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Learning from a Stream of Data: Value Function Learning

Goal

We study how to estimate the value functions using data, without
the knowledge of the model, in an online fashion.

-—

m Sample average estimator of the mean of a random variable
and its properties
m Online estimators and Stochastic Approximation

m Know the fundamental estimation methods based on
m Monte Carlo estimation

m Bootstrapping and Temporal Difference
—_—

m Understand why they work
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Learning from a Stream of Data: Value Function Learning

Learning Objectives

You need to
m Remember: Monte Carlo, TD

m Understand: Why sample average estimator works; What
Stochastic A imation is; Why TD C
ochastic Approximation is y /onve_rges

m Apply: Monte Carlo and 'BLQ estimate value functions; SA
to estimate means

—_—
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Learning from a Stream of Data: Value Function Learning

RL Setting and the Stream of Data

m Planning setting: the model (P and R) is known.
/o and /
= VI, PI, LP
m RL setting: no access to the model; instead, we observe data
of agent interacting with its environment.

@Alv-R_laX27A27R27 onf

with At ~ 7T('|Xt), ),(itl ~ P(|Xt,At) and Rt ~ 73(|Xta‘f1t)
m Questions: ~_/ -

m How can we learn a value of policy 7?7
m How can we learn V or Q* (and consequently, the optimal
policy m* *)?

m Stream of Data

m In this lecture, we (often) assume the exact representation of
the value function. Only feasible for finite MDPs.
/——\

R
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Learning from a Stream of Data: Value Function Learning

Online Learning (Estimation)
of the Mean of a Random

Variable
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Learning from a Stream of Data: Value Function Learning

‘—Online Estimation of the Mean of a Random Variable

Estimation of the Mean of a Random Variable

Let us start from a simple problem of estimating the mean of a. \ o %
random variable, given samples from it.

Assume that we are given(t_real—valued r.v. {:E? z } = 2
—=7 Zze E[2EHZ| A+

all drawn independent and identically distributed (i.i.d.) from a
distributio
Q: How can we estimate the expectati E[Z] with Z ~ v?

— —
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Learning from a Stream of Data: Value Function Learning

‘—Online Estimation of the Mean of a Random Variable

Sample Average Estimator

W

Use the sample (or empirical) average:
ample =mpirical) average

o

=1

| —

A
my =

e

Why is this a good estimator?
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Learning from a Stream of Data: Value Function Learning

‘—Online Estimation of the Mean of a Random Variable

Sample Average Estimator — Properties
.. -Z\-\’Z-nz’s: \ 7 \g7 "\é} 07
Sample (or empirical) average: . b2, \ = OL
“

The variable m; is a random variable itself, and it concentrates
-Oncentrates

arounds it
To see whatthis means, we provide a series of results that

quantifies a notion of concentratlow

H~\l—‘

The expectation of Z; ~ v i enote its varlanc% by 02 By the
linearity of the expectation, e have Lf/\ —

\-—\

ZE *E[] .
—K_/ M

"‘7,1

Elm] =E

1 t
T2 %
=1

This shows that m; is an unbiased estimator of mﬁf/‘ .

PR
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Learning from a Stream of Data: Value Function Learning

‘—Online Estimation of the Mean of a Random Variable

Sample Average Estimator — Properties

What about the variance of m;?
By benefitting from the mdependence of Z; and Z;, we get that

\lo\(rﬂ ‘E-I\& Efﬂlzl —

Var [my] = I’E_[(m_t E[mt Z M))
— .F
#

—t%E S Z-wZi-w+ Y (Z-w)(Z - )
=1 i,j=15i#]
\ £
Z'E. [F J, _ o
-——6 =
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Learning from a Stream of Data: Value Function Learning

‘—Online Estimation of the Mean of a Random Variable

Sample Average Estimator — Properties

1 7
[Yoriml = & [t %E %)
i=1

o2 1 ! o?
:7 3 Z )]E[(Zj_ﬂ)]:7~
e |

This shows that as ¢ increases, the variance of m; decreases with a
rate of %

Variance is a notion of dispersion of a random variable arounds its
mean, so this result shows that my is increasingly more
concentrated around . -

—
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Learning from a Stream of Data: Value Function Learning

‘—Online Estimation of the Mean of a Random Variable

Sample Average Estimator — Properties

So we get that
mE[m]=pn &

2
m Var [my] = &
We can use these results on the mean and variance of m; to derive

a high probability notion of concentration.
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Learning from a Stream of Data: Value Function Learning

‘—Online Estimation of the Mean of a Random Variable

Quick Detour: Markov's Inequality

For a non-negative random variables Z, for any € > 0, we have

P{Z > ¢} @ B

,——_
o

Interpretation: The probability that a non-negative r.v. Z is much
larger than its expectation is decreasing.
For instance,

P{Z > kE[Z]} < %
€07} 2ec2) gL \aiizl

(v 13/86
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Learning from a Stream of Data: Value Function Learning

‘—Online Estimation of the Mean of a Random Variable

Sample Average Estimator — Properties

Knowing that
m E[m] =p.
] Wmt] = 072
a diregt_consequenc of the Markov's inequality, applied to the
non-negative r.v. i: [m — u|? is that

P {|m— ) > £} =P} > £}

A

This shows that for any € > 0, as t — oo,
lim P - .
Jim P {[m; — p| > e} = 0.

