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Structural Properties of Markov Decision Processes

I
Goal

We study some important properties of value functions and MDPs.

m Bellman equation
m Bellman operator
m Monotonicity
m Contraction
m Focus on discounted tasks
m We show important consequences such as

m The uniqueness of the solution to the Bellman equations
m Error bounds on value error

m Fixed point of T is the optimal value function

We refer to these frequently in studying and analyzing
RL/Planning algorithms.
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Consider the sequence of rewards (Ri, Ra, ...) generated after the
agent starts at state X; = x and follows policy 7. Given the
discount factor 0 < v < 1, the return is

Gzr = Z ’}/k_tRk.
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Recursive Property of Return

Comparing GT and GT, |, we observe that
t =Ry +7Gyq. (1)

Interpretation: The return at the current time is equal to the
immediate reward plus the discounted return at the next time step.

m Return is a random variable (r.v.).

m If we repeat the experiment from the same state z, the return
would be different.

m Its distribution, however, is the same.
m Q: When would it be the same?
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From Return to the Bellman Equation

We take (conditional) expectation of G} (conditioned on state z),
and expand the return as in (1):

Vi(z) =E[G] | X¢ = ]

=E[R: +1G} | | X; = x]

=E[R(X¢, Ay) | Xy = 2] +9E [GF,, | Xi = 2]

r™(2) +E [V (Xe1) | Xe = 2] (2)

Neither side is random anymore!
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Bellman Equations for Value Functions of a Policy
Expanding E [V (X¢11) | X¢ = 7]

What does E [V™(Xy41) | X¢ = 2] mean?
It is the expected value of V™(X;y1) when

m the agent is at state x at time ¢

m chooses action A ~ 7(+|z)

m goes to a state Xy ~ P(-|x, A)
That is:

BV (X)) | Xe =] = [ P(delo,a)n(dao)V (@), (3)
For countable state-action spaces, we have

E[V™(Xy1) | Xp = 2] = ZP |, a)m(alz)V™ ().

71
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Bellman Equation for a Policy 7

By (2) and (3), we get that for any = € X', we have
VT(x) =r"(x) + ’y/P(dx/|m,a)7r(da|:z)v7r(a:'). (4)

This is the Bellman equation for a policy 7.

Interpretation: The value of following a policy 7 starting from the
state x is the reward that the 7-following agent receives at that
state plus the discounted average (expected) value that the agent
receives at the next-state.
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Bellman Equation for a Policy 7

Using the notation of P™:
VTi(x) =r"(z) + V/P”(dx’\a?)vﬂ(x').
Or even more compactly,

VT =rT 4PV,

Recall that (P™)(Alz) £ [ P(dy|z, 7(x))lye -
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Bellman Equation for a Policy 7 (Q™)

The Bellman equation for the action-value function Q™:
Q™ (z,a) =r(z,a) + V/P(dx’hv, a)V7™(z")

=r(z,a) + V/P(dx’|ac, a)m(dd'|2")Q™ (z',a’).  (5)

More compactly:
Q" =r+~PVT,
with the understanding that V™ and Q™ are related as

V7(z) = fﬂ'(da|x)Q”(:c,a).

The difference with the Bellman equation for V™ is that the choice
of action at the first time step is pre-specified, instead of being
selected by policy .
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Optimal Policy and Value Function

P V(= V)
/M

/\/\V“
e

xT

Recall that the optimal policy 7* is a policy that satisfies 7* > 7
for any (stationary Markov) policy . It satisfies

7" «— argmax V.
mell

Given an optimal policy, the optimal value function would be V™ .
11/71
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Bellman Equations for Optimal Value Functions

Does the optimal value function V™ satisfy a recursive relation
similar to the Bellman equation for a policy 7?

Short answer: Yes!
But we have to be a bit careful. Why?! We have to go through a

few steps of argument.

12/71
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Bellman Equations for Optimal Value Functions

The argument goes through three claims:

There exists a unique value function V* that satisfies the
following equation: For any x € X, we have

V*(2) = max {r(:z:, a) + 7 / P(da|z, a)V*(:B')} . (6)

acA

This equation is called the Bellman optimality equation for
the value function.

