Contraction

Bellman Operator is a Contraction (Proof)

In our case, we get that

= (T"Q)(E. a)~ (T"Q2)(x,0)| =

y ‘ / P(de|z, a)n(de’[a’) (Qu (', ) — _2(3;’,6/))‘

< l/P(dx’\x, a)m(da'|z") ‘Ql(aj’,a') — Qg(:ﬁ’,a')}
<711 - sl [ Pl af?r(d_a’w_')

e )
This inequality holds for any (z,a) € X x A, so it holds for its
supremum over X x A too, i.e.,

1(T7Q) ~ (" QN 1 )Q1 ~ ol

: . :
This shows that T™ is a ~-contraction. 54 /5
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Consequences of Monotonicity
and Contraction

55 /85



Structural Properties of Markov Decision Processes

‘— Consequences of Monotonicity and Contraction

Consequences of Monotonicity and Contraction

Bellman operators are
m Monotonic
m y-contraction ‘
= - &kM'\'LW”
Several consequences: =
m Bellman equations have uniqu€ fixed points.
m Error bounds on the difference between V' and V* when
VaT*V.
m V* is the optimal value function V™.

m An optimal policy belongs within the space of stationary
policies.
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Structural Properties of Markov Decision Processes

‘— Consequences of Monotonicity and Contraction

Uniqueness of Fixed Points

Uniqueness of Fixed Points \/‘ :"(_T‘Vl \/1 + \/L
Np= T Ve

Proposition (Uniqueness of Fixed Points)

The operators T™ and T* have unique fixed points, denoted by V™

and V*, ie,
Vr=T1"VT,
V=T
They can be-co d frem an@ B(X) by iteratively
computin nd similar for V™ using T™ instead) for

k=0,1,.. —Wetave that Vi, — V* (and similarly, Vi, — V™).

The same result is true for Q™ and Q*.

Lo —
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Structural Properties of Markov Decision Processes
‘— Consequences of Monotonicity and Contraction
Uniqueness of Fixed Points

Uniqueness of Fixed Points (Proof)

m Consider the space of bounded functions B(X’) with the metric
d based on the uniform norm, i.e., d(V1,V2) = |[Vi — V2|,
The space (B ’_) is a complete metric space.

m For any , the operator 1™ is a - contraction. Likewise, T
has the same property too (Lemma 13). -

m By the Banach fixed point theorem (Theorem 12), they have
a unique fixed point. Moreover, any sequence (V}) with
Vo € B(X) and Vg < T™Vj, (kK =0,1,...) is convergent,
which means that limy_ ||V — E!@g
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Structural Properties of Markov Decision Processes
Uniqueness of Fixed Points
g * 7 *
Value of the Greedy Policy of V* is VV

Proposition

We have @J/* = T*V* if and only if = V.
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Structural Properties of Markov Decision Processes
‘— Consequences of Monotonicity and Contraction
Uniqueness of Fixed Points

Value of the Greedy Policy of V* is V* (Proof)

Proof of T7"V* =T*V* —= V™ =V*:

Assume that T7V* = T*V*,

As V* is the solution of the Bellman optimality equation, we have
T*V* = V*. Therefore,

TV =T"V*=V*.

This shows that V* is a fixed point of 1.

The fixed point of T, however, is unique (Proposition 14) and is
equal to V™.

So V™ and V* should be the same, i.e., V™ = V*.
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Structural Properties of Markov Decision Processes
Uniqueness of Fixed Points
Value of the Greedy Policy of V* is V* (Proof)

Proof of V™ = V* = T7V* =T*V*:
We apply T™ to both sides of V* = V7™ to get

T"V* =TV,

As VT is the solution of the Bellman equation for policy m, we
have T7"V™ = V™. Therefore,

T™V* =T"V" = V"

By assumption, V™ = V*. So we have T"V* = V7™ = V*,
On the other hand, we have V* = T*V*, so

Tﬂ'v* — V* — T*V*,

which is the desired result.
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Structural Properties of Markov Decision Processes
‘— Consequences of Monotonicity and Contraction
Uniqueness of Fixed Points

