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Introduction

Introduction

So far, we have described methods for computing the optimal
policy based on the computation of the value function.

Only the value function was explicitly represented.

The policy could be computed based on it.

There are methods based on explicit representation of the
policy and optimizing the performance of the agent by
searching in the space of policies.

We call them policy search methods.

Hybrid methods: explicit representation of both value and
policy.
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Policy Parametrization

Policy Parametrization

Consider a stochastic policy πθ : X →M(A) that is
parameterized by a θ ∈ Θ.

The set Θ is the parameter space, e.g., a subset of Rp.

The space of all parameterized policies:

ΠΘ = {πθ : X →M(A) : θ ∈ Θ } . (1)

This space depends on the mapping πθ and Θ.
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Policy Parametrization: Examples

Many choices for how we can parameterize a policy πθ.

A generic example is based on the Boltzmann (or softmax)
distribution.

Given a function fθ : X ×A → R (e.g., a DNN or decision
tree parameterized by θ), the density of choosing action a at
state x is

πθ(a|x) =
exp(fθ(x, a))∫

exp(fθ(x, a′))da′
.
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Policy Parametrization

Policy Parametrization: Examples

A special case would be when fθ(x, a) = φ(x, a)>θ for some
features φ : X ×A → Rp and θ ∈ Rp:

πθ(a|x) =
exp(φ(x, a)>θ)∫

exp(φ(x, a′)>θ)da′
.

When the action space A is discrete, πθ(a|x) denotes the
probability of choosing action a at state x (instead of its
density):

πθ(a|x) =
exp(φ(x, a)>θ)∑

a′∈A exp(φ(x, a′)>θ)
.
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Policy Parametrization: Examples

Another example: πθ(·|x) defining a Normal distribution over
action space with θ parameterization its mean and covariance:

πθ(·|x) = N (µθ(x),Σθ(x)) .

If the action space is dA-dimensional:

Mean: µθ : X → RdA
Covariance: Σθ : X → SdA+ . Here SdA+ refers to the set of
dA × dA positive semi-definite matrices.
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Policy Parametrization

Ease of Work in Continuous Action Spaces

Explicit parameterization of policy allows us to easily choose a
continuous action

For value-based methods, this can be challenging:

Even if we know Q∗, computing the optimal policy
π∗(x) = πg(x;Q∗) requires an optimization problem in A.
This is challenging if A is a high-dimensional space.
VI and PI requires repeated calculation of the greedy policy.

Sure, action selection might be easy!

Question: How can we optimize the performance of a
parametrized policy?
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Performance Measure

Performance Measure

The performance can be measured in various ways.

We focus on the expected return of following πθ, the value
function.

We can also incorporate the variance or some other risk
measures, relatively easily.

Goal: Find a policy that maximizes this performance measure.

We are restricted to choosing policies within ΠΘ (1).
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Performance Measure

Performance Measure on a Single State

Assume that we only care about the performance at state
x ∈ X .

The goal of policy search:

argmax
π∈ΠΘ

V π(x) = argmax
θ∈Θ

V πθ(x). (2)

Interpretation: We are interested in finding a policy that if the
agent starts at this particular state x, its performance,
measured according to its expected return, is maximized.
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Performance Measure

Performance Measure on a Single State

argmax
π∈ΠΘ

V π(x) = argmax
θ∈Θ

V πθ(x).

The optimal policy π∗ not only maximizes the value function
at this particular x, but also at any other x′ ∈ X .

But the optimal policy may not be in ΠΘ.
If π∗ /∈ ΠΘ, we will not be able to find a policy that
maximizes the value at all states.

In that case, we may want to find a policy that is only good at
our starting state x, and ignore the performance at other
states.
The obtained policy is going to be initial-state-dependent. If
we change x to another state x′ 6= x, the optimal policy within
ΠΘ might change.
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Performance Measure with X1 ∼ ρ

Instead of the extreme case of considering a single initial state
x, we can consider when the initial state is distributed
according to some distribution ρ ∈M(X ).

The performance measure would be the average of following
πθ with the initial state X1 ∼ ρ.

J(πθ) = Jρ(πθ) ,
∫
V πθ(x)dρ(x) = EX∼ρ [V πθ(X)] . (3)
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Performance Measure

Performance Measure with X1 ∼ ρ

J(πθ) = Jρ(πθ) ,
∫
V πθ(x)dρ(x) = EX∼ρ [V πθ(X)] .

The optimal policy maximizes Jρ.

Jρ(π
∗) ≥ Jρ(πθ) for any πθ ∈ ΠΘ.

If π∗ /∈ ΠΘ, the inequality is strict.
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Performance Measure

Performance Measure with X1 ∼ ρ

J(πθ) = Jρ(πθ) ,
∫
V πθ(x)dρ(x) = EX∼ρ [V πθ(X)] .

In policy search methods, we aim to find the maximizer of the
performance measure within ΠΘ.

π̄ ← argmax
πθ∈ΠΘ

Jρ(πθ). (4)

The corresponding policy is denoted by θ̄, i.e., π̄ = πθ̄.