V* is indeed the same as V™', the optimal value function
when 7 is restricted to be within the space of stationary
policies.

For discounted continuing MDPs, we can always find a
stationary policy that is optimal within the space of all
stationary and non-stationary policies.

. . *
In summary: V* exists and is equal to V™ .
13/71
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Bellman Equations for Optimal Value Functions (Q*)

Optimal action-value function:

@ (.0) = r(wa) + 7 [ P, max @@ ). (1)
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Solutions of the Bellman Equations?

We have defined the Bellman equations for a fixed policy 7w and
the Bellman optimality equation. Some reasonable questions:

m Is there only one solution V™ (or Q™) satisfying (4) and (5)7
m Is there only one solution V* (or Q*) satisfying the Bellman
optimality equations (6) and (7)?
We shall prove that their solutions are unique. We need some tools
before doing so.
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Optimal Policy from the Optimal Value Function

m If we know V* or Q*, we can find the optimal policy 7*.
m It is a deterministic policy.

m For any x € X, the optimal policy is

() = argmax Q*(x, a)
acA

= argmax {r(a:, a) + / P(da|z, a)V*(a:')} .

acA
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Optimal Policy from the Optimal Value Function

(o) = argmax {r(m, o) + fy/P(dx’\x, a)V*(x’)} .

Interpretation: Suppose that the agent is at state z. To act
optimally,

m It needs to act optimality both at the current time step (Now)
and in the Future time steps.

m Suppose that we know that the agent is going to act
optimally in the Future. This means that when it get to the
next state X' ~ P(-|z,a),

m it follows the optimal policy 7*.
m The value of following the optimal policy is going to be
V*(X7).

m (continued ...)
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Optimal Policy from the Optimal Value Function

7*(z) = argmax {m, a) + ’y/P(dx’kc, a)V*(ac')} .

acA
Interpretation: Suppose that the agent is state . To act optimally,

m Since we do not know where the agent will be at the next
time step, the expected performance of acting optimally in the
Future is [ P(da/|z,a)V* ().

m As we are dealing with discounted tasks, the performance of
the agent at the current state x is going to be
r(z,a) +v [ P(d'|z, a)V* ().

m To act optimally Now, the agent should choose an action that

maximizes this value.
18/71



Structural Properties of Markov Decision Processes

—From Optimal Value Function to Optimal Policy through Greedy Policy

Greedy Policy
The mapping that selects an action by choosing the maximizer of
the (action-) value function is called the greedy policy.
m For Q € B(X x A), the greedy policy
Tg: X X B(X x A) = Als

mg(2; Q) = arggax Q(z,a).

m For V € B(X), the greedy policy is
mg(z; V') = argmax {r(a:, a) + V/P(dx/\a:, a)V(a:’)} .
acA

m We use my(V) and my(Q) to denote functions from X to A.
m 7y (V*) =7my(Q%) = 7.

19/71
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Greedy Policy

Intuition behind the greedy policy:
m Action selection based on the local information.
m Does not look at all future possibilities

m Only one step ahead (for V') or even no-step ahead (for Q) in
order to pick the action. This is myopic.

m Given V* or Q*, however, the selected action is going to be
the optimal one.

m This is because the optimal value functions encodes the
information about the future, so we do not need to explicitly
consider all possible futures.

20/71
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Bellman Operators

m The Bellman equations can be seen as the fixed point equation
of certain operators known as the Bellman operators.

m What this means become clear soon.

m Recall that an operator (or mapping) L : Z — Z takes a
member of space Z and returns another member of Z.

mif Z=Rand L:z~ 22 So L(5) = 25 (this is the usual
function).

m If Z is the space of smooth functions defined on domain R,
d

L:zw— I % is the differentiation operator. So

L(sin(z)) = cos(x).

