Structural Properties of Markov Decision Processes

(CSC2547: Introduction to Reinforcement Learning)

Amir-massoud Farahmand

University of Toronto & Vector Institute

Goal

We study some important properties of value functions and MDPs.

- Bellman equation
- Bellman operator
 - Monotonicity
 - Contraction
- Focus on discounted tasks
- We show important consequences such as
 - The uniqueness of the solution to the Bellman equations
 - Error bounds on value error
 - Fixed point of T^* is the optimal value function

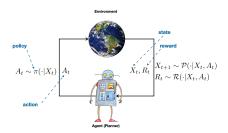
We refer to these frequently in studying and analyzing RL/Planning algorithms.

Table of Contents

- 1 Bellman Equations
 - Bellman Equations for Value Functions of a Policy
 - Bellman Equations for Optimal Value Functions
- 2 From Optimal Value Function to Optimal Policy through Greedy Policy
- 3 Bellman Operators
- 4 Properties of the Bellman Operators
 - Monotonicity
 - Review of Contraction Mapping and Its Properties
 - Contraction
- 5 Consequences of Monotonicity and Contraction
 - Uniqueness of Fixed Points
 - Error Bounds
 - lacktriangle Fixed Point of T^* is the Optimal Value Function

Bellman Equations for Value Functions of a Policy

Return



Consider the sequence of rewards (R_1,R_2,\dots) generated after the agent starts at state $X_1=x$ and follows policy π . Given the discount factor $0\leq \gamma < 1$, the return is

$$G_t^{\pi} \triangleq \sum_{k \geq t} \gamma^{k-t} R_k.$$

Recursive Property of Return

Comparing G_t^{π} and G_{t+1}^{π} , we observe that

$$G_t^{\pi} = R_t + \gamma G_{t+1}^{\pi}. \tag{1}$$

Interpretation: The return at the current time is equal to the immediate reward plus the *discounted* return at the next time step.

- Return is a random variable (r.v.).
- If we repeat the experiment from the same state x, the return would be different.
- Its distribution, however, is the same.
- Q: When would it be the same?

From Return to the Bellman Equation

We take (conditional) expectation of G_t^{π} (conditioned on state x), and expand the return as in (1):

$$V^{\pi}(x) = \mathbb{E} [G_t^{\pi} \mid X_t = x]$$

$$= \mathbb{E} [R_t + \gamma G_{t+1}^{\pi} \mid X_t = x]$$

$$= \mathbb{E} [R(X_t, A_t) \mid X_t = x] + \gamma \mathbb{E} [G_{t+1}^{\pi} \mid X_t = x]$$

$$= r^{\pi}(x) + \gamma \mathbb{E} [V^{\pi}(X_{t+1}) \mid X_t = x].$$
(2)

Neither side is random anymore!

Bellman Equations for Value Functions of a Policy

Expanding $\mathbb{E}\left[V^{\pi}(X_{t+1}) \mid X_t = x\right]$

What does $\mathbb{E}\left[V^{\pi}(X_{t+1}) \mid X_t = x\right]$ mean? It is the expected value of $V^{\pi}(X_{t+1})$ when

- lacktriangle the agent is at state x at time t
- chooses action $A \sim \pi(\cdot|x)$
- lacksquare goes to a state $X_{t+1} \sim \mathcal{P}(\cdot|x,A)$

That is:

$$\mathbb{E}\left[V^{\pi}(X_{t+1}) \mid X_t = x\right] = \int \mathcal{P}(\mathrm{d}x'|x, a)\pi(\mathrm{d}a|x)V^{\pi}(x'). \tag{3}$$

For countable state-action spaces, we have

$$\mathbb{E}[V^{\pi}(X_{t+1}) \mid X_t = x] = \sum_{x',a} \mathcal{P}(x'|x,a)\pi(a|x)V^{\pi}(x').$$

Bellman Equation for a Policy π

By (2) and (3), we get that for any $x \in \mathcal{X}$, we have

$$V^{\pi}(x) = r^{\pi}(x) + \gamma \int \mathcal{P}(\mathrm{d}x'|x, a) \pi(\mathrm{d}a|x) V^{\pi}(x'). \tag{4}$$

This is the Bellman equation for a policy π .