This means that asymptotically, the probability that m; is more

than ¢ different from p is zero, no matter how small ¢ is.
14/86
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Learning from a Stream of Data: Value Function Learning

‘—Online Estimation of the Mean of a Random Variable

Sample Average Estimator — Properties

For any € > 0, as t — o0,
tlg)()aoﬂ”ﬂmt —p| >e} = 0.
This is the convergence in probabilitysof m; to u. This result is
known as the weak Law of Large Number (LLN).
We also have the strong LLN, which states that

my — i almost surely

under mild assumptions, such as E[|Z;|] < oo for all 1.
- —

15/86


SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen


Learning from a Stream of Data: Value Function Learning

‘—Online Estimation of the Mean of a Random Variable

How to Get an Online Estimator?

m The naive implementation of m; requires storing all
VAP S

= This is infeasible when L is large.

m But we can do it online too:

s 1
- Nz = Z
Mit1 t_l_liZI_Z 75_1_1z L+l
. .

| [tj%t + Zi 1)

1 1
=(1-— Zis1.
( t+1>”-1f+t+1._t+_1
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Learning from a Stream of Data: Value Function Learning

‘—Online Estimation of the Mean of a Random Variable

How to Get an Online Estimator?

Let us define oy = 154%1 We can write

= M4l = (1 —ag)my + O{t@

The variable a4 is called the learning rate or step size.

With this choice of 4, the estimate my converges to m as t — oo.
This online procedure is an example of the family of stochastic
approximation (SA) methods.
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Learning from a Stream of Data: Value Function Learning

‘—Online Estimation of the Mean of a Random Variable

Stochastic Approximation

0t+1 = (1 — Oét)et + Otht. (1)

m Note that 6; is a random variable.
m Various cheices.of ay.

o = ﬁ e get the sample mean estimator.
m Fixéa o= . a

— C
Bt = % (\):/\—,27"'

m Let us study the fixed oz = « closer.
a3 01 = (1 - )b + aZ;.

£l
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Learning from a Stream of Data: Value Function Learning

‘—Online Estimation of the Mean of a Random Variable

Stochastic Approximation: Fixed «

9t+1 = (1 — Oé)et + OéZt.
Studying its expectation and variance as a function of time ¢.
Take expectation of both sides to ge
E [0t+1] =K [(1 — et + OéZt]
= (1 - a)E[0] + aE [Z]
=(1—-a)E[f]+ am. }/\

Denote E [6;] by 6; (which is not a r.v. anymore), and write the
equation above as

19/86
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Learning from a Stream of Data: Value Function Learning

‘—Online Estimation of the Mean of a Random Variable

Stochastic Approximation: Fixed «

=01 =(1—a)f + am.
We would like to study the behaviour of §; as t increases.

Assuming that 6y = 0 (so fp = 0) and 0 < a < 1, we get that

9_1:0¢m
éé:(lw+am,

03 = (1 — a)2a__’m+ (1 = a)am + am,

p——

t

E]:e{}’ét:aZ(l—a)im: om(l — (1~ o)) :m[l_—(l—a)t].

— 1-(1—-w) — —
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Learning from a Stream of Data: Value Function Learning

‘—Online Estimation of the Mean of a Random Variable

Stochastic Approximation: Fixed «

gt:m[l—(l—a)t]:>tli =m.

m 0; converges to m in expectation.

—

m Reassuring, but is not enough.

m It is imaginable that 6; converges in expectation, but has a
large deviation around its mean.
——

Let us compute its variance too. ) //‘. JAY A N_

—V\/\/\/\/

=

21/86



SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen

SoloGen


Learning from a Stream of Data: Value Function Learning

‘—Online Estimation of the Mean of a Random Variable

Stochastic Approximation: Fixed «

Because of independent of Z;:

Var [0;+1] = Var [(1 — )b + aZt] (1—a)?Var [6;] +char [Z4] .

As a quick calculation, we have tha

Var [0;41] > o®Var [Z] = o202.

We can show that {
>

2

o
lim Var [0;] = . Q/
t—oo —«
. =%
m For a constant a, the variance of 6, is not going to converge
to zero. - -
2E70

m 0; fluctuates around its mean (in different runs of the data
stream; though a similar conclusion would hold within the

same sequence (6;) too).
22/86
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Learning from a Stream of Data: Value Function Learning

‘—Online Estimation of the lean of a Random Variable
—=
A= € o~ Ot4

—

Stochastic Approximation %175 d‘é)i@

m In order to make 6; converge in a sense stronger than
expectation, we need oy — 0 with some schedule.
ZPe

sty
m oy = 7 works, but is not the only acceptable one.

t+

m But any sequence «; going to zero is not working either.

m It should not converge to zero too fast, as it would not allow
enough adaptation. Or too slow!

m The SA Conditions: — 0{,;}

23/86
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Learning from a Stream of Data: Value Function Learning

Online Learning of
the Reward Function
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Learning from a Stream of Data: Value Function Learning

‘—Online Learning of the Reward Function

Online Learning of the Reward Function

Recall the@ewﬂproblem:

m At episode ¢, the agent starts at state X; M(X).

m It chooses action A; N}Q‘X ). ((410\:,E{R]

m It receives a reward of 12, R(-\Xt,At)."37 Q(\,QC \ﬁ,o)
| |

The agent then starts a new independent episode ¢ + 1, and
the process repeats.