21/71
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Bellman Operators

Definition (Bellman Operators for policy )

Given a policy 7 : X — M(.A), the Bellman operators
T™ : B(X) = B(X) and T™ : B(X x A) = B(X x A) are defined
as the mapping
(T™V)(z) £ r™(x) + ’V/P(dx'\x,a)w(da\x)V(w’),
(T Q)@.0) 2 r(z,0) + 7 [ Pl ayr(da|a)Q(a' ),

defined for all x € X' (for V') or all (z,a) € X x A (for Q).
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Bellman Operators

If 7 is deterministic:
(T™V)(z) & r™(x) + 7/P(dw’]a:, 7(z))V (2),

(T™Q)(z,a) 2 r(z,a) + W/P(da:'zv, a)Q(2',m(2")).

23 /71
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Bellman Operators and Bellman Equation

Recall that
V™(z) =7r"(z) + V/P(da}’]w, a)w(dalx)V™ ('),
Q" (z,a) = r(z,a) + 4 / P(de’ |z, a)r(dd' | Q" (o', o).

Using the Bellman operator T™, we can write them compactly as

VTK' — TT{'VTI"
Qﬂ' — Tﬂ'Qﬂ"

This is a compact form of Bellman equations.

24 /71
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Bellman Optimality Operators

Definition (Bellman Optimality Operators)

The Bellman operators T* : B(X) — B(X) and
T* : B(X x A) = B(X x A) are defined as the mapping

(TV)(x) £ max {T(az, a) + / P(da|z, a)V(:E/)} :

(T"Q)(z,0) 2 (2,0 +7 [ P(&o'le,0) maxQ(e', ),

defined for all z € X (for V') or all (z,a) € X x A (for Q).

25 /71
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Bellman Optimality Operators and Bellman Optimality
Equation

Comparing with
Vi(z) = max {r(m, a) + V/P(daﬂx, a)V*(x')} ,
Q*(z,a) = r(z,a) + ’V/P(dx'ma) glgﬁ@*(x’,a’),
we see that

V* — T*V*,
Q* — T*Q*'

26/71
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Properties of the Bellman Operators

The Bellman operators have some important properties. The
properties that matters for us the most are

m Monotonicity
m Contraction
They are used in

m basic proofs such as the existence and uniqueness of the
solution to the Bellman equations.

m (directly or indirectly) design of many RL/Planning
algorithms.
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Monotonicity

For two functions Vi, V5 € B(X), we use V4 < V5 if and only if
Vi(z) < Va(z) for all z € X.

V(z)
Vi
/”\_/\
Vs

m V3<Viand V3 < V5,
m Neither Vo < V7, nor V; < V5.

28 /71
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Monotonicity

Lemma (Monotonicity)

Fix a policy w. If V1,Va € B(X), and Vi <V, then we have

T™V) < T7™Vs,
V1 < T*Vs.

29/71
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Monotonicity (Proof)

We only prove the first claim. Let us expand T7Vi. As
Vi(2") < Va(a') for any 2/ € X, we get that for any z € X,

(T™VA)(x) = ™ (x) + 7 / P (da’|x) Vi (&)
<Va(z')

< (@) + 7 / P (de’|e)Va(a!) = (T7Va) (a).

Therefore, T™V, < T™V5.

30/71
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Contraction Mapping and Banach Fixed Point Theorem

Let us review some mathematical background before proving that
the Bellman operators are contraction. We quote several results
from Hunter and Nachtergaele [2001].

31/71
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Definition (Metric)

A metric or a distance function on Z is a function d: Z x Z — R
with the following properties:

m d(z,y) >0 for all z,y € Z; and d(x,y) = 0 if and only if
T =y.
m d(z,y) =d(y,x) for all z,y € Z (symmetry).

md(z,y) <d(z,z)+d(zy) for all z,y,z € Z (triangle
inequality).

A metric space (Z,d) is a set Z equipped with a metric d.

Example

Let Z =R and d(z,y) = |x — y|. These together define a metric
space (R, d).