For different ρ, we may get different optimizers.

To emphasize the dependence of the maximizer on ρ, we may
use π̄ρ.

We may sometimes denote J(πθ) or Jρ(πθ) simply by Jρ(θ).
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Performance Measure

Policy Search as an Optimization Problem

Question: How can we solve the optimization problem (4) to
find πθ that maximizes the performance measure Jρ?

This is an optimization problem, so we can benefit from the
arsenal of optimization algorithms.

Being an RL problem, however, brings both challenges and
opportunities.

Challenge: The value of Jρ is not readily available, and has to
be estimated through interaction with the environment.
Opportunity: The special structure of the RL problem, such as
the value function satisfying the Bellman equation.
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Policy Search as an Optimization Problem

Optimization methods, broadly speaking, can be categorized
based on the information they need about their objective.

Zero-order methods only use the value of the objective at
various query points.

They compute Jρ(θ) at various θs in order to guide the
optimization process.

First-order methods use the derivative of the objective instead
of, or in addition to, the value of the objective.

They use ∇θJρ(θ) in order to guide the search.
The quintessential first-order optimization method is the
gradient descent (and its stochastic variant).
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Zero-Order Methods

Zero-Order Methods

We first consider the case when the policy parameter space Θ
is finite.

This helps us understand some of the challenges.

We then extend our discussion to case when Θ is continuous
function space.
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Finite Policy Parameter Space

Zero-Order Methods: Finite Policy Parameter Space

Assume that we are given a finite Θ = {θ1, . . . , θm} policy
parameters.

This defines the finite policy space ΠΘ = {πθ : θ ∈ Θ}.
Find the policy πθ ∈ ΠΘ such that Jρ(πθ) is maximized (4).

If we can easily compute Jρ(πθ) for each θ ∈ Θ, this is an
easy problem, at least in principle.

So the main issue is to compute Jρ(πθ).
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Finite Policy Parameter Space

Zero-Order Methods: Finite Policy Parameter Space

The performance measure Jρ(πθ) = EX∼ρ [V πθ(X)], i.e., the
expectation of V πθ(X) w.r.t. X ∼ ρ.

We can try to compute V πθ(x) for all x ∈ X , using any of the
PE methods that we have developed, and take the weighted
average according to ρ.

If X is discrete, this would be

Jρ(πθ) =
∑
x∈X

ρ(x)V πθ(x).

If X is large:

Computing V πθ itself is not going to be easy.
Computing the integral

∫
V πθ (x)dρ(x) is going to be

challenging.
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Finite Policy Parameter Space

Zero-Order Methods: Finite Policy Parameter Space

Alternative: Computing an unbiased estimate of Jρ(πθ)
instead, using MC estimation.

We derive this in two steps.

Assume that we know V πθ , estimate Jρ(πθ).
Replace V πθ (x) with the return Gπθ (x).
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Finite Policy Parameter Space

Zero-Order Methods: Finite Policy Parameter Space

We assume that we know V πθ , and we want to estimate
Jρ(πθ).

If we sample X ∼ ρ, we have that V πθ(X) is an unbiased
estimate of Jρ(ρπ) as

E [V πθ ] =

∫
V πθ(x)dρ(x) = Jρ(πθ).

If we draw n independent samples X1, . . . , Xn ∼ ρ, the
estimator

1

n

n∑
i=1

V πθ(Xi)

would be an unbiased as well.
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Zero-Order Methods: Finite Policy Parameter Space

1

n

n∑
i=1

V πθ(Xi)

Variance:

Var [V πθ(X)]

n
.

This variance goes to 0 as n increases.
The variance Var [V πθ(X)] is a measure of dispersion of the
value function across states samples according to ρ.

If the value function is constant, it will be zero.
If it is changing slowly as a function of the state, it would be
small.
If the value function varies greatly, the variance is large.

The variance is a function of the policy πθ, so for each
πθ ∈ Πθ, we get a different variance. 22 / 86
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Zero-Order Methods: Finite Policy Parameter Space

The second step is to replace V πθ(x) with the return Gπθ(x).

The return Gπθ(x) is an unbiased estimate of V πθ(x).

Computation of Gπθ(x) requires starting the agent from state
x and following πθ (i.e., performing a rollout from x) until the
end of episode for episodic tasks, or until infinity for continual
tasks.

If X ∼ ρ, Gπθ(X) is an unbiased estimate of Jρ(πθ) as

EX∼ρ [Gπθ(X)] = EX∼ρ [E [Gπθ(X) | X]]

= EX∼ρ [V πθ(X)] = Jρ(πθ).
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Zero-Order Methods: Finite Policy Parameter Space

If we draw n independently selected X1, . . . , Xn ∼ ρ, we can
form

Ĵn(πθ) =
1

n

n∑
i=1

Gπθ(Xi), (5)

as an unbiased estimate of Jρ(πθ).
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Finite Policy Parameter Space

Zero-Order Methods: Finite Policy Parameter Space

Proposition

The estimator Ĵn(πθ) (5) is an unbiased estimator for Jρ(πθ) and
has the variance of

Var
[
Ĵn(πθ)

]
=

1

n
(E [Var [Gπθ(X) | X]] + Var [V πθ(X)]) .

