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Planning with a Known Model

Goal

We study some algorithms to solve the Planning problem:
computing the (optimal) value function for a given MDP.
m Know the fundamental planning algorithms:

- Value Iteration (VI)
m Policy lteration (PI)
m Linear Programming

m Learn the intuition behind them

—

m Learn the mathematics justifying them

We refer to these frequently in studying and analyzing
RL/Planning algorithms.
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Planning with a Known Model

Learning Objectives

You need to

m Remember: Value lteration, Policy Iteration, and LP-based
algorithms

m Understand: Why VI, Pl, LP work
m Apply: VI and Pl to solve an MDP
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Planning with a Known Model

How to Compute the Optimal Policy 7*7

We have defined concepts and properties such as

m Value function for a policy 7 (V™) and optimal value function
(V)

m Relation between@(on@(_an\d?ﬂ* through the greedy policy

Question: How can we find the optimal policy?

Assumption: MDP is known, that is, we knosz and P.)

—

m The assumption of knowing the MDP does not hold in the RL
setting.

But designing methods for finding the optimal policy with
known model provides the foundation for developing methods
for the RL setting.
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Planning with a Known Model

Different Approaches to Find 7*

Value-based:

ompute @ (or V") and then m* « 7, (Q").

-E'rfc\tpDoclcy search: Search in the space of policies without
explicitly onstructing the optimal value function.

m Hybrid: Explicitly construct value function to guide the search

- . ’\
in the policy space.
Rl et Sl
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Planning with a Known Model

Policy Evaluation vs. Control Problems

m Policy Evaluation (PE): Problem of computing the value
/functlon of a given policy , i.e., V" or Q7r

m Not the ultimate goal of an RL agent (flndlng the optimal
policy is), but is often needed as an intermediate step in
finding the optimal policy.

m Control: Problem of fmdmg the optimal value function V* or

; Q__or optimal policy 7*

Dynamic Programming (DP). Methods that benefit from the
structure of the MDP, such as the recursive structure encoded in
the Bellman equation, in order to compute the value function.

—
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Planning with a Known Model

‘—Some Initial Attempts

Policy Evaluation

Problem Statement: Given an MDP (X, A,P,R,~) and a policy
m, we would like to compute V™ or Q™.

(o)
/!

m s
=Bl a
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Planning with a Known Model

‘—Some Initial Attempts

Policy Evaluation: A Naive Approach

Idea: Expand fhe tred of all possible futures!
Example: the expected reward at time t = 2 is

m(a|lx)P(2 |z, a)m(d'|z")r(2', a).
> (N’J) (9\‘1') (N|J)(‘ )

a,x’,a’
VT

Remark

m This is inefficient. The size of the tree grows very fast.

m The sample-based approximate version of this idea works.
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Planning with a Known Model

‘—Some Initial Attempts

Policy Evaluation: Linear System of Equations

Q: Can we improve the efficiency?
Key ldea: Benefit from the recursive structure of the value function

In the discrete state-action case:
m n = |X| equations
m |X| unknowns (V(z1),...,V(zy))

—_—

_—
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Planning with a Known Model

‘—Some Initial Attempts

Policy Evaluation: Linear System of Equations

We have n equations in the form of:

s V(@) - Y PV (@) = (@),

r'eX

More compactly in the matrix form:

which is the same form of a|generic linear system of equations:

\/4
Anxnxnxl = bnxl-

11/50


SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen


Planning with a Known Model a

OC’VL S \(>\ X >0

Policy Evaluation: Linear System of Equatlons AV

L t
m Better: Use various linear solvers. ‘
s —cat SOIVETS

To solve the control problem of f/nd/ng V*, we need to solve
V=TV, ie,

Vx) = max {r(:ﬂ, a) +y Z P(x/|x,a)V(g;’)} .

' eX

This is not a linear system of equations anymore!
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Planning with a Known Model

—Value lIteration

Value lteration
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Planning with a Known Model

—Value lIteration

Value Iteration (PE)

—

Starting from Vj € B(X), we compute a sequence of (V})r>0 by

Vi1 < T”Vk[: r" + ’y@)
g— w N B

By the contraction property of the Bellman operator:

li — V™o = 0.
Jim [V V!@_O_

Remark
Similar procedure to comput e, Qri1 < T"Qk.
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Planning with a Known Model

) — (Aol
{Z@m, c) YIeK Queoo! )\
Lek,

17 o

Value Iteration (Control
@(%m\t,f») — V@A«
i B -

:*\\ | ) i Ny
\ = <
K\o&\&“\\ */\\Dg\ Viers 4_@ K(\ﬁ\ \‘\\

Qry1 T*QE'