32/71
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Definition (Norm)

A norm on a linear space Z is a function ||-|| : Z — R with the
following properties:

m (non-negative) For all x € Z, ||z|| > 0.
m (homogenous) For all z € Z and X € R, | A\z] = || ||z]|.
m (triangle inequality) For all z,y € Z, ||z + y|| < ||| + ||y]|-

m (strictly positive) If for a x € Z, we have that ||z|| =0, it
implies that « = 0.

Remark

We can use a norm to define a distance between two points in a
linear space Z by defining d(x,y) = ||x — y||. This gives us a
metric space (Z,d).

33/71
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Norm

Let Z =R? (d > 1). The following norms are often used:

34/71
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Norm

Example

Consider the space of continuous functions with domain [0, 1]. It is
denoted by C([0, 1]). This plays the rule of Z. We define the
following norm for a function f € C([0, 1]):

[flloe = sup |f(2)]-

z€[0,1]

This is called the supremum or uniform norm. Given this norm,
(C([0,1]), ||/l s) would be a normed linear space.

35/71
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Norm

For V e B(X) and Q € B(X x A), their supremum norms are

[Vl[oo = sup [V(2)],
reX

1Rl = sup  |Q(z,a)],

(z,a)eXxA

36 /71
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Contraction Mapping

Definition (Contraction Mapping)

Let (Z,d) be a metric space. A mapping L: Z — Zis a
contraction mapping (or contraction) if there exists a constant

0 < a < 1 such that for all z1, z0 € Z, we have

d(L(z1), L(22)) < ad(z1, 2z2).

Zl?
/-\ LZl
& L "~
i I
LSS
] 5
N
v
z oV
2@ LZQ
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Contraction Mapping

Example

Let Z =R and d(z1, 22) = |21 — 22|. Consider the mapping
L:zw— az fora e R.
For any z1, z0 € R, we have

d(L(z1), L(22)) = |L(21) — L(22)| = |az1 — az;|

= lal|z1 — 22| = |ald(z1, 22).

So if |a| < 1, this is a contraction mapping.
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Why Do We Care About Contraction Mapping?

Two main reasons:
m It describes the stability behaviour of a dynamical system.

m Sometimes can be used to solve equations.

39/71
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Review of Contraction Mapping and Its Properties
Why Do We Care About Contraction Mapping?

As an example of its relation to stability, let zyp € Z and consider a
mapping L : z — az for some a € R. Define the dynamical system

Zk+1:LZk, kZO,l,....
The dynamical system described by this mapping generates

Z0
Z1 = azp

Zo = az1 = a 2o

Zk = QR—1 — akzo.

40/71
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Why Do We Care About Contraction Mapping?

2k = a* 2.

m If |a| <1, z; converges to zero, no matter what zy is.

m If a = 1, we have z; = z9. So depending on zg, it converges
to different points.

m For a = —1, the sequence would oscillate between +z and
—20.

m If |a| > 1, the sequence diverges (unless zyp = 0).

The case of converge is the same as the case of L being a
contraction map.

41/71
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Why Do We Care About Contraction Mapping?

Definition (Fixed Point)
If L:Z — Z, then a point z € Z such that

Lz=2

is called a fixed point of L.

Given an equation f(z) = 0, we can convert it to a fixed point
equation Lz = z by defining L : z — f(z) + 2. Then, if Lz* = 2*
for a z*, we get that f(z*) =0, i.e., the fixed point of L is the
same as the solution of f(z) = 0.
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Banach Fixed Point Theorem

Theorem (Banach Fixed Point Theorem)

If L : Z — Z is a contraction mapping on a complete metric space
(Z,d), then there exists a unique z* € Z such that Lz* = z*.
Furthermore, the point z* can be found by choosing an arbitrary
2o € Z and defining zx11 = Lzi. We have z, — 2*.
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Simple Exercise

Exercise

Suppose that we want to solve cz +b = 0 for z € R and constants
c,beR.
m Choose a mapping L : R — R such that its fixed point is the
same as the solution of this equation.
m For what range of c is this mapping a contraction?

m Letc=—0.5 and b = 1. If we start from zy = 0, what is the
sequence of zy, z1, z2 that we obtain by computing
21 = Lzg?
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Bellman Operator is a Contraction

Lemma (Contraction)

For any m, the Bellman operator T™ is a y-contraction mapping.
The Bellman optimality operator T is a ~y-contraction mapping.
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Contraction

Bellman Operator is a Contraction (Proof)

We only show it for the Bellman operator

T7 : B(X x A) — B(X x A).