If we have a finite number of parameters in Θ, we can
estimate Jρ(πθi) ≈ Ĵn(πθi)±OP ( 1√

n
) for each θi ∈ Θ.

We can use these estimates to select the best among them:

π̂ = πθ̂ ← argmax
θ∈Θ

Ĵn(πθ). (6)
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Zero-Order Methods: Finite Policy Parameter Space

As there is an OP ( 1√
n

) error in estimation of each Jρ(πθ), the

selected policy π̂ may not be the same as the maximizer π̄ of
(4).

The error can happen if Ĵn(π̂) > Ĵn(π̄) (which leads to
preferring π̂ to π̄ according to the empirical performance
measure) even though Jρ(π̂) < Jρ(π̄).

26 / 86



Policy Search Methods

Zero-Order Methods
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Zero-Order Methods: Finite Policy Parameter Space

Even if we make an error in selecting the best policy, the gap
in their performance is within OP ( 1√

n
).

As we increase n, the error in estimating Jρ(πθ) decreases and
the probability of selecting an optimal policy increases.

This increased accuracy, however, is at the cost of increased
sample and computational complexity, which would be n|Θ|
rollouts.
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Zero-Order Methods: Finite Policy Parameter Space

Proposition

Consider π̂ = πθ̂ ← argmaxθ∈Θ Ĵn(πθ) (6). Assume that the
returns Gπθ(x) are all Qmax-bounded for any θ ∈ Θ and x ∈ X .
Furthermore, suppose that |Θ| <∞. For any δ > 0, we have that

Jρ(θ̂) ≥ max
θ∈Θ

Jρ(θ)− 2Qmax

√√√√2 ln
(

2|Θ|
δ

)
n

,

with probability at least 1− δ.
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Random Search

Zero-Order Methods: Random Search

If Θ is not finite, we cannot evaluate Ĵn(πθ) for all θ ∈ Θ.

There are several generic methods for searching in a large
parameter space:

Random Search (RS)
Simulated Annealing
Various evolutionary algorithms
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Random Search

Zero-Order Methods: Random Search

We randomly pick m policy parameters θ1, . . . , θm ∈ Θ.

Evaluate Ĵn(πθi)

Pick the one with the highest value.

Intuition of why this works:

With large enough m, one of θi might hit close to the optimal

θ̂ ← argmax
θ∈Θ

Ĵn(πθ).

If n is large enough, the difference between Ĵn(θ) and Jρ(θ)
would be small for all randomly selected θ.

30 / 86



Policy Search Methods

Zero-Order Methods

Random Search

Zero-Order Methods: Random Search

Require: Distribution ν ∈M(Θ); Number of rollouts n;
Maximum number of iterations K

1: Draw a parameter θ1 = θ′1 ∼ ν
2: Evaluate Ĵn(πθ1)
3: for k = 2, 3, . . . ,K do
4: Draw a parameter θ′k ∼ ν
5: Evaluate Ĵn(πθ′k)

6: if Ĵn(πθ′k) > Ĵn(πθk) then
7: θk ← θ′k
8: else
9: θk ← θk−1

10: end if
11: end for
12: return πθK
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Random Search

Zero-Order Methods: Random Search

We can provide guarantee that RS finds the optimal point,
asymptotically.

RS is not the most efficient way to search a parameter space.

The way it is presented here does not benefit from all previous
evaluation of the function when suggesting a new θ′k.

That knowledge can be useful by helping us focus on more
promising regions of the search space, instead of blindly
sampling from the same distribution ν.

This can be achieved by adaptively changing the distribution
νk to be a function of previous evaluations.
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Evolutionary Algorithms

A large class of optimization methods are inspired by the
process of evolution.

Heritable characteristics of individuals in a population change
over generations due to processes such as natural selection.

The evolution leads to the adaptation of individuals, which
means that they become better to live in their habitat.
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Evolutionary Process for Optimization

Identifying a solution to an optimization problem as an
individual in a population

The value of the function to be optimized for a particular
solution as the fitness of that individual

Emulate the evolution:

Mutation
Reproduction (cross-over)
Selection

There are many variations in how we can do this:

Genetic Algorithms
Genetic Programming
Evolutionary Strategy
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Evolutionary Algorithms

Evolutionary Strategy (ES) (1 + 1)

Require: Initial point θ0 ∈ Θ; Rollouts n; Iterations K
Require: Initial standard deviation of mutation operator: σ1 > 0
Require: Adaptation parameters: c+ > 0 and c− < 0.

1: Evaluate Ĵn(πθ0)
2: for k = 1, 2, . . . ,K do
3: Draw a perturbation η ∼ N (0, I)
4: θ′k ← θk + σkη . Mutation

5: Evaluate Ĵn(πθ′k)

6: if Ĵn(πθ′k) > Ĵn(πθk) then . Selection
7: θk+1 ← θ′k
8: σk+1 ← σke

c+

9: else
10: θk+1 ← θk−1

11: σk+1 ← σke
c−

12: end if
13: end for
14: return πθK 35 / 86
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Evolutionary Strategy (ES) (1 + 1) and Beyond

Evolutionary Strategy (ES) (1 + 1) is one of the simplest
evolutionary algorithms

Similar to RS, but guided choice of randomness
Has some theoretical analysis

A modification of this algorithm is called ES(1, λ) with λ > 1
being an integer number.

