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RL Problem

Reinforcement Learning

Figure: An agent ...
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RL Problem

Reinforcement Learning

Figure: ... observes the world ...
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RL Problem

Reinforcement Learning

Figure: ... takes an action and its states changes ...
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RL Problem

Reinforcement Learning

Figure: ... with the goal of achieving long-term rewards.
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RL Problem

Reinforcement Learning in the News

Figure: Some recent success stories!
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RL Problem

(Potential) Applications of RL
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RL Problem

This course ...

This course is about reinforcement learning (RL) and sequential
decision-making under uncertainty with an emphasis on theoretical
understanding.
We build the foundation, step by step, prove many results, and try
to gain an understanding of why many algorithms are designed the
way they are, and why they work.
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RL Problem

Reinforcement Learning: Problem and Methods

Reinforcement Learning (RL) refers to both a type of problem and
a set of computational methods.

Problem: How to act so that some notion of long-term
performance is maximized?

Methods: What kind of computation does an agent need to
do in order to ensure that its actions lead to good (or even
optimal) long-term performance?

Remark

Historically, only a subset of all computational methods that
attempt to solve the RL problem are known as the RL methods,
e.g., Q-Learning is, evolutionary computation methods are not.
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RL Problem

RL Problem and Agent-Environment Interaction

In RL, we often talk about an agent and its environment, and their
interaction.
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RL Problem

RL Problem and Agent-Environment Interaction

Agent: decision maker and/or learner

robot
medical diagnosis and treatment system
air conditioning system

Environment: anything outside the agent
with which it interacts and attempts to
control.

physical world outside the robot
patient’s body
room
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RL Problem

RL Problem and Agent-Environment Interaction

At time t = 1, 2, . . . , the interaction of the agent
and the environment is as follows:

the agent observes its state Xt in the
environment.

Examples: position of the robot, vital
information of a patient, the room
temperature, etc.

The agent picks an action At according to its
policy π, e.g., At = π(Xt) or At ∼ π(·|Xt).

The state of the agent in the environment
changes and becomes Xt+1 according to
transition probability kernel (or distribution),
i.e., Xt+1 ∼ P(·|Xt, At).

The agent also receives a reward signal Rt,
i.e., Rt ∼ R(·|Xt, At).
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RL Problem

RL Problem and Agent-Environment Interaction

State: A variable that summarizes whatever
has happened to the agent so far.
Policy: Action selection mechanism. Usually a
mapping from states to actions. It can be
deterministic (At = π(Xt)) or stochastic
(At ∼ π(·|Xt)).
Transition probability kernel: Describes the
dynamics. For example, a set of
electromechanical equations describing how
the position of the robot (including its joints)
change when a certain command is sent to its
motor. Or how the patient’s physiology
changes after the administration of the
treatment.
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RL Problem

RL Problem and Agent-Environment Interaction

Reward: A real number specifying the
immediate desirability of the choice of action
At at the state Xt (possibly leading to state
Xt+1) has been. Examples:

Positive if robot successfully picks up an
object, negative if it breaks the object.

Infection subsides

The room temperature becomes
comfortable.

Remark

The reward signal/function/distribution only
encodes the desirability of the action from the
immediate perspective. A good action now
may not be good in the long-term.
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RL Problem

RL Problem and Agent-Environment Interaction

This process repeats and as a result, the agent
receives a sequence of state, actions, and
rewards:

X1, A1, R1, X2, A2, R2, · · · .

This sequence might terminate after a fixed
number of time steps (say, T ), or until the
agent gets to a certain region of the state
space, or it might continue forever.
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Markov Decision Process (MDP)

Markov Decision Process (MDP)

Let us formally define some important concepts that we require
throughout the course. Beforehand, some commonly used
notations:
Given a space Ω.

M(Ω): the space of all probability distributions defined over
the space Ω.