The goal is to learn how to act optimally.

m When the reward function r : X x A — R was known, the
optimal policy would be ~— \c}({sj\\
= m (z) + argmakr(z.q)
= Tl2) e

m What if when we do not know the reward function?

25/86
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Learning from a Stream of Data: Value Function Learning

‘—Online Learning of the Reward Function

Online Learning of the Reward Function

m Use SA to estimate r(z,a).

m An ex'_tJension of how we estimated the mean of a single
variable Z ~ v to many variables (one for each state-action
pairs (z,a) € X x A). G s

m Denote rt X x A— R as our est|mate of r at time ¢.

m Let us denote the state-action-indexed sequence ozt(m a) as
the step size for (z,a).

m At time/episode ¢, the state-action pair (X;, A;) is selected.
We update #(Xy, 4;) as fﬁ: \ -

f‘t+1 Xt, At) <— (]. — Ott(Xt, At))ft(Xh At) + Oét(Xt, At)Rt,
/—7 =2 v wz)
g
and do not change our estimate 7+, (x,a) from what we had
7 Fi(z,a) for all (z,a) # (Xi, Ay).

26/86
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Learning from a Stream of Data: Value Function Learning

‘—Online Learning of the Reward Function

Online Learning of the Reward Function

Tep1( Xy, Ar) < (1 — o (X, Ap))7e( Xy, Ar) + au( Xy, Ar) Ry

The SA conditions should be satisfied for each state-action pair,
i.e., for any (z,a) € X x A, we need to have

o0
Z ai(x,a) = 0o,
=0

oo
Z o?(z,a) < oo.
t=0

27/86
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Learning from a Stream of Data: Value Function Learning

‘—Online Learning of the Reward Function

Selecting ay(z, a)

To define ay(x,a), use a counter on how many times (x,a) has
been picked up to time t. We define

/—77’_%(3_:’@) é{{{l : (XMAZ) = (SL‘,CL),’L: 1’7t} :

We can then choose

~ilzia) =

ap(z,0) = ———.

) ’ nt(x> a)

This leads to 7(x,a) being a sample mean of all rewards
-—

encountered at (x,a).

Q: What happens if

m the sampling distribution X; ~ p never chooses a particular
L
state xq?

=0,
m the policy 7(-|&p) never chooses a particular action ag at a

certain state xq )
-
28 /86
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Learning from a Stream of Data: Value Function Learning
From Reward Estimation to Action Selection
From Reward Estimation to Action Selection

1 7]

a < mg(z;7) = argmaxr(z,a),
- = acA

By selecting

we would choose the optimal action at state_z. In lieu of r, we can
use 7 : X x A — R, estimated using the SA (2), and choose the
action Ay = Wg(Xt,_L) at state X;.

This would be the greedy policy w.r.t. rt

acA

///_—

At — w/t(Xt,rt) = argmax 7y Xy, a).
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Learning from a Stream of Data: Value Function Learning
‘—Online Learning of the Reward Function
From Reward Estimation to Action Selection

Problem with the Greedy Policy

m If 74 is an inaccurate estimate of r, the agent may choose a
suboptimal action.

m It is also possible that it gets stuck in choosing that action
forever, without any chance to improve its estimate (this is
not OK).

Consider a problem where we only have one state x; with two
actions a; and as. The reward function is

r(z1,a1)

r(z1,a2)

7

Suppose that the reward is deterministic. Suppose that the initial
estimate of the reward 7(z1,-) = 0.
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Learning from a Stream of Data: Value Function Learning
‘—Online Learning of the Reward Function
From Reward Estimation to Action Selection
Problem with the Greedy Policy

Assume that in the first episode ¢ = 1, the agent happo choose
aj. So its estimates would be

fg(l’l,al) = (1 *.Oé.l) X OJrOltl X .1 >0
Fo(x1, a2) = F1(z1,a2) = 0.

m The next time the agent encounters x1, the selected action
would be a; again, and 73(z1,a1) remains positive.

m Since ay is not selected, the value of 73(x1, az) remains zero.

m As long as the agent follows the greedy policy, it always
chooses action a; and never chooses action as.

(] The estimate rt.(azl@ becomes ever more accurate, but
7’2(331, remains inaccurate.

is_is_problematic as the optimal action here is as!
m Q: What can we do?!
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Learning from a Stream of Data: Value Function Learning
‘—Online Learning of the Reward Function
From Reward Estimation to Action Selection

Solution: e-Greedy

Solution: Force the agent to regularly pick actions other than the
one suggested by the greedy policy.
For ¢ > 0 and a function 7, we define the e-greedy policy 7. as

(2:7) mg(z;7) w.p. 1 —¢,
me(@; ) = § —
: Uniform(A) w.p. €.

m The uniform choice of action in the e-greedy helps the agent
explore all actions, even if the action is seemingly suboptimal.

m The greedy part of its action select mechanism exploits the
current knowledge about the reward function, and chooses the
action that has the highest estimated reward.
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Learning from a Stream of Data: Value Function Learning
‘—Online Learning of the Reward Function
From Reward Estimation to Action Selection

Exploritlon Ex I0|tat|og Svadeoff dl\

N\\,\\ \ —COnity \ o .