Interpretation: The value of following a policy π starting from the state x is the reward that the π -following agent receives at that state plus the discounted average (expected) value that the agent receives at the next-state.

Bellman Equation for a Policy π

Using the notation of \mathcal{P}^{π} :

$$V^{\pi}(x) = r^{\pi}(x) + \gamma \int \mathcal{P}^{\pi}(\mathrm{d}x'|x)V^{\pi}(x').$$

Or even more compactly,

$$V^{\pi} = r^{\pi} + \gamma \mathcal{P}^{\pi} V^{\pi}.$$

Remark

Recall that
$$(\mathcal{P}^{\pi})(A|x) \triangleq \int_{\mathcal{X}} \mathcal{P}(\mathrm{d}y|x,\pi(x))\mathbb{I}_{\{y \in A\}}$$
.

Bellman Equation for a Policy π (Q^{π})

The Bellman equation for the action-value function Q^{π} :

$$Q^{\pi}(x,a) = r(x,a) + \gamma \int \mathcal{P}(\mathrm{d}x'|x,a)V^{\pi}(x')$$
$$= r(x,a) + \gamma \int \mathcal{P}(\mathrm{d}x'|x,a)\pi(\mathrm{d}a'|x')Q^{\pi}(x',a'). \tag{5}$$

More compactly:

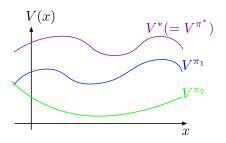
$$Q^{\pi} = r + \gamma \mathcal{P} V^{\pi},$$

with the understanding that V^π and Q^π are related as $V^\pi(x)=\int \pi(\mathrm{d} a|x)Q^\pi(x,a).$

Remark

The difference with the Bellman equation for V^{π} is that the choice of action at the first time step is pre-specified, instead of being selected by policy π .

Optimal Policy and Value Function



Recall that the optimal policy π^* is a policy that satisfies $\pi^* \geq \pi$ for any (stationary Markov) policy π . It satisfies

$$\pi^* \leftarrow \operatorname*{argmax}_{\pi \in \Pi} V^{\pi}.$$

Given an optimal policy, the optimal value function would be V^{π^*} .

Bellman Equations for Optimal Value Functions

Does the optimal value function V^{π^*} satisfy a recursive relation similar to the Bellman equation for a policy π ?

Short answer: Yes!

But we have to be a bit careful. Why?! We have to go through a few steps of argument.

Bellman Equations for Optimal Value Functions

The argument goes through three claims:

I There exists a unique value function V^* that satisfies the following equation: For any $x \in \mathcal{X}$, we have

$$V^*(x) = \max_{a \in \mathcal{A}} \left\{ r(x, a) + \gamma \int \mathcal{P}(\mathrm{d}x'|x, a) V^*(x') \right\}.$$
 (6)

This equation is called the Bellman optimality equation for the value function.

- 2 V^* is indeed the same as V^{π^*} , the optimal value function when π is restricted to be within the space of stationary policies.
- 3 For discounted continuing MDPs, we can always find a stationary policy that is optimal within the space of all stationary and non-stationary policies.

In summary: V^* exists and is equal to V^{π^*} .

Bellman Equations for Optimal Value Functions

Bellman Equations for Optimal Value Functions (Q^*)

Optimal action-value function:

$$Q^{*}(x,a) = r(x,a) + \gamma \int \mathcal{P}(dx'|x,a) \max_{a' \in \mathcal{A}} Q^{*}(x',a').$$
 (7)

Solutions of the Bellman Equations?

We have defined the Bellman equations for a fixed policy π and the Bellman optimality equation. Some reasonable questions:

- Is there only one solution V^{π} (or Q^{π}) satisfying (4) and (5)?
- Is there only one solution V^* (or Q^*) satisfying the Bellman optimality equations (6) and (7)?

We shall prove that their solutions are unique. We need some tools before doing so.