Value of the Greedy Policy of V* is V'*

Discussion:

m fT7V* = T*V* for some policy 7, the value function V™ of
that policy is is the same as the fixéd | point of T, which is V*.

m We have not yet shown that the fixed point of 7™ is an
optimal value function, in the sense that it is (? \/Tr
pLd VI

Q% aii%x VT (x) (for all z € X)

over the space of all stationary policies IT (or even more
generally, over the set of all non-stationary policies)

m But it is indeed true!
Inde€d true:
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Structural Properties of Markov Decision Processes
Uniqueness of Fixed Points
g * 7 *
Value of the Greedy Policy of V* is VV

To see the connection to the greedy policy:
m Given V¥, the greedy policy selects
mg(2; V*) = argmax,c 4 {r(z,a) +v [ P(da'|z,a)V*(2)}.
(] So T (V) —maxaeA{r z,a —I—’ny da'|z,a)V*(x

')}
[ Compare with T*V™, i.e., [}_
(T*V*)(x) —maxaeA{r:L" a) + v [ P(de'|z,a)V* (' V* ()} -
n o[T”g —Tvi)

] Thls proposmon states that the value of following e (V*),
—_——
that is V”g( ), is the same as V'*.

—

m The practlcal consequence is that if we find V* and its greedy
policy my(V*), the value of following the greedy is V*.

m Practical Consequence: To find an optimal policy, we can find
V* first and then follow its greedy policy 7, (V™).
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Structural Properties of Markov Decision Processes

Error Bounds
a *
What if V = T*V?

~Q

>7
m If we find a V such thae know that V = V*

(similar for T™ and Q). o <
m What if hat can be said about the closeness of

K_to V*? = __

m Practically important, because we often can only solve the
Bellman equations approximately, because of various sources
of errors

m Computational
m (Approximation
m Statistical
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Structural Properties of Markov Decision Processes

‘— Consequences of Monotonicity and Contraction
Error Bounds

An Error Bound based on the Bellman Error

"\\ForanyVEB!X or Q€ B(X x A), we have 47

o =TV, (lo-1QID
IV =V < 19 - @Il 2

1—y g W o= gy

PRI —_—

The quantity BR(V) £ T™V —V and BR*(V) £ T*V — V are
called Bellman Residuals.
Their norms are called BeIIman Errors \\\/ \/,

VBRI VLV~ e
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Structural Properties of Markov Decision Processes

‘— Consequences of Monotonicity and Contraction
Error Bounds

An Error Bound based on the Bellman Error (Proof)

We want to upper bound ||V — V*|| .
We start from V_— V*, and add and subtract 7"V to V — V'*.
We then take the supremum norm, and use the triangle inequality

to get Lo @+ @O~
=V —V* = vET*VJrT*ﬂ—V* @A
= V=V = [V=TVATV _ V|
Z EWV TV + TV -V
™V
TV - ;r*\f/lms
\6\\\/’V “m : 66 /85
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Structural Properties of Markov Decision Processes

Error Bounds
An Error Bound based on the Bellman Error (Proof)

Let us focus on the term [|[T*V — V*|| .. Two observations:
mV=T"V*
m The Bellman optimality operator is a 7-contraction w.r.t. the
supremum norm.
Thus,
[TV =V = 1TV TV oo <[V = V7l -
7

Therefore,

V=V <IV-TV]+7I[V-V].

Re-arranging this, we get

A=V =V S|V =TVl
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Structural Properties of Markov Decision Processes

‘— Consequences of Monotonicity and Contraction

Error Bounds

An Error Bound based on the Bellman Error (for policy 7)

For any V € B(X) or Q € B(X x A), and any w € I, we have

o T __le-170)
v -7l sg_ = Q- < 19Tl
vy 1—7
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Structural Properties of Markov Decision Processes
‘— Consequences of Monotonicity and Contraction
Fixed Point of T is the Optimal Value Function

is the same as V™

The fixed point of T* is indeed the optimal value function within
. .. —
the space of stationary policies II.