B(Ω): the space of all bounded functions defined over Ω

Examples: Ω = {1, 2, . . . , n},N,R,Rd, etc.
M(R): The space of distributions on the real line
B(R): The space of bounded functions on the real line
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Markov Decision Process (MDP)

Markov Decision Process (MDP)

Definition

A discounted MDP is a 5-tuple
(X ,A,P,R, γ), where X is a
measurable state space, A is the
action space,
P : X ×A →M(X ) is the
transition probability kernel with
domain X ×A,
R : X ×A →M(R) is the
immediate reward distribution,
and 0 ≤ γ < 1 is the discount
factor.
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Markov Decision Process (MDP)

Markov Decision Process (MDP)

MDPs encode the temporal evolution of a discrete-time stochastic
process controlled by an agent.

Initial state X1 ∼ ρ with ρ ∈M(X ).

Agent chooses action At ∈ A.

Agent goes to Xt+1 ∼ P(·|Xt, At) and receives reward
Rt ∼ R(·|Xt, At).

The process repeats. The trajectory is
ξ = (X1, A1, R1, X2, A2, R2, · · · ), which is random.

Remark

The reward distribution could also depend on the next-state Xt+1.
In that case, we would have a different reward kernel R′ and the
reward would be Rt ∼ R′(·|Xt, At, Xt+1). But we can absorb the
dynamics within R, i.e., R(·|x, a) =

∫
R′(·|x, a, x′)P(dx′|x, a).
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Markov Decision Process (MDP)

Markov Decision Process (MDP)

This is a general framework.
State space:

Finite: X = {x1, x2, . . . , xn} (or X = {1, 2, . . . , n}) with
n <∞
Infinite but countable: X = {x1, x2, . . . } (or X = N)

Continuous: X ⊂ Rd

Dynamics:

Stochastic

Deterministic

Remark

A deterministic dynamical system always behave exactly the same
given the same starting state and action. They can be described by
the transition function f : X ×A → X and xt+1 = f(xt, at).
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Markov Decision Process (MDP)

Policy

Definition

A policy is a sequence π̄ = {π1, π2, . . .} such that for each t,

πt(at|X1, A1, X2, A2, . . . , Xt−1, At−1, Xt)

is a stochastic kernel on A given X ×A× · · · × X ×A× X︸ ︷︷ ︸
2t−1 elements

satisfying

πt(A|X1, A1, X2, A2, . . . , Xt−1, At−1, Xt) = 1

for every (X1, A1, X2, A2, . . . , Xt−1, At−1, Xt).
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Markov Decision Process (MDP)

Policy

Definition

If πt is parametrized only by Xt, that is

πt(·|X1, A1, X2, A2, . . . , Xt−1, At−1, Xt) = πt(·|Xt),

π̄ is a Markov policy.
If for each t and (X1, A1, X2, A2, . . . , Xt−1, At−1, Xt), the policy
πt assigns mass one to a single point in A, π̄ is called a
deterministic (nonrandomized) policy; if it assigns a distribution
over A, it is called stochastic or randomized policy.
If π̄ is a Markov policy in the form of π̄ = (π, π, . . .), it is called a
stationary policy.

A policy π(·|x) is a stationary Markov policy. We often work with
such policies. If it is also deterministic, we denote it by π(x).
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Markov Decision Process (MDP)

Policy-Induced Transition Kernels

An agent is “following” a Markov stationary policy π whenever At
is selected according to the policy π(·|Xt), i.e., At = π(Xt)
(deterministic) or At ∼ π(·|Xt) (stochastic).
The policy π induces two transition probability kernels
Pπ : X →M(X ) and Pπ : X ×A →M(X ×A). For a
(measurable) subset A of X and a (measurable) subset B of
X ×A and a deterministic policy π, denote

(Pπ)(A|x) ,
∫
X
P(dy|x, π(x))I{y∈A},

(Pπ)(B|x, a) ,
∫
X
P(dy|x, a)I{(y,π(y))∈B}.
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Markov Decision Process (MDP)

Policy-Induced Transition Kernels

When we have a countable state-action space, we sometimes use
summation instead of integrals. For example,

(Pπ)(A|x) ,
∑
y∈X
P(y|x, π(x))I{y∈A} =

∑
y∈A
P(y|x, π(x)).