Optimal Policy from the Optimal Value Function

- If we know V^* or Q^* , we can find the optimal policy π^* .
- It is a deterministic policy.
- For any $x \in \mathcal{X}$, the optimal policy is

$$\begin{split} \pi^*(x) &= \operatorname*{argmax}_{a \in \mathcal{A}} Q^*(x, a) \\ &= \operatorname*{argmax}_{a \in \mathcal{A}} \left\{ r(x, a) + \gamma \int \mathcal{P}(\mathrm{d}x'|x, a) V^*(x') \right\}. \end{split}$$

Optimal Policy from the Optimal Value Function

$$\pi^*(x) = \operatorname*{argmax}_{a \in \mathcal{A}} \left\{ r(x, a) + \gamma \int \mathcal{P}(\mathrm{d}x'|x, a) V^*(x') \right\}.$$

Interpretation: Suppose that the agent is at state x. To act optimally,

- It needs to act optimality both at the current time step (Now) and in the Future time steps.
- Suppose that we know that the agent is going to act optimally in the Future. This means that when it get to the next state $X' \sim \mathcal{P}(\cdot|x,a)$,
 - it follows the optimal policy π^* .
 - The value of following the optimal policy is going to be $V^*(X')$.
- (continued ...)

Optimal Policy from the Optimal Value Function

$$\pi^*(x) = \operatorname*{argmax}_{a \in \mathcal{A}} \left\{ r(x, a) + \gamma \int \mathcal{P}(\mathrm{d}x'|x, a) V^*(x') \right\}.$$

Interpretation: Suppose that the agent is state x. To act optimally,

- Since we do not know where the agent will be at the next time step, the expected performance of acting optimally in the Future is $\int \mathcal{P}(\mathrm{d}x'|x,a)V^*(x')$.
- As we are dealing with discounted tasks, the performance of the agent at the current state x is going to be $r(x,a) + \gamma \int \mathcal{P}(\mathrm{d}x'|x,a)V^*(x').$
- To act optimally Now, the agent should choose an action that maximizes this value.

Greedy Policy

The mapping that selects an action by choosing the maximizer of the (action-) value function is called the greedy policy.

■ For $Q \in \mathcal{B}(\mathcal{X} \times \mathcal{A})$, the greedy policy $\pi_a: \mathcal{X} \times \mathcal{B}(\mathcal{X} \times \mathcal{A}) \to \mathcal{A}$ is

$$\pi_g(x; Q) = \operatorname*{argmax}_{a \in \mathcal{A}} Q(x, a).$$

■ For $V \in \mathcal{B}(\mathcal{X})$, the greedy policy is

$$\pi_g(x; V) = \operatorname*{argmax}_{a \in \mathcal{A}} \left\{ r(x, a) + \gamma \int \mathcal{P}(\mathrm{d}x'|x, a) V(x') \right\}.$$

- We use $\pi_q(V)$ and $\pi_q(Q)$ to denote functions from \mathcal{X} to \mathcal{A} .
- $\pi_a(V^*) = \pi_a(Q^*) = \pi^*.$

Greedy Policy

Intuition behind the greedy policy:

- Action selection based on the local information.
- Does not look at all future possibilities
- Only one step ahead (for V) or even no-step ahead (for Q) in order to pick the action. This is myopic.
- Given V^* or Q^* , however, the selected action is going to be the optimal one.
- This is because the optimal value functions encodes the information about the future, so we do not need to explicitly consider all possible futures.

Bellman Operators

- The Bellman equations can be seen as the fixed point equation of certain operators known as the Bellman operators.
 - What this means become clear soon.
- Recall that an operator (or mapping) $L: \mathcal{Z} \to \mathcal{Z}$ takes a member of space \mathcal{Z} and returns another member of \mathcal{Z} .
 - If $\mathcal{Z} = \mathbb{R}$ and $L: z \mapsto z^2$. So L(5) = 25 (this is the usual function).
 - If \mathcal{Z} is the space of smooth functions defined on domain \mathbb{R} , $L: z \mapsto \frac{d}{dx}z$, is the differentiation operator. So $L(\sin(x)) = \cos(x)$.