Consider two action-value functions @1, Q2 € B(X x A). Consider
the metric d(Q1,Q2) = ||Q1 — Q2]|,. We show the contraction
w.r.t. this metric.

For any (z,a) € X x A, we have

(T7Q1)(z,a) — (T7Q2)(z,a)| =
[r(x,a) +’V/P(da:/\:c,a)w(da’|x’)Q1(a:’,a’)] —

[r(:z,a) +y / P(dx'|x,a)ﬂ'(da'x')QQ(:r,’,a’)} |

— ’/P(dx’x, a)m(dd'|z") (Q1(2', ) — Qa(a, a’>)‘ :

46 /71
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'— Properties of the Bellman Operators
Contraction

Bellman Operator is a Contraction (Proof)

Let us upper bound the RHS.
We have an integral of the form | [ P(dz)f(x)| (or a summation
|>=, P(z)f(z)| for a countable state space). This can be upper

bounded as
[ ranso) < [1Pansa) = [1paolise
sl/mP(dx)sup!f<xM

reX

4wu/Pm £l »

zeX

where we used [ P(dz) = 1.

47 /71
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Contraction

Bellman Operator is a Contraction (Proof)
In our case, we get that
(T7Q1)(z,a) — (T7Q2)(z,a)| =
| [ Pt amtaale) (@ule' ) - Qute' o)

< V/P(dx’\x,a)ﬂ(da’]x') |Q1(2',d") — Qa(2', )|

<71Q1 - Qell, [ Pl a)a(des)

=7 ”Ql - Q2Hoo :
This inequality holds for any (z,a) € X x A, so it holds for its

supremum over X x A too, i.e.,
[(T7Q1) — (T7Q2) oo <V 1Q1 — Q2| -

: - :
This shows that T™ is a ~-contraction. i
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Consequences of Monotonicity and Contraction

Bellman operators are
m Monotonic
m y-contraction
Several consequences:
m Bellman equations have unique fixed points.
m Error bounds on the difference between V' and V* when
VaT*V.

m V* is the optimal value function V™.
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Uniqueness of Fixed Points

Proposition (Uniqueness of Fixed Points)
The operators T™ and T™* have unique fixed points, denoted by V'™
and V*, i.e.,
VT =TV,
v =T*V*,
They can be computed from any Vy € B(X) by iteratively

computing Vi1 < T*Vy, (and similar for V™ using T™ instead) for
k=0,1,.... We have that Vi, — V* (and similarly, Vj, — V™).

The same result is true for Q™ and Q*.

50/71



Structural Properties of Markov Decision Processes
— Consequences of Monotonicity and Contraction
Uniqueness of Fixed Points

Uniqueness of Fixed Points (Proof)

m Consider the space of bounded functions B(X) with the metric
d based on the uniform norm, i.e., d(Vi,V2) = ||[Vi — V2 .
The space (B(X),d) is a complete metric space.

m For any 7, the operator T™ is a «y-contraction. Likewise, T
has the same property too (Lemma 13).

m By the Banach fixed point theorem (Theorem 12), they have
a unique fixed point. Moreover, any sequence (V) with
Vo € B(X) and Viyq1 < T™Vi, (k=0,1,...) is convergent,
which means that limj_, ||V — V7|, = 0.
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Uniqueness of Fixed Points

Value of the Greedy Policy of V* is V*

We have T™V* =T*V* ifand only if V™ = V*.