We use the monotonicity of T, in addition to contraction, to
—_—

prove it.
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Structural Properties of Markov Decision Processes

‘— Consequences of Monotonicity and Contraction

Fixed Point of T is the Optimal Value Function

V* is the same as V™

Proposition
Let V* be the fixed point of T*, i.e., V* =T*V*. We have

V*(x) = sup// " (), Ve € X.
T

Recall that II is the space of stationary Markov policies.
We skip the proof! You can read it in the Foundations of
Reinforcement Learning.
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Structural Properties of Markov Decision Processes
‘— Consequences of Monotonicity and Contraction
Fixed Point of T is the Optimal Value Function

V* is the same as V™ (Proof)

Overview:
m We show that V*(z) < sup,cq V7™ (2).
m We show that sup,c V7 (z) < V*(z).
m Combined, they show that V*(2) = sup,cp V™ (2).
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Structural Properties of Markov Decision Processes
‘— Consequences of Monotonicity and Contraction
Fixed Point of T is the Optimal Value Function
*
* 3 s
V* is the same as V™ (Proof)

Proof of V*(z) < sup,en V7 (2):
From the error bound result (Proposition 17) with the choice of
V =V*, we get that for any 7 € 1I,
[V =T"V"[
1—7 ’
Let € > 0. Choose a policy 7. such that
IV* =TV < (1= ).

This is possible because we have

(T*V*)(x) = sup {r(a:, a) + 7/P(dx'|x,a)V*(m')} ,

acA
so it is sufficient to pick a 7. that solves the optimization problem
up to (1 — vy)e-accuracy of the supremum at each state x (if we
find the maximizer, then £ = 0).

(8)

V: =V <
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Structural Properties of Markov Decision Processes
‘— Consequences of Monotonicity and Contraction
Fixed Point of T is the Optimal Value Function
*
* 3 s
V* is the same as V™ (Proof)

Proof of V*(z) < sup,cn V7 (2) (Continued):
For policy 7., (8) shows that

Vv < e
This means that
Vi (z) <V™(x) +e, Vo e X.
Notice that V™ (x) < sup,cq V™ (z) (as m. € II). We take ¢ — 0
to get that for all z € X,
Vi) <lm {V"(z) + ¢} < lim {sup V™(x) + 5} = sup V"™ (x).
e—0 e=0 | rell rell
(9)

This shows that V*, the fixed point of T, is smaller or equal to

the optimal value function within the space of stationary policies.
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Structural Properties of Markov Decision Processes
‘— Consequences of Monotonicity and Contraction
Fixed Point of T is the Optimal Value Function
*
* 3 s
V* is the same as V™ (Proof)

Proof of sup,c; V™ (z) < V*(x):
Consider any 7w € II. By the definition of 7™ and T™, for any
V € B(X), we have that for any z € X,

(T™V)(z) = / (dalz) [r(x,a)—i—’y / P(dx’]w,a)V(x’)}
< sup {r(w, a) + W/P(da:']:c, a)V(:E’)}

acA
= (T*V)(x).
In particular, with the choice of V' = V*, we have

TV <T*V*.
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Structural Properties of Markov Decision Processes
Fixed Point of T* is the Optimal Value Function
V* is the same as V™ (Proof)
Proof of sup,c; V7™ (z) < V*(x) (Continued):
TV <T*V*.
As T*V* = V*, we have
T"V* < V*. (10)
We use the monotonicity of 7 (Lemma 3) to conclude that
T™(T™V*) < T"V*,
which by (10) shows that
(TT)*V* < V*.
We repeat this argument for k times to get that
(T™*v* < V™.
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Structural Properties of Markov Decision Processes
Fixed Point of T is the Optimal Value Function
* *
V* is the same as V™ (Proof)
Proof of sup,c;; V™ (z) < V*(x) (Continued):
(T™FV* < V™.