By the contraction property of the Bellman optimality operator, it
is guaranteed that Vi, — V* (or Qr — Q).
7 -
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Planning with a Known Model
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Planning with a Known Model

Value lteration
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Planning with a Known Model

—Value lIteration

Value lteration

A
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Planning with a Known Model

—Value lIteration

Value lteration

m The VI uses an existing approximation Vj, of V* (or V™) to

get a better approximation of V* (or V™). This idea is called
bootstrapping in the in the RL literature.
7 m Note: This is different from the bootstrapping method in
statistics.

m VI is one of the fundamental algorithms for Planning.
-

m The current formulation of Vl is a special case of an
operator/matrix splitting-based formulation.

m Many RL algorithms are essentially the sample-based variants
of VI too. e
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Planning with a Known Model

‘—Policy Iteration

Policy lteration
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Planning with a Known Model
‘—Policy Iteration

Policy Iteration
A different approach is based on the iterative application of the

following two steps:
m (Policy Evaluation) Given a policy m;, compute V™ (or Q).
t)Find.a new pollcy Th41 that is better

m (Policy Improvement)F
than T, i.e( Vhtt > VTk (with a strict inequality in at least

at-convergence). >

Qv

one state unles

Policy Policy
Improvement

Evaluation

7'« argmax Q" (-, a)
a€A 21 /50
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Planning with a Known Model
Policy Iteration

Q: How to perform Policy Evaluation and Policy Improvement?

m Policy Evaluation: This is clear. We can either solve a linear
— . E—
system of equations or even perform VI (PE) to compute the
value of a policy 7.

m Policy Improvement: Choose the greedy policy, i.e.,

= S’ ==Y PN

Te+1(2)

The Policy Iteration (Pl) algorithm refers to the specific case that
we pick the new policy w1 as wy(Q™*).
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Planning with a Known Model

‘—Policy Iteration

Why Greedy Policy for Policy Improvement? (Intuition)

Assume that at stat we act according to 7?9(33 Q”k), and

afterwards, we followy 7. '(% )

The value of this new policy is @l (ﬁ 0‘) ?(LA T
2N

Q" (g (@) <@, mrgmax @, 0)) = max ™ (i, a).

e a€A o sd - -

Comparing maxse4 Q™ (,a) with VZ¥ () = Q™ (z, mj(x)), we

see ’0\) /\__

Q.
Q™ (, my(2; Q™)) = mg@’r[\ﬁ VT ().

So this new policy is equal to or better than 7 at state .
‘W POIEY 5 =L
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Planning with a Known Model

‘—Policy Iteration

Policy Iteration
fﬂzC&T (chk:T

Recall that:
m V"™ is the unique fixed point of T7*.

m The greedy policy satisfies T@Q“k =T Q™.
We can summarize each iteration of the Policy Iteration algorithm:

m (Policy Evaluation) Given 7y, compute Q"*, i.e., find a Q
that satisfies Q = T™Q. ~

[ i rovement) Obtain 7,11 as a policy that satisfies
TTh+1 Qﬂ'k — T*ka - -
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Planning with a Known Model

‘—Policy Iteration

Policy Iteration

1: Initialize g arbitrarily
2. k+0
3: repeat
4: < solution of Q = T7*(Q) > Policy Evaluation:
v — 4 &
compute )™k
5: Ty1)¢— policy s.t.[TT+1Q™ = T*Q™k > Policy

Impirovement
6: kE—Lk+1
7: until m, = 7

e
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Planning with a Known Model
‘—Policy Iteration

Approximate Policy Iteration
WQM ‘\r(/\W ﬁw’hum \]\Q,,\'::‘/r\/K

7
\ka\ ~ \/(,q
We also havef aéproximate ;{)olicy iteration algorithms too, where

policy evaluation or improvement steps are performed
approximately:

L R—> w
P LN e B s
= Tﬂ-k+1Qﬂ-k@T*Qﬂ'k

We discuss this later when we get to function approximation.
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Planning with a Known Model

‘—Policy Iteration
C

onvergence of Policy Iteration

Convergence of Policy Iteration

&
/N\( /V/W

m The Policy lteration algorithmy/converges o the optimal policy.

m For finite MDPs, the convergence happens in a finite number
of iterations.
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Planning with a Known Model

‘—Policy Iteration

Convergence of Policy Iteration

Policy Improvement Theorem

Theorem (Policy Improvement)

policies w_and ] (77 Q™ =1 we have that
(Q”;> Q.

In other words, the greedy policy is a proper policy improvement
step.