So for a particular y ∈ X , we have (Pπ)(y|x) = P(y|x, π(x)).
Also we can extend the definition of Pπ to following a policy for
m-steps (m ≥ 1) inductively. We use (Pπ)m to denote such a
transition kernel.
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From Immediate to Long-Term Reward

From Immediate to Long-Term Reward

RL problem: How to act so that some notion of long-term
performance is maximized.
Q: What does long-term mean? How to quantify it?
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From Immediate to Long-Term Reward

Immediate Reward Problem

At each round of interaction with its environment

An agent starts at a random state X1 ∼ ρ ∈M(X )
It chooses action A1 = π(X1) (deterministic policy), and
receives a reward of R1 ∼ R(·|X1, A1).

We call each of these rounds an episode. Here the episode only
lasts one time-step.
Q: How should this agent choose its policy in order to maximize its
“performance”?
Q: What does performance mean?
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From Immediate to Long-Term Reward

Immediate Reward Problem

At each round of interaction with its environment

An agent starts at a random state X1 ∼ ρ ∈M(X )
It chooses action A1 = π(X1) (deterministic policy), and
receives a reward of R1 ∼ R(·|X1, A1).

We can talk about average (expected) reward that the agent
receives within one episode as the measure of performance.
Average is over repeated interactions with the environment.
If we define the performance in this way, answering the question of
how the agent should act to maximize this notion of performance
is easy.
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From Immediate to Long-Term Reward

Immediate Reward Problem

Let us define expected reward as

r(x, a) , E [R|X = x,A = a] .

In order to maximize the expected reward, the best action depends
on the state the agent initially starts with. At state x, it should
choose

a∗ ← argmax
a∈A

r(x, a).

This is the best, or optimal, action at state x
The optimal policy π∗ : X → A:

π∗(x)← argmax
a∈A

r(x, a). (1)

Optimal policy depends on the agent’s initial state. It does not
depend on initial distribution ρ.
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From Immediate to Long-Term Reward

Finite Horizon Tasks

The agent interacts with the environment for a fixed T ≥ 1
number of steps.

At each round (episode),

The agent starts at X1 ∼ ρ ∈M(X ).
It chooses action A1 = π(X1) (or A1 ∼ π(·|X1) for a
stochastic policy)
The agent goes to the next-state X2 ∼ P(·|X1, A1) and
receives reward R1 ∼ R(·|X1, A1).
(this process repeats for several steps until ...)
XT ∼ P(·|XT−1, AT−1).
RT ∼ R(·|XT−1, AT−1).

So we receive a reward sequence (R1, R2, . . . , RT ).
Q: How should we evaluate the performance of the agent as a
function of the reward sequence?
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From Immediate to Long-Term Reward

Finite Horizon Tasks

A common choice for performance is to compute the sum of
rewards:

Gπ , R1 + . . .+RT . (2)

The r.v. Gπ is called the return of following policy π.
Here the rewards received at all time steps are treated the same.
The agent just adds them together.
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From Immediate to Long-Term Reward

Finite Horizon Tasks

Another choice is to consider discounted sum of rewards. Given a
discount factor 0 ≤ γ ≤ 1, we define the return as

Gπ , R1 + γR2 + . . .+ γT−1RT . (3)

Whenever γ < 1, the reward that is received earlier contributes
more to the return. Intuitively, this means that such a definition of
return values earlier rewards more.

A cookie today is better than a cookie tomorrow, and a
cookie tomorrow is better than a cookie a week later.
Financial interpretation (inflation rate).
Marshmallow test (delayed gratification).

Smaller values of γ makes the agent more myopic.