The statement and the proof is from Proposition 2.1.1(c)
of Bertsekas 2018.
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Uniqueness of Fixed Points
. * - 2
Value of the Greedy Policy of V* is V* (Proof)

Proof of T"V* =T*V* = VT =V™*:

Assume that T"V* = T*V*.

As V* is the solution of the Bellman optimality equation, we have
T*V* = V*. Therefore,

TV = T"V* = V™.

This shows that V* is a fixed point of T7.

The fixed point of T, however, is unique (Proposition 14) and is
equal to V™.

So V™ and V* should be the same, i.e., V™ = V*,
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Uniqueness of Fixed Points
. * - 2
Value of the Greedy Policy of V* is V* (Proof)

Proof of V™ = V* = T7V* =T*V*:
We apply T™ to both sides of V* = V7™ to get

TV =T"V".

As V7T is the solution of the Bellman equation for policy m, we
have T™V™ = V™. Therefore,

TV =T V™ =V~

By assumption, V™ = V*. So we have T"V* = V7™ = V*,
On the other hand, we have V* = T*V*, so

Tﬂv* — V* — T*V*,

which is the desired result.
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Value of the Greedy Policy of V* is V*

Discussion:

m If T7V* =T*V* for some policy 7, the value function V™ of
that policy is the same as the fixed point of T, which is V*.

m We have not yet shown that the fixed point of T is an
optimal value function, in the sense that it is
™ = argmax, .y V™ (z) (for all z € X’) over the space of all
stationary policies IT (or even more generally, over the set of
all non-stationary policies)

m But it is indeed true!



Structural Properties of Markov Decision Processes
Uniqueness of Fixed Points
. * - 2
Value of the Greedy Policy of V* is VV

To see the connection to the greedy policy:
m Given V*, the greedy policy selects
mg(x; V*) = argmax,e 4 {r(z,a) + v [ P(da'|z,a)V*(a')}.
m So 7™ (VIV* = maxgeq {r(z,a) +~ [ P(da/|z,a)V*(a')}
m Compare with T*V*, i.e.,
(T*V*)(z) = maxqea {r(z,a) +v [ P(dz'|z,a)V*(z')}.
m So T7(VIV* = T*V*,
m This proposition states that the value of following 7, (V*),
that is V”ﬂ(v*), is the same as V'*.

m The practical consequence is that if we find V* and its greedy
policy 7,(V*), the value of following the greedy is V*.

m Practical Consequence: To find an optimal policy, we can find
V* first and then follow its greedy policy 7, (V™).

56 /71



Structural Properties of Markov Decision Processes

— Consequences of Monotonicity and Contraction
Error Bounds

What if V = T*V?

m If we find a V such that V =T*V, we know that V = V*
(similar for T™ and Q).

m What if V = T*V? What can be said about the closeness of
V to V*7

m Practically important, because we often can only solve the
Bellman equations approximately, because of various sources
of errors

m Computational
m Approximation
m Statistical
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An Error Bound based on the Bellman Error

Proposition
For any V- € B(X) or Q € B(X x A), we have

[V =TVl

V-V, <
IV = Vil < g,

0 < le-Tql,
1@~ @7l < 12T 2leo.

v

The quantity BR(V) £ 7™V —V and BR*(V) £ T*V — V are
called Bellman Residuals.
Their norms are called Bellman Errors.
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An Error Bound based on the Bellman Error (Proof)

We want to upper bound ||V — V*|| _.

We start from V — V*, and add and subtract 7*V to V — V*.
We then take the supremum norm, and use the triangle inequality
to get

V-V"=V-TV+TV-V*
S V=V, = V=TV +TV -V
SNV =TV + 1TV = V|-
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An Error Bound based on the Bellman Error (Proof)

Let us focus on the term || TV — V*|| . Two observations:
m VE=T"V*
m The Bellman optimality operator is a y-contraction w.r.t. the
supremum norm.