The parent θk generates λ offsprings:

θ′k,j = θk + σkηj , j = 1, . . . , λ.

The competition would only be between the offsprings
{θ′k,j}λj=1, and not with the parent. Only one of the λ
offsprings gets to the next generation.
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Beyond Evolutionary Strategy

ES does not have any sexual reproduction.

There are other evolutionary algorithms that have the
reproduction component too, e.g., Genetic Algorithm (GA).

Evolutionary algorithms can be quite complicated algorithms.

Many heuristics, inspired by nature.
Their performance is often evaluated only empirically.
Analyzing them theoretically can be quite complicated.
Current available results are limited to simple algorithms, such
as ES(1 + 1), which may not be the best performing ones in
practice.
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Evolutionary Algorithms and RL

Studying evolutionary algorithms to solve RL problems is a
niche area in the RL community.

Sometimes (often?), they are not considered as a part of the
RL research proper.

Knowing about them is useful!

Both evolution and learning have been crucial adaptation
mechanisms to get to the point where we have relatively
smart species.

Building AI agents with comparable capabilities to animals
may require borrowing ideas from both learning and evolution.

Learning: Within the lifespan of the agent
Evolution: Across generations of the agents
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First-Order Methods and the Policy Gradient

The gradient of Jρ(πθ) w.r.t. θ allows us to design first-order
optimization methods.

Potentially more efficient in finding an optimum of the
performance compared to zero-order methods.

Not obvious how to compute the gradient:

The performance Jρ(πθ) depends on V πθ .
Not a simple function of πθ.
The value function is a complicated function of the policy,
reward distribution R and the transition dynamics P.
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Finite Difference Approximation of the Policy Gradient

Use Finite Difference (FD) approximation of the policy
gradient.

Can be computed using the value of the performance
objective itself.

Recall that given a function f : R→ R, the FD approximation
of the derivative f ′(x) = df

dx (x) is

f ′FD(x) =
f(x+ ∆x)− f(x)

∆x
, (7)

where ∆x is a small number. This is called the forward
difference approximation.

40 / 86



Policy Search Methods

First-Order Methods and the Policy Gradient
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Finite Difference Approximation of the Policy Gradient

By the Taylor’s theorem, assuming twice differentiability, we
have

f(x+ ∆x) = f(x) + f ′(x)∆x+ f ′′(z)|x<z<x+∆x
(∆x)2

2!
.

Therefore,

f ′(x) =
f(x+ ∆x)− f(x)

∆x
− f ′′(z)|x<z<x+∆x

(∆x)2

2!
.

The error between the FD approximation (7) and f ′(x) is∣∣∣∣f ′′(z)∣∣∣x<z<x+∆x

(∆x)2

2!

∣∣∣∣ ,
that is, O((∆x)2).
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Finite Difference Approximation of the Policy Gradient

Central difference approximation:

f ′FD(x) =
f(x+ ∆x)− f(x−∆x)

2∆x
.

Error is O((∆x)3).
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Finite Difference Approximation of the Policy Gradient

To compute the gradient of Jρ(πθ) w.r.t. θ ∈ Rp, we need to
compute 2p evaluations of Jρ:

∇θJρ(πθ) ≈ ∇
(FD)
θ Jρ(πθ) =



Jρ(θ+εe1)−Jρ(θ−εe1)
2ε
...

Jρ(θ+εei)−Jρ(θ−εei)
2ε
...

Jρ(θ+εep)−Jρ(θ−εep)
2ε


,

where ei is a unit vector along dimension i of Rp.
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Finite Difference Approximation of the Policy Gradient

We cannot directly compute Jρ(πθ).

We can only compute Ĵn(πθ) using rollouts.

Replace each Jρ above with their corresponding Ĵn.

This requires 2pn rollouts in total.

Given the approximated gradient, which has error caused by
both the FD approximation and using Ĵn instead of Jρ, we
may use the gradient ascent to move towards higher value of
Jρ(πθ):

θk+1 ← θk + αk∇
(FD)
θ Ĵn(πθk). (8)

Even though this is a feasible approach, we can compute the
gradient more elegantly.
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Policy Gradient for the Immediate Reward Problem

Suppose that we want to find a policy πθ : X →M(A) with
θ ∈ Rp that maximizes the performance for the immediate
reward problem.

Recall that the interaction protocol is

At episode t, Xt ∼ ρ ∼M(X )
The agent chooses action At ∼ πθ(·|Xt)
The agent receives reward Rt ∼ R(·|Xt, At).
The agent starts the new (independent) episode t+ 1.