Remark

The discount factor is a part of the problem definition.
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From Immediate to Long-Term Reward

From Return to Value Function

The return (3) (and (2) as a special case) is a random variable. To
define a performance measure that is not random, we compute its
expectation.

V π(x) , E

[
T∑
t=1

γt−1Rt|X1 = x

]
.

This is the expected value of return if the agent starts at state x
and follows policy π. The function V π : X → R is called the value
function of π.
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From Immediate to Long-Term Reward

From Return to Value Function

Let us look at the case of T = 1 a bit closer. The value function
V π at state x is

V π(x) = E [R1|X = x] .

This is similar to r(x, a) = E [R|X = x,A = a] with the difference
that r(x, a) is conditioned on both x and a, whereas V π is
conditioned on x.
In V π, the choice of action is determined by the policy π, i.e., at
state x, a = π(x) or A ∼ π(·|x).
If we define

rπ(x) , E [R|X = x]

with A ∼ π(·|x), we get that rπ = V π.
For T > 1, V π captures the long-term (discounted) average of the
rewards, instead of the expected immediate reward captures by rπ.
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From Immediate to Long-Term Reward

How to Get the Optimal Policy?

Let us focus on T = 1 again.
Recall from before that for the immediate reward maximization
problem, the optimal policy was

π∗(x)← argmax
a∈A

E [R|X = x,A = a] .

Getting the optimal policy from V π “seems” less straightforward.
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From Immediate to Long-Term Reward

How to Get the Optimal Policy?

We need to search over the space of all deterministic or stochastic
policies. If we denote the space of all stochastic policies by

Π = {π : π(·|x) ∈M(A), ∀x ∈ X }

we need to find
π∗ ← argmax

π∈Π
V π.

It turns out that this problem is not too difficult when T = 1. As
the values of V π at two different states x1, x2 ∈ X do not have
any interaction with each other, we find the optimal policy at each
state separately.
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From Immediate to Long-Term Reward

How to Get the Optimal Policy?

For each x ∈ X ,

V π(x) =

∫
R(dr|x, a)π(da|x) =

∫
π(da|x)r(x, a).

Find a π(·|x) that maximizes V π(x) means that

sup
π(·|x)∈M(A)

∫
π(da|x)r(x, a).

The maximizing distribution can concentrate all its mass at the
action a∗ that maximizes r(x, a) (assuming it exists). Therefore,
π∗(a|x) = δ(a− argmaxa′∈A r(x, a

′)) (or equivalently,
π∗(x) = argmaxa′∈A r(x, a

′)) is an optimal policy at state x.
This is for T = 1. For T > 1, the problem would be more
complicated.
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From Immediate to Long-Term Reward

Episodic Tasks

In some scenarios, there is a final time T that the episode ends (or
terminates), but it is not fixed a priori.

Chess

Finding a goal within a maze

Robot successfully picks an object

The episode terminates whenever the agent reaches a certain state
xterminal within the state space, i.e., it terminates whenever
XT = xterminal. The length of the episode T is a random variable.
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From Immediate to Long-Term Reward

Episodic Tasks

The definition of the return and value functions is as before:
For 0 ≤ γ ≤ 1, we have

Gπ ,
T∑
k=1

γk−1Rk,

and

V π(x) , E [Gπ|X1 = x] .

Remark

If γ < 1, these definitions are always well-defined. If γ = 1, we
need to ensure that the termination time T is finite. Otherwise,
the summation might be divergent (just imagine that all Rt are
equal to 1).
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From Immediate to Long-Term Reward

Continuing Tasks

Sometimes the interaction between the agent and its environment
does not break into episodes that terminates. It goes on
continually forever.