Bellman Operators

Definition (Bellman Operators for policy π)

Given a policy $\pi: \mathcal{X} \to \mathcal{M}(\mathcal{A})$, the Bellman operators $T^{\pi}: \mathcal{B}(\mathcal{X}) \to \mathcal{B}(\mathcal{X})$ and $T^{\pi}: \mathcal{B}(\mathcal{X} \times \mathcal{A}) \to \mathcal{B}(\mathcal{X} \times \mathcal{A})$ are defined as the mapping

$$(T^{\pi}V)(x) \triangleq r^{\pi}(x) + \gamma \int \mathcal{P}(\mathrm{d}x'|x, a)\pi(\mathrm{d}a|x)V(x'),$$

$$(T^{\pi}Q)(x, a) \triangleq r(x, a) + \gamma \int \mathcal{P}(\mathrm{d}x'|x, a)\pi(\mathrm{d}a'|x')Q(x', a'),$$

defined for all $x \in \mathcal{X}$ (for V) or all $(x, a) \in \mathcal{X} \times \mathcal{A}$ (for Q).

Bellman Operators

If π is deterministic:

$$(T^{\pi}V)(x) \triangleq r^{\pi}(x) + \gamma \int \mathcal{P}(\mathrm{d}x'|x, \pi(x))V(x'),$$
$$(T^{\pi}Q)(x, a) \triangleq r(x, a) + \gamma \int \mathcal{P}(\mathrm{d}x'|x, a)Q(x', \pi(x')).$$

Bellman Operators and Bellman Equation

Recall that

$$V^{\pi}(x) = r^{\pi}(x) + \gamma \int \mathcal{P}(\mathrm{d}x'|x, a)\pi(\mathrm{d}a|x)V^{\pi}(x'),$$
$$Q^{\pi}(x, a) = r(x, a) + \gamma \int \mathcal{P}(\mathrm{d}x'|x, a)\pi(\mathrm{d}a'|x')Q^{\pi}(x', a').$$

Using the Bellman operator T^{π} , we can write them compactly as

$$V^{\pi} = T^{\pi}V^{\pi},$$

$$Q^{\pi} = T^{\pi}Q^{\pi}.$$

This is a compact form of Bellman equations.

Bellman Optimality Operators

Definition (Bellman Optimality Operators)

The Bellman operators $T^*: \mathcal{B}(\mathcal{X}) \to \mathcal{B}(\mathcal{X})$ and $T^*: \mathcal{B}(\mathcal{X} \times \mathcal{A}) \to \mathcal{B}(\mathcal{X} \times \mathcal{A})$ are defined as the mapping

$$(T^*V)(x) \triangleq \max_{a \in \mathcal{A}} \left\{ r(x, a) + \gamma \int \mathcal{P}(\mathrm{d}x'|x, a)V(x') \right\},$$
$$(T^*Q)(x, a) \triangleq r(x, a) + \gamma \int \mathcal{P}(\mathrm{d}x'|x, a) \max_{a' \in \mathcal{A}} Q(x', a'),$$

defined for all $x \in \mathcal{X}$ (for V) or all $(x, a) \in \mathcal{X} \times \mathcal{A}$ (for Q).

Bellman Optimality Operators and Bellman Optimality Equation

Comparing with

$$\begin{split} V^*(x) &= \max_{a \in \mathcal{A}} \left\{ r(x,a) + \gamma \int \mathcal{P}(\mathrm{d}x'|x,a) V^*(x') \right\}, \\ Q^*(x,a) &= r(x,a) + \gamma \int \mathcal{P}(\mathrm{d}x'|x,a) \max_{a' \in \mathcal{A}} Q^*(x',a'), \end{split}$$

we see that

$$V^* = T^*V^*,$$
$$Q^* = T^*Q^*.$$

Properties of the Bellman Operators

The Bellman operators have some important properties. The properties that matters for us the most are

- Monotonicity
- Contraction

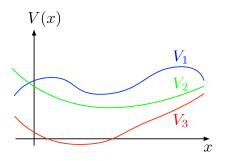
They are used in

- basic proofs such as the existence and uniqueness of the solution to the Bellman equations.
- (directly or indirectly) design of many RL/Planning algorithms.

└ Monotonicity

Monotonicity

For two functions $V_1, V_2 \in \mathcal{B}(\mathcal{X})$, we use $V_1 \leq V_2$ if and only if $V_1(x) \leq V_2(x)$ for all $x \in \mathcal{X}$.