28/50
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Planning with a Known Model

‘—Policy Iteration

Convergence of Policy Iteration

Policy Improvement Theorem (Proof)

We first show tha Notice thdt 7™ Q™ = Q™ b

the assumption.
We have T*Q™ > ”Q” Q™ /because for any (z,a) € X x A, it
holds that~

é r(z,a —l—’y/P (da’

— L
Therefore, T7 Q" = T*QF > Q7 = =, —TC4 = &
p—
Ler
£
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Planning with a Known Model

‘—Policy Iteration
C " -

onvergence of Policy Iteration

Policy Improvement Theorem (Proof)

<
< =
The second step is to use T™ O™ >Q™/to show thatz Q™.
Apply T™ to both sides of T™ Q™ > Q7" and use the monotonicity
-zroperty of the Bellman operator to conclude

7r) > T7T/Q7T _ T*Qﬂ' Z_Q_7r

So we also have (T7T ).Q” > Q™. ,/

By repeating this argument, we get that for any m > 1,

,’% (TW/)T.QF 2 TQW Z gr (1)
t 7
: T
By
o > @&
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Planning with a Known Model

‘—Policy Iteration

Convergence of Policy Iteration

Policy Improvement Theorem (Proof)

‘47’ (Tﬂ'/)mQ—ﬂ' Z T*Qﬂ' ZQW

Take the limit of m — oc.
Because of the contraction property of the Bellman operator K

lim 7@)me g;rl (2)

By combining (1) and ( ), we get that

o — lim (T (T Q™ X T*Q)’T @ (3)
T &)
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Planning with a Known Model

‘—Policy Iteration
C

onvergence of Policy Iteration

Convergence of Policy Iteration

m The Policy Improvement theorem shows that if we are given
Ty, the new policy 7,4 is at least as good as the previous
one.

m We can show that the Pl algorithm converges to an optimal
policy. We shall prove this.

m If |X X A| < oo, this happens in a finite number of iterations.

— —_—
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Planning with a Known Model

‘—Policy Iteration
C

onvergence of Policy Iteration

Convergence of Policy Iteration

Theorem (Convergence of the Policy Iteration Algorithm)

Let (m)k>0 be the sequence generated by the Pl algorithm.
m for all k, we have that V™+1 > V™ with equality if and only

if V™ =V*, - =~/
- rig-o — 1

—7n lim/f__ioo V7 —_‘C"|

m [f the set of policies is finite, the Pl algorithm converges in a
finite number of iterations.

We follow the line of proof of Proposition 2.4.1 of Bertsekas 2018.
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Planning with a Known Model

‘—Policy Iteration
C

onvergence of Policy Iteration

Convergence of Policy Iteration (Proof)

The basic idea behind the proof is that either we can strictly

improve the policy, or if we cannot, we are already at the optimal
licy
policy.
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Planning with a Known Model

‘—Policy Iteration
Convergence of Policy Iteration

Convergence of Policy Iteration (Proof)

Proof of V7k+1 > V7.

By the Policy Improvement Theorem (Theorem 1), we have that

s Ve =V
Suppose &k ad of a strict inequality, we have an equality of
VTktt =7k,
Apply T™ +1 to both side to %et \

TThA1Y Tht1 — TTh+11/ Tk

mition of the Pl algorithm, we

As TTk+1 Tk = T*
get that '

where in the last step we used V™ +1 = V7 again.
35/50
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Planning with a Known Model

‘—Policy Iteration
C

onvergence of Policy Iteration

Convergence of Policy Iteration (Proof)

By these equalities, we have

‘ TTk+1 Vﬂ'k+1) = T*V Tk+1 <’—

As V7™+1 s the value function of 71/ it satisfies the Bellman
equation T7k+1 1/ Tk +1 @ Therefore, we also have
4
VTrtl = TH*Y) Tk+1
Ve :

This means that V™+1 is a fixed point of 1.
But the fixed point of 7™ is unique and is equal to V'*.
So we must have that

V7t = V%,

e
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Planning with a Known Model

‘—Policy Iteration
Convergence of Policy Iteration

Convergence of Policy Iteration (Proof)

Proof of V™t = V/* = VVTk+1 — |/ Tk-
If V™ = V*, then m is an optimal policy. The greedy policy of
V™ = V¥ is still an h optimal policy, hence V7rk+1 — V* — VT

—
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Planning with a Known Model

‘—Policy Iteration

Convergence of Policy Iteration

Convergence of Policy Iteration (Proof) @’f

Proof of limy_,o V™ — V*||, = 0. /(:
To prove the convergence, recall from (3) that
7 QU >TIQ™ > Q™. B
By mduchor/] // Q/r %*0
Q> T@*Q”k )2z (TR,

By the definition of the optimal policy, we have[ (ﬁé“ < Q*;for any m,
including all 7 generated during the iterations of the PI algorithm.
So Q+1 is sandwiched between @* and (T™)*Q™, i.e.,

Q" > Q™+ > (T Q™.