Life-long robot

Chemical plant that is supposed to work for a long time

An approximate model for finite-horizon problem with very
large T .
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From Immediate to Long-Term Reward

Continuing Tasks

Consider the sequence of rewards (R1, R2, . . . ) generated after the
agent starts at state X1 = x and follows policy π. Given the
discount factor 0 ≤ γ < 1, the return is

Gπt ,
∑
k≥t

γk−tRk. (4)
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From Immediate to Long-Term Reward

Continuing Tasks

Definition (Value Functions)

The (state-)value function V π and the action-value function Qπ

for a policy π are defined as follows: Let (Rt; t ≥ 1) be the
sequence of rewards when the process is started from a state X1

(or (X1, A1) for the action-value function) drawn from a positive
probability distribution over X (or X ×A) and follows the policy π
for t ≥ 1 (or t ≥ 2 for the action-value function). Then,

V π(x) , E

[ ∞∑
t=1

γt−1Rt|X1 = x

]
,

Qπ(x, a) , E

[ ∞∑
t=1

γt−1Rt|X1 = x,A1 = a

]
.
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From Immediate to Long-Term Reward

Continuing Tasks

The value function V π evaluated at state x is the expected
discounted return of following the policy π from state x.

The action-value function Qπ evaluated at (x, a) is the
expected discounted return when the agent starts at state x,
takes action a, and then follows policy π.

Remark

If γ = 0, Qπ = E [R1|X1 = x,A1 = a]. This is the same as the
expected immediate reward r(x, a). The same way that we could
easily compute the optimal action using r(x, a) in the
finite-horizon problem with T = 1, we can use Qπ (in continual
task) in order to easily compute the optimal policy.
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Optimal Policy and Optimal Value Function

Optimal Policy and Optimal Value Function

Q: What does it mean for an agent to act optimally?
First, let us think about how we can compare two (Markov
stationary) policies π and π′. We say that π is better than or equal
to π′ (i.e., π ≥ π′) iff V π(x) ≥ V π′(x) for all states.
Optimal policy: If we can find a policy π∗ that satisfies π∗ ≥ π for
any π, we call it an optimal policy.

Remark

There may be more than one optimal policy, but their values are
the same.
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Optimal Policy and Optimal Value Function

Optimal Policy and Optimal Value Function

If we denote Π as the space of all stationary Markov polices, this
means that

π∗ ← argmax
π∈Π

V π,

where one of the maximizers is selected in an arbitrary way. The
value function of this policy is the called the optimal value
function, and is denoted by V π∗ or simply V ∗.
We can also define the optimal policy based on Qπ, i.e.,

π∗ ← argmax
π∈Π

Qπ.

The optimal action-value function is denoted by Qπ
∗

or Q∗.
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Optimal Policy and Optimal Value Function

Optimal Policy and Optimal Value Function

For the immediate reward maximization problem (finite horizon
with T = 1), it is easy to find the optimal value function.
Recall that π∗(x)← argmaxa∈A r(x, a) (1), so for any x ∈ X ,

V ∗(x) = V π∗(x) = max
a∈A

r(x, a).

It is clear that for any π : X → A,

V ∗(x) = max
a∈A

r(x, a) ≥ r(x, π(x)).

The conclusion would be the same for stochastic policies.
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Optimal Policy and Optimal Value Function

Optimal Policy and Optimal Value Function

When we go to continual tasks (or even finite horizon with T > 1),
we can ask several questions:

Does any optimal policy exist? Maybe no single policy can
dominate all others for all states.
For example, it is imaginable that at best we can only hope to
find a π∗ that is better than any other policy π only on a
proper subset of X .

Is the optimal policy necessarily a stationary policy?
Isn’t it possible to have a policy π̄ = {π1, π2, . . .} that
depends on the time step and acts better than any stationary
policy π̄ = {π, π, . . .}?
More pragmatic question: How can we find an optimal policy
(if it exists)?
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Optimal Policy and Optimal Value Function

Optimal Policy and Optimal Value Function

When we go to continual tasks (or even finite horizon with T > 1),
we can ask several questions:

(Planning Problem) How can we find an optimal policy (if it
exists) given the model P and R?