- $V_3 \leq V_1$ and $V_3 \leq V_2$,
- Neither $V_2 \leq V_1$, nor $V_1 \leq V_2$.

└ Monotonicity

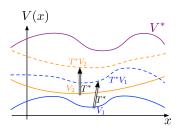
Monotonicity

Lemma (Monotonicity)

Fix a policy π . If $V_1, V_2 \in \mathcal{B}(\mathcal{X})$, and $V_1 \leq V_2$, then we have

$$T^{\pi}V_1 \le T^{\pi}V_2,$$

$$T^*V_1 \le T^*V_2.$$



└ Monotonicity

Monotonicity (Proof)

We only prove the first claim. Let us expand $T^{\pi}V_1$. As $V_1(x') \leq V_2(x')$ for any $x' \in \mathcal{X}$, we get that for any $x \in \mathcal{X}$,

$$(T^{\pi}V_{1})(x) = r^{\pi}(x) + \gamma \int \mathcal{P}^{\pi}(dx'|x) \underbrace{V_{1}(x')}_{\leq V_{2}(x')}$$

$$\leq r^{\pi}(x) + \gamma \int \mathcal{P}^{\pi}(dx'|x)V_{2}(x') = (T^{\pi}V_{2})(x).$$

Therefore, $T^{\pi}V_1 \leq T^{\pi}V_2$.

Contraction Mapping and Banach Fixed Point Theorem

Let us review some mathematical background before proving that the Bellman operators are contraction. We quote several results from Hunter and Nachtergaele [2001].

Metric

Definition (Metric)

A metric or a distance function on \mathcal{Z} is a function $d: \mathcal{Z} \times \mathcal{Z} \to \mathbb{R}$ with the following properties:

- $d(x,y) \ge 0$ for all $x,y \in \mathcal{Z}$; and d(x,y) = 0 if and only if x = y.
- d(x,y) = d(y,x) for all $x,y \in \mathcal{Z}$ (symmetry).
- $d(x,y) \le d(x,z) + d(z,y)$ for all $x,y,z \in \mathcal{Z}$ (triangle inequality).

A metric space (\mathcal{Z}, d) is a set \mathcal{Z} equipped with a metric d.

Example

Let $\mathcal{Z}=\mathbb{R}$ and d(x,y)=|x-y|. These together define a metric space $(\mathbb{R},d).$

Norm

Definition (Norm)

A norm on a linear space $\mathcal Z$ is a function $\|\cdot\|:\mathcal Z\to\mathbb R$ with the following properties:

- (non-negative) For all $x \in \mathcal{Z}$, $||x|| \ge 0$.
- (homogenous) For all $x \in \mathcal{Z}$ and $\lambda \in \mathbb{R}$, $\|\lambda x\| = |\lambda| \|x\|$.
- (triangle inequality) For all $x, y \in \mathcal{Z}$, $||x + y|| \le ||x|| + ||y||$.
- (strictly positive) If for a $x \in \mathcal{Z}$, we have that ||x|| = 0, it implies that x = 0.

Remark

We can use a norm to define a distance between two points in a linear space $\mathcal Z$ by defining $d(x,y)=\|x-y\|$. This gives us a metric space $(\mathcal Z,d)$.

Norm

Example

Let $\mathcal{Z} = \mathbb{R}^d$ $(d \ge 1)$. The following norms are often used:

$$||x||_p = \sqrt[p]{\sum_{i=1}^d |x_i|^p}, \qquad 1 \le p < \infty,$$

 $||x||_{\infty} = \max_{i=1,\dots,d} |x_i|.$

Norm

Example

Consider the space of continuous functions with domain [0,1]. It is denoted by $\mathcal{C}([0,1])$. This plays the rule of \mathcal{Z} . We define the following norm for a function $f \in \mathcal{C}([0,1])$:

$$||f||_{\infty} = \sup_{x \in [0,1]} |f(x)|.$$

This is called the supremum or uniform norm. Given this norm, $(\mathcal{C}([0,1]),\|\cdot\|_{\infty})$ would be a normed linear space.