Thus,
[TV =V = 1TV =TV o <[V =V
Therefore,
V=V <V =TV +7IIV-V7-
Re-arranging this, we get
A=V =V <V =TV
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An Error Bound based on the Bellman Error (for policy 7)

For any V € B(X) or Q € B(X x A), and any 7 € II, we have

1Q — TRl
1—vy

[V -T"Vl

V-VT| <
IV =Vl < e,

1@ = Q| <
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V* is the same as V™

The fixed point of T* is indeed the optimal value function within
the space of stationary policies II.
We use the monotonicity of 7™, in addition to contraction, to

prove it.
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V* is the same as V™

Let V* be the fixed point of T*, i.e., V* =T*V*. We have

V*(xz) =sup V" (), Ve e X.
mell

The statement and the proof is from Proposition 2.1.1
of Bertsekas 2018.
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V* is the same as V™ (Proof)

Overview:
m We show that V*(z) < sup,cq V7™ (2).
m We show that sup, . V7 (z) < V*(x).
m Combined, they show that V*(x) = sup,crp V™ (2).
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*
* 3 s
V* is the same as V™ (Proof)

Proof of V*(z) < sup,en V7 (2):
From the error bound result (Proposition 17) with the choice of
V =V*, we get that for any 7 € II,
[V =T"V"[
L=y
Let € > 0. Choose a policy 7. such that
[VZ=T™V* < (1 —7)e.

This is possible because we have

(T*V*)(x) = sup {r(a:, a) + ’y/P(d:c'|x,a)V*(x’)} ,

acA
so it is sufficient to pick a 7. that solves the optimization problem
up to (1 — vy)e-accuracy of the supremum at each state x (if we
find the maximizer, then £ = 0).

(8)

V: =V <
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*
* 3 s
V* is the same as V™ (Proof)

Proof of V*(z) < sup,cn V7 (2) (Continued):
For policy 7., (8) shows that

Ve - v <e.
This means that
Vi (z) <V™(x) +e, Vo e X.
Notice that V™ (x) < sup,cyg V™ (z) (as m. € II). We take ¢ — 0
to get that for all z € X,

V¥ (x) < lim {V™(z) + ¢} < lim {sup V™ (x) + 5} = sup V7" (x).
e—0 e=0 | relr rell
(9)

This shows that V*, the fixed point of T, is smaller or equal to

the optimal value function within the space of stationary policies.
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V* is the same as V™ (Proof)

Proof of sup,cp V7™ (z) < V*(x):
Consider any 7w € II. By the definition of 7™ and T, for any
V € B(X), we have that for any x € X,

(T™V)(z) = / (dalz) [r(m,a) +r / P(dm’|x,a)V(:z:’)}
< sup {r(x,a) +’y/77(dx'x,a)V(x')}

acA
= (T*V)(x).

In particular, with the choice of V= V™, we have

TV <T*V*.
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*
* 3 s
V* is the same as V™ (Proof)

Proof of sup,c; V7™ (z) < V*(x) (Continued):

TV <T*V*.
As T*V* = V*, we have

TV < V™. (10)
We use the monotonicity of 7™ (Lemma 3) to conclude that
TH(T™V*) <T"V*,

which by (10) shows that

(TT)*V* < V™
We repeat this argument for k times to get that

(T v < v+,
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*
* 3 s
V* is the same as V™ (Proof)

Proof of sup,c; V7™ (x) < V*(x) (Continued):

(T v < v,
As k — oo, Proposition 14 shows that (T7)*V* converges to V™

(the choice of V* is irrelevant). Therefore,

V™ = lim (T™)FV* < V™,

k—o0

As this holds for any 7 € 11, we take the supremum over 7 € II to
get

sup VT < V*. (11)
well

Inequalities (9) and (11) together show the desired result.
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Summary

m Bellman equations describe an important recursive properties
of value functions.

m Bellman operators T™ and T,
m Greedy policy and the optimal policy.

m Monotonicity and contraction properties of the Bellman
operators.

m Bellman equations have uniqued solutions.

m Bellman error |V — T*V||  provides an upper bound on
value error ||V — V¥ .

m The solution of the Bellman optimality equation is the optimal
value function.
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