C i) Uiy —s L f—»A/W ol

m Exploiting our knowledge is a reasonable choice when our
knowledge about the world is accurate.

m When we have uncertainty about the world, we should not be
overconfident of our knowledge and exploit it all the time, but
instead e_@gre other available actions, which might happen to
be better.

m The tradeoff between exploration and exploitation is a major
topic in RL and is an area of active research.

m If these sound familiar, it is because we have encountered
them in the first lecture!
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Learning from a Stream of Data: Value Function Learning

From Reward Estimation to Action Selection
Boltzmann distribution for Exploration-Exploitation
Tradeoff

Another heuristic: select actions according to the Boltzmann (or
Gibbs or softmax) distribution. Given a parameter 7 > 0, and the
reward function 7, the probability of selecting action a at state x is

— exp@

m(alx; 7) o)
S eAeXp(i)

More weight to actions with higher estimated value (i.e., reward).

m When 7 — 0, the behaviour of this distribution would be the
same as the greedy policy.

m When 7 — o0, the probability of all actions would be the
same (uniform distribution).
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Learning from a Stream of Data: Value Function Learning

Monte Carlo Estimation for
Policy Evaluation
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Learning from a Stream of Data: Value Function Learning

‘—Monte Carlo Estimation for Policy Evaluation

Monte Carlo Estimation for Policy Evaluation

The reward learning problem is a special case of value function
learning problem when the episode ends in one time step.

Goal: Methods to learn (or estimate) the value function V™ and
Q™ of a policy. T
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Learning from a Stream of Data: Value Function Learning

‘—Monte Carlo Estimation for Policy Evaluation

Monte Carlo Estimation for Policy Evaluati 1
+=5, 8’2;# 6@6*\6'—

Recall that

Rer e

with

So GF (conditioned on starting from X; = x) plays the same rule
as the r.v. Z in estimating m = E (Z].
Obtaining a sample from return G™ is easy,(at least conceptua@
If the agent starts at state x, and follows 7, we can draw one
sample of r.v. G™ by computing the discounted sum of rewards
collected duringfhe episode.

Each trajectory is sometimes called a rollout.

Estimation methods based on the whole trajectory or rollouts is
called the Monte Carlo estimates.

—
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Learning from a Stream of Data: Value Function Learning

‘—Monte Carlo Estimation for Policy Evaluation

Monte Carlo Estimation for Policy/(gvaluati“i

If we repeat this process from the same state, we get another draw

of rv. GT.

Let us call the value of these samples

G™ (), G (x),...,G™ ") (x). We can get an estimate V(z) of
‘__/i(_a?) by taking the sample average: o

We can also use a SA procedure too.
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Learning from a Stream of Data: Value Function Learning

‘—Monte Carlo Estimation for Policy Evaluation

Monte Carlo Estimation (PE) (Initial-State Only)

Reqmre Step size schedule (at( ))e>1 forall z € X.

. Initialize X — R arbitrary, e.g., V1 = 0.
2: for each ;?S ;,‘ 0 - ‘ ’@‘
(X7 ) LR

Initialize z= Ve, X}
for each-step k_of episode do K=
Follow 7 to obtain | X [t) Ag ), Rg ),XZ( ’,Ag), Rgt), S

end for

Compute G7r Zk>1’Y R(t)_ ﬁw’-‘;p\ ~ N }Q
Update 7’7’ N?( Xk’

> V;.Ll (1= anx)) v’ >> + (X6,

O N a hw

9: end for o @KN Q('\XK’A‘B
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Learning from a Stream of Data: Value Function Learning

‘—Monte Carlo Estimation for Policy Evaluation

First-Visit and Every-Visit Monte Carlo Estimators
ﬁ

Ci,,—-—-=1ﬁr““§£%;————=12§ >0 . -
\{‘\ @ \61 & P
m The previous procedure might be wasteful of our data.
m Why?!

m We go through many states (X, X, X3,...) within an

episode, but only update the estimate of the first state Xj.
m MC does not benefit from the recursive structure of the return

aWnction: K{

m How can we improv &)

’ ' Té(ﬂ;;[r(am faA
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Learning from a Stream of Data: Value Function Learning

Temporal Difference Learning
for Policy Evaluation
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Learning from a Stream of Data: Value Function Learning

‘—Temporal Difference Learning for Policy Evaluation

Temporal Difference Learning for Policy Evaluation

m MC allows us to estimate V’T( ) by using returns G’T( ).
m MC does not benefit from the recursive property of the value
function.
m MC is agnostic to the MDP structure.
m Advantageous: If the problem is not an MDP.
m Disadvantageous: If the problem is an MDP.
m We have seen methods benefitting from the structure of the
MDP in the previous lecture. Can we use similar methods,
even if we do not know P and R?
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Learning from a Stream of Data: Value Function Learning

‘—Temporal Difference Learning for Policy Evaluation

Temporal Difference Learning for Policy Evaluation

Recall the Value Iteration algorithm for PE: At state z, the
procedure is -

V@) < 17(@) +9 [ Plage.o)m(dala) Vi)

If we do not know 7™ and
Suppose that-we-have n samples 4; ~ m(|x), X] ~
and I MR (|2 4,) -
Using these-samples and Vj, we.compute
—>Y; =R+
=7IEJ[@X = 1]
and

AR V(X)X =]

————

Now notice that
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Learning from a Stream of Data: Value Function Learning

‘—Temporal Difference Learning for Policy Evaluation

Temporal Difference Learning for Policy Evaluation

So the r.v. Y] satisfies

—

E[ViX = o] = E [Ri + V(X)X = 2] = (T™Vi) (x).