This is an RL setting as ρ and R are not directly available to
the agent, but only through samples.
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Policy Gradient for the Immediate Reward Problem

Performance Measure

The performance measure is

Jρ(πθ) =

∫
V πθ(x)dρ(x) =

∫
rπθ(x)dρ(x)

=

∫
r(x, a)πθ(a|x)dρ(x)da,

as the value function V πθ for the immediate reward problem is
the same as rπθ .
Considered the action space to be continuous and we assume
that πθ(·|x) provides a density over the state space.
If we had a discrete action space, we would have∫

X
dρ(x)

∑
a∈A

r(x, a)πθ(a|x).

We may switch back and forth between continuous and
discrete action spaces. 46 / 86
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Policy Gradient for the Immediate Reward Problem

Policy Gradient

The gradient of Jρ(πθ) w.r.t. θ:

∇θJρ(πθ) =

∫
r(x, a)∇θπθ(a|x)dρ(x)da

=

∫
dρ(x)

∫
r(x, a)∇θπθ(a|x)da

= EX∼ρ
[∫

r(X, a)∇θπθ(a|X)da

]
. (9)

For discrete action spaces, the inner integral becomes∑
a∈A r(x, a)∇θπθ(a|x).

We call ∇θJρ(πθ) the Policy Gradient (PG).
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Policy Gradient for the Immediate Reward Problem

Improving Performance Measure using Policy Gradient

If we can compute PG, we can update the policy parameters, using
a gradient ascent method:

θk+1 ← θk + αk∇θJρ(πθk), (10)

similar to what we have done using the FD approximation (8).

48 / 86



Policy Search Methods

First-Order Methods and the Policy Gradient

Policy Gradient for the Immediate Reward Problem

Computing the Policy Gradient

∇θJρ(πθ) =

∫
r(x, a)∇θπθ(a|x)dρ(x)da

How can we compute this gradient?

We build this gradually in several steps.

At each step, we relax some assumptions until we get to a
procedure that can use the data available by the interaction
protocol above.
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Policy Gradient for the Immediate Reward Problem

Computing the Policy Gradient – Known ρ and r

∇θJρ(πθ) =

∫
r(x, a)∇θπθ(a|x)dρ(x)da

If we know ρ and r, we have all the necessary information for
computing the gradient.

For each x ∈ X , we compute the summation (or integral) over
all a ∈ A of r(x, a)∇θπθ(a|x).
We weigh that term proportional to ρ(x).
Take average over all x.

But this is not the RL setting described as the interaction
protocol at the beginning of the section.
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Policy Gradient for the Immediate Reward Problem

Computing the Policy Gradient – Known r, unknown ρ

Assume that r is known, but ρ can only be sampled.
Approximately solve this problem by sampling Xi ∼ ρ
(i = 1, . . . , n) and computing

1

n

n∑
i=1

∑
a∈A

r(Xi, a)∇θπθ(a|Xi). (11)

or
1

n

n∑
i=1

∫
r(Xi, a)∇θπθ(a|Xi)da.

As Xi ∼ ρ, this is an unbiased estimate of

∇θJρ(πθ) = EX∼ρ

[∑
a∈A

r(X, a)∇θπθ(a|X)

]
or EX∼ρ

[∫
r(x, a)∇θπθ(a|x)da

]
(continuous).
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Computing the Policy Gradient – Known r, unknown ρ

As Xi ∼ ρ, this is an unbiased estimate of

∇θJρ(πθ) = EX∼ρ

[∑
a∈A

r(X, a)∇θπθ(a|X)

]
or

EX∼ρ
[∫

r(x, a)∇θπθ(a|x)da

]
.

This is still not feasible if r is unknown in our interaction
protocol:

the agent is initialized at state x
it has to choose its action according to A ∼ πθ(·|x).

52 / 86



Policy Search Methods

First-Order Methods and the Policy Gradient

Policy Gradient for the Immediate Reward Problem

Computing the Policy Gradient – Unknown r and ρ

The term ∑
a∈A

r(x, a)∇θπθ(a|x)

can be interpreted as the expectation of

r(x,A)∇θπθ(A|x)

when A is coming from a uniform distribution with q(a) = 1
|A|

(for a ∈ A).

We have∑
a∈A

r(x, a)∇θπθ(a|x) = |A|
∑
a∈A

q(a)r(x, a)∇θπθ(a|x). (12)

Similar for the continuous case.
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Computing the Policy Gradient – Unknown r and ρ

If the actions were coming from a uniform distribution, we
could easily form an empirical estimate of these terms.

But the actions in the interaction protocol comes from
distribution πθ(·|x), which in general is different distribution
than a uniform one.

We have some form of off-policy sampling scenario in the
distribution of actions.

Some approaches to deal with it:

Estimate r̂ ≈ r using data (model-based approach).
Modify r(x,A)∇θπθ(A|x) to a quantity that can be estimated
from data.
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Computing the Policy Gradient – Unknown r and ρ

Observation: for a function f : R→ R, we have

d log f(x)

dx
=

df
dx (x)

f(x)
,

or more generally, for a function f : Rp → R,

∇x log f(x) =
∇xf(x)

f(x)
.
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Computing the Policy Gradient – Unknown r and ρ

Using this observation, we get∫
r(x, a)∇θπθ(a|x)da =

∫
r(x, a)πθ(a|x)∇θ log πθ(a|x)da

= EA∼πθ(·|x) [r(x,A)∇θ log πθ(A|x)] .