Norm

For
$$V\in\mathcal{B}(\mathcal{X})$$
 and $Q\in\mathcal{B}(\mathcal{X}\times\mathcal{A})$, their supremum norms are
$$\|V\|_{\infty}=\sup_{x}|V(x)|,$$

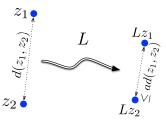
$$\begin{split} \|V\|_{\infty} &= \sup_{x \in \mathcal{X}} |V(x)|, \\ \|Q\|_{\infty} &= \sup_{(x,a) \in \mathcal{X} \times \mathcal{A}} |Q(x,a)|, \end{split}$$

Contraction Mapping

Definition (Contraction Mapping)

Let (\mathcal{Z},d) be a metric space. A mapping $L:\mathcal{Z}\to\mathcal{Z}$ is a contraction mapping (or contraction) if there exists a constant $0\leq a<1$ such that for all $z_1,z_2\in\mathcal{Z}$, we have

$$d(L(z_1), L(z_2)) \le ad(z_1, z_2).$$



Contraction Mapping

Example

Let $\mathcal{Z} = \mathbb{R}$ and $d(z_1, z_2) = |z_1 - z_2|$. Consider the mapping $L: z \mapsto az$ for $a \in \mathbb{R}$.

For any $z_1, z_2 \in \mathbb{R}$, we have

$$d(L(z_1), L(z_2)) = |L(z_1) - L(z_2)| = |az_1 - az_2|$$

= $|a||z_1 - z_2| = |a|d(z_1, z_2).$

So if |a| < 1, this is a contraction mapping.

Why Do We Care About Contraction Mapping?

Two main reasons:

- It describes the stability behaviour of a dynamical system.
- Sometimes can be used to solve equations.

Why Do We Care About Contraction Mapping?

As an example of its relation to stability, let $z_0 \in \mathcal{Z}$ and consider a mapping $L: z \mapsto az$ for some $a \in \mathbb{R}$. Define the dynamical system

$$z_{k+1} = Lz_k, \qquad k = 0, 1, \dots$$

The dynamical system described by this mapping generates

$$z_0$$

$$z_1 = az_0$$

$$z_2 = az_1 = a^2 z_0$$

$$\vdots$$

$$z_k = az_{k-1} = a^k z_0.$$

Why Do We Care About Contraction Mapping?

$$z_k = a^k z_0.$$

- If |a| < 1, z_k converges to zero, no matter what z_0 is.
- If a = 1, we have $z_k = z_0$. So depending on z_0 , it converges to different points.
- For a=-1, the sequence would oscillate between $+z_0$ and $-z_0$.
- If |a| > 1, the sequence diverges (unless $z_0 = 0$).

Remark

The case of converge is the same as the case of L being a contraction map.

Why Do We Care About Contraction Mapping?

Definition (Fixed Point)

If $L: \mathcal{Z} \to \mathcal{Z}$, then a point $z \in \mathcal{Z}$ such that

$$Lz = z$$

is called a fixed point of L.

Given an equation f(z)=0, we can convert it to a fixed point equation Lz=z by defining $L:z\mapsto f(z)+z$. Then, if $Lz^*=z^*$ for a z^* , we get that $f(z^*)=0$, i.e., the fixed point of L is the same as the solution of f(z)=0.

Banach Fixed Point Theorem

Theorem (Banach Fixed Point Theorem)

If $L: \mathcal{Z} \to \mathcal{Z}$ is a contraction mapping on a complete metric space (Z,d), then there exists a unique $z^* \in \mathcal{Z}$ such that $Lz^* = z^*$. Furthermore, the point z^* can be found by choosing an arbitrary $z_0 \in \mathcal{Z}$ and defining $z_{k+1} = Lz_k$. We have $z_k \to z^*$.

Simple Exercise

Exercise

Suppose that we want to solve cz + b = 0 for $z \in \mathbb{R}$ and constants $c, b \in \mathbb{R}$.

- Choose a mapping $L: \mathbb{R} \to \mathbb{R}$ such that its fixed point is the same as the solution of this equation.
- For what range of c is this mapping a contraction?
- Let c=-0.5 and b=1. If we start from $z_0=0$, what is the sequence of z_0,z_1,z_2 that we obtain by computing $z_{k+1}=Lz_k$?