—

This means that Y; is an unbiased sample from the effect of 7™ on
V4, evaluated at z. -

——

m We can use the sample mean to estimate (77 Vj)(z).
—/_— —

m Or we can devise a SA procedure.
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Empirical Bellman Operator
P E); @(j%&l WCC@EBCZB

The emp|r|ca| Bellman operator:
cmpirical

(TWVk + ’}/Vk \(l

It provides an unbiased estimate of (77 Vj)(z):

E[(I7Vi)(@)|X = 2| = (T"V)(@)

[ rA=E L

_ J;ILC‘VWK Y
_ C—%YKW N =C e
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Learning from a Stream of Data: Value Function Learning

‘—Temporal Difference Learning for Policy Evaluation

Empirical Value Iteration

(\ﬂ,\ \ \am t(ﬂ \j\p)(g \llie(X

The empirical version of the VI algorithms:

Virr & T™Vi = T™Vj, + (T”Vk _ T”Vk> .

\ 22
The update be decomposed to

m A deterministic part: 7™V}, (the usual VI)

m A stochastic part: T”Vk —T™Vj, a zero-mean r.v. (Why
zero-mean?)
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Learning from a Stream of Data: Value Function Learning

‘—Temporal Difference Learning for Policy Evaluation

Temporal Difference Learning (Synchronous)

Require: Policy 7, step size schedule (o)g>1

1: Initialize V; - X x A — R arbitrary, e.g., Vi(z) = 0.

2. for iteration k = 1,2,... do
3 fo x € X do
4 et A~ 7(-|x
5. _=X!(z) ~P(|X, 4) and R(z) ~R(|z,4)
6 Let (T™V3)(z) 2 R() +AVi(X'(x))
7 end for
8 Update
Vﬁ‘l — ( )Vk + OszWVk
9: end for
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Learning from a Stream of Data: Value Function Learning

‘—Temporal Difference Learning for Policy Evaluation

Temporal Difference Learning: From Synchronous to
Asynchronous

We do not need to update all states at the same time.
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Learning from a Stream of Data: Value Function Learning

‘—Temporal Difference Learning for Policy Evaluation

Temporal Difference Learning
Require: Policy 7, s ize schedule (ay)¢>1.
1: Initialize V; : X @ R arbitrary, e.g., Vi(z) = 0.
2: Initialize X; ~ p A
3: for each stept =1,2,... do Qj\b%>
s Let A ~n(le) w( )
5

Take action A;, observe X;y1 ~ P(:

—

| Ry ~ R(| Xy, A)
6:  Update (-~ 5\\\[%0!\\ &

Vi(@) + ap(2)[Re +Ve(Xipr) = Vi(X)] 2= X,
Vi() — T

Viti(z) < {

7: end for
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Learning from a Stream of Data: Value Function Learning

‘—Temporal Difference Learning for Policy Evaluation

Temporal Difference Learning for Policy Evaluation

The update rule could be written in perhaps a simpler, but less
precise, form of

{EXQ) — Y%Xt) + o (X)) [Re + ’Y}Z(Xtﬂ) - V(X4)l,

without showing any explicit dependence of V' on time index t.
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Learning from a Stream of Data: Value Function Learning

‘—Temporal Difference Learning for Policy Evaluation

Temporal Difference Error

The term
_(S_t_é Rt + YV (Xi1) — V(Xy)

is called the temporal difference (TD) error.
This is a noisy measure of how close we are to V™.
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Learning from a Stream of Data: Value Function Learning

‘—Temporal Difference Learning for Policy Evaluation

Temporal Difference Error

TD Error: 6 2 Ry + vV (Xy41) — V(Xy). This is a noisy measure
of how close we are to V™.
To see this clearly, let us define the dependence on the TD error on
its components more explicitly: T

Given a transition (X, A, R, X') and a value function V, define

5(X7 R? X/; V) £ R + 7V(X/) - V(X)
We have R Ko G
E[§(X,R X" V)X =] =(T"V)(z) - V(z) = 3R(V) ().

So in expectation, the TD error is equal to the Bellman residual of
V', evaluated at state z.

Recall that the Bellman residual is zero when V = V™.

So when we are at (or close to) V7™, the TD error is (close to)

zero, in expectation.
— T —
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Learning from a Stream of Data: Value Function Learning

‘—Temporal Difference Learning for Policy Evaluation

TD Learning for Action-Value Function

We can use a similar procedure to estimate the action-value
function.
To evaluate 7, we need to have an estimate of (77Q)(x, a) for all
(x,a) € X x A.