The desired quantity can be written as the expectation of

r(x,A)∇θ log πθ(A|x)

when A ∼ πθ(·|x).

The sampling distribution is the same as the one agent uses
to choose its actions.

We are in the on-policy sampling scenario over the choice of
actions.
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Computing the Policy Gradient – Unknown r and ρ

If X ∼ ρ and A ∼ πθ(·|X), the random variable

r(X,A)∇θ log πθ(A|X) (13)

is an unbiased estimate of ∇θJρ(πθ), i.e.,

∇θJρ(πθ) = E [r(X,A)∇θ log πθ(A|X)]

= EX∼ρ
[
EA∼πθ(·|X) [r(X,A)∇θ log πθ(A|X) | X]

]
.

(14)

We can estimate the gradient of the performance w.r.t. the
parameters of the policy using data available through the
interaction of the agent with its environment.

We may use this estimate in (10) to update the policy
parameters using unbiased but noisy estimate of the gradient.

This makes it a stochastic gradient ascent.
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Two Sources of Variance

r(X,A)∇θ log πθ(A|X)

Unbiased estimate of the gradient

But it has variance due to two sources of randomness:

Variance of estimating

g(x; θ) , EA∼πθ(·|X) [r(X,A)∇θ log πθ(A|X) | X = x]

with a single sample r(X,A)∇θ log πθ(A|X).
Variance of estimating EX∼ρ [g(X; θ)] using a single sample.
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Two Sources of Variance

r(X,A)∇θ log πθ(A|X)

One can show that the variance along the i-th dimension of
this r.v. is

Var

[
r(X,A)

∂ log πθ(A|X)

∂θi

]
=

EX∼ρ
[
Var

[
r(X,A)

∂ log πθ(A|X)

∂θi
| X
]]

+ VarX∼ρ [gi(X; θ)] .

(15)
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Two Sources of Variance

Let us define

g(x; θ) = EA∼πθ(·|x) [r(x,A)∇θ log πθ(A|x)] . (16)

The function g : X ×Θ→ Rp is the gradient of rπθ w.r.t. θ
at state x, and is a p-dimensional vector.

If we knew r(x, a) and we could compute g(x; θ), we wouldn’t
have the first source of variance, but we still would have the
second one.

The variance would be

VarX∼ρ [gi(X; θ)] .

These two sources of variance make our estimate of the
gradient inaccurate.

There are ways to reduce them.
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Variance Reduction – Randomness of States

Suppose we can compute g(x; θ) exactly for any given x ∈ X .
Instead of a single sample g(X1; θ), we use multiple
independent samples X1, . . . , Xn, all distributed according to
ρ, to estimate the PG:

∇θJρ(πθ) ≈
1

n

n∑
i=1

g(Xi; θ)

=
1

n

n∑
i=1

EA∼πθ(·|Xi) [r(Xi, A)∇θ log πθ(A|Xi)] .

The variance of this estimator, along dimension i, is

1

n
VarX∼ρ [gi(X; θ)] .

As n→∞, the variance goes to zero. This leads to more
accurate estimate of the PG, hence more accurate update of
the policy.
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Variance Reduction – Randomness of Actions

Consider the variance of estimating g(x; θ) (16) using a single
sample r(x,A)∇θ log πθ(A|x) with A ∼ πθ(·|x).
For each dimension i, we have

E
[
∂ log πθ(A|x)

∂θi
b(x) | x

]
=

∫
πθ(a|x)

∂ log πθ(a|x)

∂θi
b(x)da

=

∫
∂πθ(a|x)

∂θi
b(x)da

= b(x)

∫
∂πθ(a|x)

∂θi
da

= b(x)
∂

∂θi

∫
πθ(a|x)da︸ ︷︷ ︸

=1

= 0.
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Variance Reduction – Randomness of Actions

This shows that

E
[
∂ log πθ(A|x)

∂θi
r(x,A) | x

]
= E

[
∂ log πθ(A|x)

∂θi
(r(x,A) + b(x)) | x

]
.

(17)

Adding a state-dependent function b : X → R to r(x, a) does
not change the expectation.

But it may change the variance!
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Variance Reduction – Randomness of Actions

For each dimension i of the PG, we can use a different
state-dependent function.

For any state-dependent function b : X → Rp, the PG (14) is

∇θJρ(πθ) = E [r(X,A)∇θ log πθ(A|X)] =

E [(r(X,A)1 + b(X))�∇θ log πθ(A|X)] ,

where 1 is a p-dimensional vector with all components equal
to 1, and � is a pointwise (Hadamard) product of two
vectors, i.e., for u, v ∈ Rp, [u� v]i = uivi.

If we simply choose a scalar function b, which is often the case
in practice, we have

∇θJρ(πθ) = E [(r(X,A) + b(X))∇θ log πθ(A|X)] .