As k — oo, Proposition 14 shows that (T7)*V* converges to V7"
(the choice of V* is irrelevant). Therefore,

VT = lim (TT)FV* < V™.

k—o0

As this holds for any 7 € II, we take the supremum over 7 € II to

get

sup VT < V*. (11)
well

Inequalities (9) and (11) together show the desired result.
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Structural Properties of Markov Decision Processes

‘— Consequences of Monotonicity and Contraction
Fixed Point of T is the Optimal Value Function

Consequences of Monotonicity and Contraction

Result Monotonicity Contraction

—=Uniqueness of Fixed Points
Error Upper Bounds
Fixed point of T* is Optimal Value

/Stationary Policies are All You Need
f
T

able: The use of Monotonicity and Contraction Properties in the proof
of various results

)'\l\‘x >
}\\\\\\\
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Structural Properties of Markov Decision Processes

‘—Sequence of the Bellman Operators

Sequence of the
Bellman Operators
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Structural Properties of Markov Decision Processes

Sequence of the Bellman Operators

A New Notation: P f

Definition

Given the transition probability kernel P and a function f € B(X),
we define Pf: X x A — R as the function -

P02 [ PYle.afw). Yoo XxA

Likewise, given the transition pr ability kernel induced by a policy
m, we define P"f : X — R as fX PT(dy|x) f ( ) for all
TeX.

P™ f is the function whose value at a state z is the expected value
of function f according to the d|str|but|on 73”( |z), that ISy

pJ)(x E)—(/Nw) [J_C_(ﬁ)] \/ { \6(}) V
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Structural Properties of Markov Decision Processes

‘—Sequence of the Bellman Operators

Following a Sequence of Policies W

@
For a sequence of policies 7., = (71, ..., ), the transition
probability kernel of following them in the order of 7y, then o,
etc., is denoted by P71 or PTtm and is
P (dln) 2 [ PT @ylo)PTn (Aly),
E— X
P (Ble,a) £ [ Pldyla,a)P (Aly),
X
for deterministic policies, and similar for stochastic policies.

This is the generalization of (77”) when 7y, = (7,..., 7).
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Structural Properties of Markov Decision Processes

‘—Sequence of the Bellman Operators

Sequence of the Bellman Operators

Suppose that we have two-potici
meaning of the operato
To understand what it doés=ceénsider a value function V', and see
what the effect of 7™ 772 on V is. S

Denote 7™V by U. We have

s 1 and 9. What is the

—

(T T™V)(a) = (T U)(@) =™ (@) + 7 [ PPY ()

U
The functionW

U) = (™)) = 7(2) + 7 [ Pyl V)
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Sequence of the Bellman Operators

Combining these two equations, we get

(TTTV)(2) =

@)+ [P [ 4 [ PR -

P

() +’7/7’“(d2\$)7"”(2) +72/P’” (dz[z)P7™ (dy|2)V (y) =
(@) + (P72 (@) + 47 (PT2V) ().
Therefore,.the functic;n TV is
THT™V = r™ 4P 4 7273”1’216
and the operator 771772 : B(X) — B(X) is
T™T™ .V s r™ 4P 4 42 PTimy,
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Sequence of the Bellman Operators

For a sequence of policies 71, ..., T, we have

T T™Y =

771 + ,wal,rjrg + ,y2737r1:7r2,r7r3 4t ,ym_lpﬂ'l:ﬂ'mflrﬂ-m + ,ympﬂlnrmv
m

— ,yk—l'Pﬂ'lﬂrk—l,,JTk —{—’ym'PWlmmV
k=1

Interpretation: the function T77T7™2 ... T™V is the value function

of following the non-stationary policy ™ = (71, ..., 7Ty) in a finite
horizon MDP with the terminal reward of V. '—
it
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Summary B N
/%BSKX\)(‘\L e g\;‘ﬂ

m Bellman equations describe an important recursive properties
of value functions.

m Bellman operators T™ and T™.
m Greedy policy and the optimal policy.

m Monotonicity and contraction properties of the Bellman
operators.

m Bellman equations have uniqued solutions.

m Bellman error |V — T*V||  provides an upper bound on
value error ||V — V*|| .

m The solution of the Bellman optimality equation is the optimal
value function.
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