Suppose that (X, A;) g w énd X| ~P(-| X, Ar) and
Ry ~ R(:| Xy, Ay). - C

The update rule would be
—= Qi1 @ — Qu(Xy, Ap) + (X, Ae) [y + Qi (X, m(X{)) — Qu( X, Ap)]

and

Qi+1(,a) < Qi(z,a)
for all other (z,a) # (X, Ar).
It is easy to see that

__7E [W)\X =z,A=a| = (T"Q)(z,a).
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Learning from a Stream of Data: Value Function Learning

‘—Temporal Difference Learning for Policy Evaluation

On-policy and Off-policy Sampling Scenarios

Qu1(Xe, Ap) + Qu( Xy, Ap) + au( Xy, Ar) [Ry + vQu (X7, m(X7)) — Qe( Xy, Ay)]

Observation:
!

m 7 appears only in Q(X{, 7(X])) term.

| ?E action A; does not need to be selected by  itself.
This entails that'—t’h‘e agent can generate the stream of data
Xll,Al,R‘l,X.Q,A_Q,RQ, ... by following a poIicyﬂthat is
different from the policy that we want to evaluate 7.
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Learning from a Stream of Data: Value Function Learning

‘—Temporal Difference Learning for Policy Evaluation

On-policy and Off-policy Sampling Scenarios

(\}c\ao\\/\w{ Qo\k“(

m Whe m, we are in the on-policy sampling scenario, in
which-the agent is evaluating the same policy that it is
following.

m When 7, 75 m, we are in the ofF—pollcy sampling scenario, in
which the agent is evaluatlng a policy that is different from
the one it is following.
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Learning from a Stream of Data: Value Function Learning

Monte Carlo Estimation for
Control
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Learning from a Stream of Data: Value Function Learning

‘—Monte Carlo Estimation for Control

Monte Carlo Estimation for Control

m We can use similar methods for solving the control problem,
i.e., finding the optimal value function and the optimal policy.

The general idea is to use some version of PI.

If we run paany rollouts from each state-action pair (z,a), we
can definhat converges to QW —

m If we wait for an infinite time, Q’T = hmt_>O<> Qt = Q’T We
can then choose 7’ - 7rg(Q7r ).

m This Pl can be described by the following sequence of 7 and
Q™

E [ E
T — Q™ — T — Q™ —
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Learning from a Stream of Data: Value Function Learning

‘—Monte Carlo Estimation for Control

Monte Carlo Estimation for Control

Guap) G@e)

m We do not need to have a very accurate estimation of Q™%
before performing the policy improvement step.
@( m We can perform MC for a finite number of rollouts from each
%) IC for a finite n. rollouts from each_
state, and then perform the improvement step.
=1 Qe 2

—

+=

12 L Qugoy-@erey Pckin-gp
Beee)
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Learning from a Stream of Data: Value Function Learning

‘—Monte Carlo Estimation for Control

Monte Carlo Control (Initial-State Only)

Require: Initial policy 71, step size schedule (o)g>1.
Initialize @1 : X x A — R arbitrary, e.g., Q1 = 0.
2: for each iteration k = 1,2,... do

3: for all (x,a) € X x A do S—
4.
5:

[ary

Initialize X1 =z and 4; = a.

Generate an episode from X1 by choosing Al, and then
following Tk to obtain Xl,Al, Rl,XQ,AQ, Ro,....

Compute G ’“(Xl,Al) Yo7 1R,

Update - -

N

Qr 1 (X1, A1) « (1 — (X1, A1) QF (X17A1)+04k(X17A1)G71T'“ (X1, A1)

8: end for
0: Improve policy: mj41 ¢ Tg(Qp1).
10: end for
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Learning from a Stream of Data: Value Function Learning

‘—Monte Carlo Estimation for Control

Monte Carlo Control (Initial-State Only)

Proposition (Convergence of MC for Control — Proposition 5

of )

The sequence )y, generated by the previous algorithm with the
learning rate (ak) satisfying the SA conditions (3) converges to Q*
almost surely.
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Learning from a Stream of Data: Value Function Learning
ontrol: Q-Learning and SARSA Algorithms

Temporal Difference Learning
for Control: Q-Learning and

SARSA
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Learning from a Stream of Data: Value Function Learning

‘—Temporal Difference Learning for Control: Q-Learning and SARSA Algorithms

Temporal Difference Learning for Control: Q-Learning

We can use TD-like methods for the problem of control too.

Consider any Q € B(X x A). Let X' ~ P(:|X, A) and
R ~R(|X,A) and define '

Y = R+fymai‘<Q(X',a’).

N , a'e — =
We have \/

E [X|X =z, A=a]=r(z,a)+ 7/P(d$’|x,a) i{lgj{@({n',a')
= (T"Q)(x,a).

So Y is an unbiased noisy version of (T7Q)(z, a).
The empirical Bellman optimality operator is

(T*Q)(x,a) £ R+ ymax Q(X',d).
a'eA
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Learning from a Stream of Data: Value Function Learning

‘—Temporal Difference Learning for Control: Q-Learning and SARSA Algorithms

Q-Learning Algorithm
We can use SA to update the estimate of Q*:

Qu1 (X, Ap) (1 — r( X, Ar)) Qe (X, Ao+

(X, Ar) | Ry +’72}2ﬁ@t(X€—_l—‘laq,) (4)

—

for the observed (X¢, A¢) and

e ————

Qi1(z,a) < Qi(z,a)

—

for all other states (z,a) # (Xi, A¢).
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Learning from a Stream of Data: Value Function Learning

‘—Temporal Difference Learning for Control: Q-Learning and SARSA Algorithms

Q-Learning Algorithm

Require: Step size schedule (ozk)k>1
Require: Polic

. for each step t do \4
w95 Y

Take actlon Ay, observe X;y1 and Rt

—

IS A A

A
Update: —
‘“%-(‘Ml'etb: O‘ijmo"( %CK-\‘;«I'O‘)
0

Q/t-_&-_l_(XhAt) Qe (X, Ap)+

o (X, Ayr) [

7: end for ,/—'7

+ ’yg}gﬁ Qt(Xt—i-ha/) - Qt(Xta At)] .
WJ?