The function b is called the baseline.
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Variance Reduction – Randomness of Actions – Baseline

The baseline can be used in order to minimize the variation of
p-dimensional random vector.

We use the variance for this purpose.

We would like to find a function b : X → Rp such that for all
x ∈ X ,

min
b

p∑
i=1

Var

[
(r(x,A) + bi(x))

∂ log πθ(A|x)

∂θi
| x
]

=

Tr Cov ((r(X,A)1 + b(x))�∇θ log πθ(A|x) | x)
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Variance Reduction – Randomness of Actions – Baseline

bi(x) =

−E
[
r(x,A)

(
∂ log πθ(A|x)

∂θi

)2
| x
]

E
[(

∂ log πθ(A|x)
∂θi

)2
| x
] . (18)

We could choose a single scalar function b : X → R instead. In
that case, the solution would be

b(x) =
−E

[
r(x,A) ‖∇θ log πθ(A|x)‖22 | x

]
E
[
‖∇θ log πθ(A|x)‖22 | x

] .

66 / 86



Policy Search Methods

First-Order Methods and the Policy Gradient

Policy Gradient for Continuing Tasks

Policy Gradient for Continuing Tasks

We derive the PG for continuing tasks.

The difference with the immediate reward case is that the
performance Jρ(πθ) depends on the dynamics Pπθ too.

As we change θ, the dynamics Pπθ changes as well.

This seems to complicate the gradient computation.

It turns out that despite this challenge, the PG can be written
in an elegant, and relatively easy to compute, form.
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Discounted Future-State Distribution

New notations to present the results more compactly.

Recall that Pπ(·|x; k) = Pπ(·|x)k is the probability
distribution of following policy π for k ≥ 0 steps.

We introduce discounted future-state distribution of starting
from x ∈ X and following π as

ρπγ (·|x) = ργ(·|x;Pπ) , (1− γ)
∑
k≥0

γkPπ(·|x; k). (19)

It is easy to verify that ρπγ (·|x) is a valid probability
distribution, e.g., ρπγ (X|x) = 1.
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Discounted Future-State Distribution

The relevant of this distribution becomes more clear if we
note that

V π(x) = E

∑
t≥0

γtRt|X0 = x


=
∑
t≥0

γtE [Rt|X0 = x]

=
∑
t≥0

γt
∫
Pπ(dx′|x; t)r(x′)

=
1

1− γ

∫
ρπγ (dx′|x)r(x′) =

1

1− γ
EX′∼ρπγ (·|x)

[
r(X ′)

]
.

The value function at a state x is the expected reward when
X ′ is distributed according to ρπγ (·|x).
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Discounted Future-State Distribution

Interpretation: The agent starts from state x and at each
time step, it decides to follow π with probability γ or
terminates the episode with probability 1− γ.

We can also define discounted future-state distribution of
starting from ρ and following π as

ρπγ (·) = ργ(·|Pπ) ,
∫
ργ(·|x;Pπ)dρ(x).

The performance measure J(πθ) (3) is

J(πθ) = EX∼ρ [V πθ(X)] =
1

1− γ
EX∼ρπγ [r(X)] .
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Policy Gradient Theorem

Theorem (Policy Gradient Theorem – Sutton et al. 2000)

Assume that πθ is differentiable w.r.t. θ ∈ Θ. We have

∇θJρ(πθ) =∑
k≥0

γk
∫

dρ(x)Pπθ(dx′|x; k)

∫
∇θπθ(a′|x′)Qπθ(x′, a′)da′ =

1

1− γ

∫
ρπθγ (dx)

∫
πθ(a|x)∇θπθ(a|x)Qπθ(x, a)da =

1

1− γ
E [∇θ log πθ(A|X)Qπθ(X,A)] ,

with X ∼ ρπθγ , A ∼ πθ(·|X).
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Policy Gradient Theorem – Proof

We write the value function at state x ∈ X as the expected value
of the action-value function, i.e.,

V πθ(x) =

∫
πθ(a|x)Qπθ(x, a)da.

We take its derivative w.r.t. θ and use the product rule to get

∇θV πθ(x) =

∫
[∇θπθ(a|x)Qπθ(x, a) + πθ(a|x)∇θQπθ(x, a)] da.

(20)
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Policy Gradient Theorem – Proof

As Qπθ(x, a) = r(x, a) + γ
∫
P(dx′|x, a)V πθ(x′),

∇θQπθ(x, a) = γ

∫
P(dx′|x, a)∇θV πθ(x′).

This alongside with (20) gives us the recursive Bellman-like
equation for the gradient of V πθ(x):

∇θV πθ(x) =

∫
∇θπθ(a|x)Qπθ(x, a)da+ γ

∫
Pπθ(dx′|x)∇θV πθ(x′).

(21)
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Policy Gradient Theorem – Proof

Expanding ∇θV πθ(x′) likewise, we get that

∇θV πθ(x) =

∫
∇θπθ(a|x)Qπθ(x, a)da+

γ

∫
Pπθ(dx′|x)

[
∇θπθ(a′|x′)Qπθ(x′, a′)da′+

γ

∫
Pπθ(dx′′|x′)∇θV πθ(x′′)

]
.