This entails thag Q™+ — Q*[| ) < H(T*)kQ”O — Q*Hoo</
38/50
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Planning with a Known Model

‘—Policy Iteration
C

onvergence of Policy Iteration

Convergence of Policy Iteration (Proof)

We show that the RHS of Q™+ — Q[ < [|(T*)F@m — Q|| =7
converges to zero. -

By the contraction property of the Bellman optimality operator, we
have that

Therefore,
li ™ — Q* = 0.
Jim Q™ = Q7|

This implies the convergence of V™ too. \
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Planning with a Known Model

‘—Policy Iteration
C

onvergence of Policy Iteration

Convergence of Policy Iteration (Proof)

Proof of finite convergence:
If the number of policies is finite, the number of times (4) can be a
strict inequality is going to be finite too.

40/50



Planning with a Known Model

‘—Policy Iteration

Convergence of Policy Iteration

Convergence of Pollcy Iteration: Some Remarks

@ZF?F@L ;7? lpﬂ\ \

m The Pl algorithm converges to the optimal policy in a finite
number of iterations whenever the number of policies is finite.

m If the state space X and the action A are finite, the
number of policies are finite and i | Al
m Even though finite, this can be very targe.

m Example: A 10 x 10 grid world problem with 4 actions at each
state has 4197 ~ 1.6 x 109 possible policies. ~

m In practice, Pl converges much faster.

m This suggest that the previous analysis might be crude.

o, T %)= P —= TCIZ) = \-P,

% O =0, |
\\6’[07(1 — i%d-% T
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Planning with a Known Model

‘—Policy Iteration
Convergence of Policy Iteration

Fast Convergence of Policy lteration

It can be shown that the Pl algorithm converges in ; /
—, =

\co ¢

; (XIIA! o (1)) o
-y 1—-7,
(-c9

iterations.
The proof is in the Foundations of Reinforcement

Learning [Farahmand, 2025].

This is a significant quantitative improvement over the previous
result.

This is a relatively recent result, which in various forms have been
proven by Ye [2011]; Hansen et al. [2013]; Scherrer [2016].
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Linear Programming
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Planning with a Known Model

‘—Linear Programming

Linear Programming for Finding V'* Vé%(«)

We can find V* by solving a Linear Program (LP) too.
Consider the set of all V' that satisfy V' > TV, i. e

-
?@:{V:VET*V}. = f
— - >J

Interesting property: For any V € C, we have : \/6 C

LV 2TV = TV > THT'V) = (T9)*V.

Repeating this argument, we get that for any m > 1,

V > (T*)™V.

7
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Planning with a Known Model

‘—Linear Programming

Linear Programmmgagor Fmdlng % ‘*/ I\]

TNRENT el

Frorr%’\/é(‘l‘é‘s\6 ? / \jfllﬁ} L Iq]
V>(T )"V, =—

we get that
——7 V> lim (T*)™V =V".

m%ooJ
Interpretation: L__/

m Any V € C is lower bounded by V*.

m (OR) V* is the function ir@hat is smaller or equal to any
oth nction in C' (pointwise sense)”
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Planning with a Known Model

— Linear Programming

Llnear Programmmg mlrﬁ}.’;g‘/*
E\ 2, (53 i\/c@/

\E‘h&)s a strlcgly }osmve vector H> > 0 with the dimension of X.
Solve

AR L

Can be written as i_\]@

WIN
K
mlnv W V \’G,C/

st [ V(z) > (T"V)(@ @

Linear objective; qonlinear constraints.
———
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‘—Linear Programming

Linear Programming for Finding V*

Each nonlinear constraint:

T
.\) 7 V(x) > max dr(z,a)+ fyZP(y]x, a)V(y)}
is equivalent to

Vi) > r(e,a) +7 > Plyle.a)V(y),
Y

—
o
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‘—Linear Programming

Linear Programmmg for Finding V'* A

\(\{\\\(\ C L C e
cpe\@

é\>V Q\;&é‘b P

miny ) 'V,

sit. (x) > r(z,a) + 727’(y|:c7a)V(y), V(z,a) € X x A.

—
)

This is a linear program with |X x A| constraints.
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Summay 0 NSl G Mo B4

m Three meth or computing the optimal value function
Value lteration
Policy lteration

e rogramming

m Established convergence of VI and Pl

m These methods have variants for the RL setting.
i =
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