(RL Problem) How we can learn π∗ (or a close approximation)
without actually knowing the MDP, but only have samples
coming from interacting with the MDP?
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An Instance of an RL Algorithm: Q-Learning

Q-Learning

It takes a while before we learn the necessary background before
facing the first RL algorithms. Before that, let’s have a sneak peak
at one of the most well-known RL algorithms: Q-Learning.
Q-Learning is the quintessential RL algorithm, introduced by
Christopher Watkins [Watkins, 1989, Chapter 7 – Primitive
Learning]. Q-Learning itself is an example of the Temporal
Difference (TD) learning [Sutton, 1988].
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An Instance of an RL Algorithm: Q-Learning

Q-Learning

Require: Step size α ∈ (0, 1]
1: Initialize Q : X ×A → R arbitrary, except that for xterminal, set
Q(xterminal, ·) = 0.

2: for each episode do
3: Initialize X1 ∼ ρ
4: for each step t of episode do
5: At ∼ π(·|Xt),
6: Take action At, observe Xt+1 and Rt
7: Update Q(Xt, At) using the following update rule

Q(Xt, At)← Q(Xt, At)+α

[
Rt + γmax

a′∈A
Q(Xt+1, a

′)−Q(Xt, At)

]
.

8: end for
9: end for
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An Instance of an RL Algorithm: Q-Learning

Q-Learning

Variety of policies can be selected. A commonly-used one is
ε-greedy policy:

At =

{
argmaxa∈AQ(Xt, a) w.p. 1− ε
uniform(A) w.p. ε

Usually the value of ε is small and may go to zero as the agent
learns more about its environment.

Remark

Under certain conditions, including how the learning rate α should
be selected, the Q-Learning algorithm on finite state-action MDPs
can be guaranteed to converge to the optimal action-value
function Q∗.
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Logistics

Course Information

Course Website:
https://amfarahmand.github.io/IntroRL/

Main source of information is the course webpage. Check
regularly!

We will also use Quercus for announcements & grades.

We will use Piazza for discussions.
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Logistics

Course Information

Lectures will be delivered synchronously via Zoom. They will be
recorded and shared for asynchronous viewing.

You may download recorded lectures for your personal academic
use, but you should not redistribute them.

During lectures, please keep yourself on mute, unless you have a
question.

Please refer to http://www.illnessverification.utoronto.ca

in case of illness (you need to fill out an absence declaration form
on ACORN and contact me).

If you require additional academic accommodations, please contact
UofT Accessibility Services: https://studentlife.utoronto.

ca/department/accessibility-services/

I realize that this is an unusually difficult time for all of us. I try to
be as accommodating as possible.
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Logistics

Course Evaluation

This is tentative and may change in the next few days:

Three (3) assignments (15% each, for a total of 45%)

Combination of mathematical derivations, proofs, and
programming exercises.

Research Project (30%)

Research proposal, written report, peer reviewing, and class
presentation.

Take-Home Exam (15%)

Read some seminal papers. (10%)

Short 1-paragraph summary and two questions on how the
method(s) can be used or extended.

Bonus (5%)

First one to find typos, etc. in the lecture notes
Active class participation
etc ... ! 53 / 55
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Logistics

Collaboration and Assignments

Collaboration:

Collaboration on the assignments is not allowed. Each student is
responsible for their own work. Discussion of assignments should be
limited to clarification of the handout itself, and should not involve
any sharing of derivations, pseudocode or code, or simulation results.

You need to form a team of 2-3 members to work on your projects
(the exact number will be determined after finalizing the number of
students enrolled).

Late Submissions (assignments, proposals, reports, etc):

Submissions should be handed in by deadline; a late penalty of 10%
per day will be assessed thereafter (up to 3 days, then submission is
blocked).

Extensions will be granted only in special situations, and you will
need a Student Medical Certificate or a written request approved by
the course coordinator at least one week before the due date.
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