Following this pattern recursively, we get that

∇θV πθ(x) =
∑
k≥0

γk
∫
Pπθ(dx′|x; k)

∫
∇θπθ(a′|x′)Qπθ(x′, a′)da′

=
1

1− γ

∫
ρπθγ (dx′|x)

∫
∇θπθ(a′|x′)Qπθ(x′, a′)da′.
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Policy Gradient Theorem – Proof

Also since ∇θπθ(a′|x′) = πθ(a
′|x′)∇θ log πθ(a

′|x′), we can write
the gradient as

∇θV πθ(x) =

1

1− γ

∫
ρπθγ (dx′|x)

∫
πθ(a

′|x′)∇θ log πθ(a
′|x′)Qπθ(x′, a′)da′ =

1

1− γ

∫
ρπθγ (dx′|x)EA′∼πθ(·|X′)

[
∇θ log πθ(A

′|X ′)Qπθ(X ′, A′)
]
.
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Policy Gradient Theorem – Proof

As Jρ(πθ) =
∫
V πθ(x)dρ(x), taking the average of x w.r.t. ρ, we

get that

∇θJρ(πθ) =
1

1− γ

∫
ρπθγ (dx)

∫
πθ(a|x)∇θπθ(a|x)Qπθ(x, a)da

=
1

1− γ
E X∼ρπθγ
A∼πθ(·|X)

[∇θ log πθ(A|X)Qπθ(X,A)] ,

which is the desired result.
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Policy Gradient Theorem

This theorem provides an elegant formula for the PG.

It relates the PG to the discounted future-state distribution
ρπθγ , the action-value function Qπθ(x, a), and the gradient of
πθ.
To compute the PG in the RL setting, we have to estimate it
using samples. If we get

a state X sampled from ρπθγ ,
an action A sampled from πθ(·|X), and
know action-value Qπθ (X,A),

the random variables

∇θ log πθ(A|X)Qπθ(X,A)

is an unbiased estimate of the PG (cf. (13)).

We can then use it in an SGD scheme to improve the policy.
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Sampling X from ρπθγ

Sampling from ρπθγ is relatively straightforward in the on-policy
sampling scenario when the agent follows πθ.

The agent starts an episode from X0 ∼ ρ and follows πθ.

We get a sequence of states X0, X1, . . . .

These would be samples from
∫

dρ(x)Pπθ(·|x; k) for
k = 0, 1, . . . .

The distribution ρπθγ , however, has a γk factor for the k-th
time step, see (19).

Its effect is that the contribution to the gradient from Xk,
which is

E [∇θ log πθ(A|X)Qπθ(X,A)] =

∫
πθ(a|x)∇θπθ(a|x)Qπθ(x, a)da,

should be weighted by γk.
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Sampling X from ρπθγ

Another way to directly sample from ρπθγ is to follow π, but at
each step terminate the episode with probability 1− γ.
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Sampling A from πθ(·|X)

An action A sampled from πθ(·|X) is automatically generated
when the agent follows policy πθ (on-policy).
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Computation of Qπθ(X,A)

The remaining issue is the computation of Qπθ(X,A) for
X ∼ ρπθγ and A ∼ πθ(·|X) using data.

This is essentially a PE problem, and we may use various
action-value function estimators that we have developed so
far.
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Computation of Qπθ(X,A)

A simple approach: Use the MC estimate Qπθ(X,A). This
would lead to what is known as the REINFORCE algorithm
by Williams [1992].1

In the on-policy setting when the agent follows πθ, it generates
the sequence X0, A0, R0, X1, A1, R1, . . . with At ∼ πθ(·|Xt).
The return Gπt =

∑
k≥t γ

k−tRk is an unbiased estimate of
Qπθ(Xt, At).
We replace the action-value function at that state-action with
this return from time t onward.
The return, however, is a high variance estimate of the
action-value function.
One approach is to use a baseline in order to reduce the
variance of this MC estimate.

1REINFORCE stands for REward Increment × Nonnegative Factor × Offset
Reinforcement × Characteristic Eligibility.
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Computation of Qπθ(X,A) – Actor-Critic Methods

Another approach is to use an action-value function estimator
instead.

TD methods
LSTD
Fitted Value Iteration (for PE, and not for Control)

Such a method is called actor-critic method

The actor refers to the policy (and often PG method to
improve it)
The critic refers to the value function estimator used to
criticize the policy (actor).
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Computation of Qπθ(X,A) – Actor-Critic Methods

The use of a critic, however, may induce a bias as

E
[
Q̂πθ(X,A)|X,A

]
may be different from Qπθ(X,A),

especially if we use a TD method (which introduces bias
because of bootstrapping) or a function approximator (for
large state-action spaces).

Such a method would explicitly represent both policy and
value function.

Actor-critic methods bring together some of the benefits of
both value-based and policy search methods.
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Summary

Policy Search Methods: Explicit representation of the policy
and searching within the policy space

The search might be guided by the zero-order or first-order
methods

We may sometimes constraint the change of the policy update

Policy gradient is only a local information. We should not
make a large move.
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