= BLfg o TM0%e))
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Learning from a Stream of Data: Value Function Learning

‘—Temporal Difference Learning for Control: Q-Learning and SARSA Algorithms

Q-Learning Algorithm

Q: What is the policy that the Q-Learning algorithm is evaluating?
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Learning from a Stream of Data: Value Function Learning

‘—Temporal Difference Learning for Control: Q-Learning and SARSA Algorithms

SARSA Algorithm

Follow a Pl-like procedure: Estimate Q™ for a given 7, and
perform policy improvement to obtain a new 7.

m Usual PI: Wait long enough until the TD method produces a
Q — QT; then improve.

m Generalized policy iteration (or optimistic policy iteration):
improve the policy before () converges to Q™
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Learning from a Stream of Data: Value Function Learning

‘—Temporal Difference Learning for Control: Q-Learning and SARSA Algorithms

SARSA Algorithm

The SARSA algorithm:
At state Xt

Choose At = 7rt(Xt)
Receives X Xip1 ~ P(|Xt, Ar) and Ry~
At the time st step _t_i_l choose A;11
Update rule: ™~

Qi1 (Xt, Ap) (1 — ap( Xy, Ap)) Qe (X4, Ay) +/
(X, Ar) [Re +7Qe(Xeg1, Apy1)] -

m;: close to a greedy policy 7,(Q;), but with some amount of
.e;ploration, e.g., the e-greedy policy.

The greedy part performs the policy improvement, while the
occasional random choice of actions allows the agent to have some
exploration.
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Learning from a Stream of Data: Value Function Learning

‘—Temporal Difference Learning for Control: Q-Learning and SARSA Algorithms

Q-Learning vs SARSA

Comparing the update rules:
m Q-Learning: maxyeq Qt(Xi+1,a)
m SARSA: Qi(Xit1, Arr1) = Qu(Xpt1, m(Xit1)).
Comparing the evaluated policy:
m Q-Learning: the greedy policy m4(Q;) (off-policy)
m SARSA: 7y, i.e., the same policy that selects actions
(on-policy)
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Learning from a Stream of Data: Value Function Learning

‘—Stochastic Approximation

Stochastic Approximation
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Learning from a Stream of Data: Value Function Learning

‘—Stochastic Approximation

Stochastic Approximation: A Second Look

Suppose that we want to find the fixed-point of an operator L:

e

VAE -0,
for 6 € R and L : R? — R%,
Consider the iterativ'e—updﬁé
z
9t+1 — (1 — a)é’t + aLQi

If L is c-Lipschitz with ¢ <1 and « is small enough, this would

—_—

convekgll)l F wi\\é e \8 ~@A\ QB@@%-)
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Learning from a Stream of Data: Value Function Learning

‘—Stochastic Approximation

Stochastic Approximation: A Second Look

If we do not have access to L#;, but only its noise contaminated
L0, + ny with ny € R being a zero-mean noise, we perform

Qtil — (11— )b+ gt(LQt + ).

Similar to (1), with the difference that the latter concerns the
estimation of a mean given an unbiased noisy value of the mean,
while here we are dealing with a noisy evaluation of an operator L
being applied to ;.

Recall that oy cannot be a fixed number, or the variance of the
estimate would not go to zero.

We need the usual SA conditions on step sizes.
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Learning from a Stream of Data: Value Function Learning

‘—Stochastic Approximation

Stochastic Approximation: A General Model

Assume that at time ¢, the i-th component of ¢; is updated as

i1 (i) (1= u@)0uli) + () (L)) +@ ). (5)

with the understanding that at( ) = 0 for JFi (components that
are not updated).

Next: We provide a result showing the convergence of 6; to 6%, the
fixed point of L.

This requires some assumptions!
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Learning from a Stream of Data: Value Function Learning

‘—Stochastic Approximation

Assumptions on Noise

The history of the algorithm up to time ¢ by F}:

F, ={00,01,...,6:;} U{no,m,...,m—1} U{ag,0q,...,0u}.

Assumption Al
[@ For every i and ¢, we have E[nt( )| F] = 0.

[@ Given any norm ||-|| on RY, there exist constants ¢1, ¢z such
that for all i and %, we have

Noc (0 [F)=E InP1m] <1 + ool
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Learning from a Stream of Data: Value Function Learning

Stochastic Approximation

Convergence Result

Theorem (Convergence of the Stochastic Approximation —

Proposition 4.4 of )

Let (0;) be the sequence generated by (5). Assume that

(Step Size) The step sizes o (i) (fori=1,...,d) are
non-negative and satisfy ~

Zat(i) = 00, Zaf(z) < 00.

t=0 — t=0 —

(Noise) The noise (i) satisfies Assumption Al.

—=> B The mapping L is a contraction w.r.t. |-l with a fixed point
of 0*. B —

Then 6, converges to 8" almost surely.
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Learning from a Stream of Data: Value Function Learning

‘— Convergence of Q-Learning

Convergence of Q-Learning

The Q-Learning update rule (4) has the same form as the SA
update rule (5):

m 0is Q e R4

m the o_p;erator L is the Bellman optimality operator T

m the index_i_in’:che SA update is the selected (X;, 4;)

m the noise term 7,(4) is the difference between (T*Q;)( Xy, A;)
and the sample-based version R; + ymaxyc 4 Q¢ (Xit1,a’).

——— — —
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Learning from a Stream of Data: Value Function Learning

‘— Convergence of Q-Learning

Convergence of Q-Learning

Theorem

Suppose that for a @ X X A, the step sizes ay(x,a) satisfy

=

(©.9] (©.9]
Zat(ﬂv,a) = 00, Za?(w,a) < 0.
t=0 —

Furthermore, assume that the reward is of bounded variance.
Then, Q; converges to Q* almost surely.
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Learning from a Stream of Data: Value Function Learning

Convergence of Q-Learning (Proof)

Suppose that at time ¢, the agent is at state X}, takes action At,
gets to X/ ( ’Xt,At) and Rt ~ ( ’Xt,At)
The update rule of the Q- Learmng algorithm can be written as

—7 Qi1 (Xp, Ar) (1 — (X, Ar))Qu( Xy, Ar) +
a(Xe, Ae) [(T7Q0) (X, Ar) + ne(Xe, Ar)]

f @

Qrr1(x,a) + Quz,a) (xz,a) ¢ (X, Ar).

with

ne(Xe, Ar) :L(Rt + 7 glgi‘( Qi (X,

e

and
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Learning from a Stream of Data: Value Function Learning

‘— Convergence of Q-Learning

Convergence of Q-Learning (Proof)

m 7™ is a y-contraction mapping, so condition (3) of the
theorem is satisfied.

m Condition (1) is assumed too.

et

m It remains to verify the conditions _(2_) on noise 7, which are
conditions (a) and (b) of Assumption Al. o
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Learning from a Stream of Data: Value Function Learning

‘— Convergence of Q-Learning

Convergence of Q-Learning (Proof)

Let F}; be the history of algorithm up to and including when the
step size ay(X¢, A;) is chosen, but just before X| and R; are
revealed. We have: - T

E [ (Xe, A)|Fy] = E | Ry +ymax Qu(X{,a) | Fy| — (T Qu)(Xy, Ar)

=0.

—_—

This verifies condition (a): zero-mean noise.
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Learning from a Stream of Data: Value Function Learning

'— Convergence of Q-Learning

Convergence of Q-Learning (Proof)_EUz,E[z']\l];
N (2) .

To verify (b) we provide an upper b bound on IE [n? (Xt,At)|Ft]

E 7 (X, A4) | B] = E[Q {C&{:‘ ]:Vﬂ(@]
Rt —r Xt,At)) N Q= E[@\ /‘11‘\"""}

4maXQt Xi,a") /P (da'| Xy, Ay) math(:L",a');j ‘ | Fy
/

R
< 2Var [R; | Xy, Ad] + 272\/&1‘ {max Qu(X',d) | Xt,Atf

C
(
Here we used (a + b)? < 2a® + 2b? (Exercise: Verify!).
— =
C(}\—(—X?)l; 0?4- )714- ZC\X/
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Learning from a Stream of Data: Value Function Learning

Convergence of Q-Learning (Proof)

() = ELVZ-E22)] < ELV2) i

We have

./
mar [math(X’ a) | Xz, At] <EL[
SOC’Q’QCQ:) dx L YVE/?('(@-) < maX\Qt(UC a)l®
Wee§ LS, 23¢ 1455 L —<7<Z|Qt$a| Az

Ldh

2

nllath(X’, a)| | X, As

-
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Learning from a Stream of Data: Value Function Learning

‘— Convergence of Q-Learning

Convergence of Q-Learning (Proof)

Denote the maximum variance of the reward distribution over the
. —— 2 . .

state-action space max(, q)exx.4 Var [R(z,a)] by TR which is

assumed to be bounded.

We have

E [ (Xe, Ar) | Fi] < 2(0% +97Qe3)-

Therefore, we can choose ¢; = 20% and ¢z = 272 in condition b.
All conditions of Theorem 2 are satisfied, so (J; converges to Q*

(a-s.).
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Learning from a Stream of Data: Value Function Learning

‘— Convergence of Q-Learning

Remarks

m The step size condition is state-action dependent.

m If there is a state-action pair that is not selected at all or only
a finite number of times, the condition cannot be satisfied.

——

m We need each state-action pair to be visited infinitely often.

e ——
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Learning from a Stream of Data: Value Function Learning

‘— Convergence of Q-Learning

Remarks

m The state-action-dependence of the step size might be
different from how the Q-Learning algorithm is sometimes
presented, in which a single learning rate «y is used for all
state-action pairs. o

m A single learning rate suffices if the agent happens to visit all
(z,a) € X x A frequent enough, for example every M < oo
T,a) € requent S
steps.

m This is only an asymptotic guarantee. It does not show
anything about the convergence rate, i.e., how fast Q¢
converges to Q*.
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Learning from a Stream of Data: Value Function Learning

Summary

From Planning (known model) to Learning (unknown model)

Stochastic Approximation for online estimation of a noisy
quantity
m Methods for estimation of value function

m Monte Carlo
m Temporal Difference Learning

Established convergence of Q-Learning
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