Contraction

Bellman Operator is a Contraction

Lemma (Contraction)

For any π , the Bellman operator T^{π} is a γ -contraction mapping. The Bellman optimality operator T^* is a γ -contraction mapping.

Bellman Operator is a Contraction (Proof)

We only show it for the Bellman operator

$$T^{\pi}: \mathcal{B}(\mathcal{X} \times \mathcal{A}) \to \mathcal{B}(\mathcal{X} \times \mathcal{A}).$$

Consider two action-value functions $Q_1,Q_2\in\mathcal{B}(\mathcal{X}\times\mathcal{A})$. Consider the metric $d(Q_1,Q_2)=\|Q_1-Q_2\|_{\infty}$. We show the contraction w.r.t. this metric.

For any $(x, a) \in \mathcal{X} \times \mathcal{A}$, we have

$$\begin{aligned} &|(T^{\pi}Q_1)(x,a) - (T^{\pi}Q_2)(x,a)| = \\ &\left| \left[r(x,a) + \gamma \int \mathcal{P}(\mathrm{d}x'|x,a) \pi(\mathrm{d}a'|x') Q_1(x',a') \right] - \right. \\ &\left. \left[r(x,a) + \gamma \int \mathcal{P}(\mathrm{d}x'|x,a) \pi(\mathrm{d}a'|x') Q_2(x',a') \right] \right| \\ &= \gamma \left| \int \mathcal{P}(\mathrm{d}x'|x,a) \pi(\mathrm{d}a'|x') \left(Q_1(x',a') - Q_2(x',a') \right) \right|. \end{aligned}$$

Contraction

Bellman Operator is a Contraction (Proof)

Let us upper bound the RHS.

We have an integral of the form $\left|\int P(\mathrm{d}x)f(x)\right|$ (or a summation $\left|\sum_x P(x)f(x)\right|$ for a countable state space). This can be upper bounded as

$$\left| \int P(\mathrm{d}x) f(x) \right| \le \int |P(\mathrm{d}x) f(x)| = \int |P(\mathrm{d}x)| \cdot |f(x)|$$

$$\le \int P(\mathrm{d}x) \cdot \sup_{x \in \mathcal{X}} |f(x)|$$

$$= \sup_{x \in \mathcal{X}} |f(x)| \int P(\mathrm{d}x) = ||f||_{\infty},$$

where we used $\int P(\mathrm{d}x) = 1$.

Bellman Operator is a Contraction (Proof)

In our case, we get that

$$|(T^{\pi}Q_{1})(x,a) - (T^{\pi}Q_{2})(x,a)| =$$

$$\gamma \left| \int \mathcal{P}(dx'|x,a)\pi(da'|x') \left(Q_{1}(x',a') - Q_{2}(x',a') \right) \right|$$

$$\leq \gamma \int \mathcal{P}(dx'|x,a)\pi(da'|x') \left| Q_{1}(x',a') - Q_{2}(x',a') \right|$$

$$\leq \gamma \|Q_{1} - Q_{2}\|_{\infty} \int \mathcal{P}(dx'|x,a)\pi(da'|x')$$

$$= \gamma \|Q_{1} - Q_{2}\|_{\infty}.$$

This inequality holds for any $(x,a) \in \mathcal{X} \times \mathcal{A}$, so it holds for its supremum over $\mathcal{X} \times \mathcal{A}$ too, i.e.,

$$\|(T^{\pi}Q_1) - (T^{\pi}Q_2)\|_{\infty} \le \gamma \|Q_1 - Q_2\|_{\infty}.$$

This shows that T^{π} is a γ -contraction.

Consequences of Monotonicity and Contraction

Bellman operators are

- Monotonic
- $ightharpoonup \gamma$ -contraction

Several consequences:

- Bellman equations have unique fixed points.
- Error bounds on the difference between V and V^* when $V \approx T^*V$.
- V^* is the optimal value function V^{π^*} .

Uniqueness of Fixed Points

Proposition (Uniqueness of Fixed Points)

The operators T^{π} and T^{*} have unique fixed points, denoted by V^{π} and V^{*} , i.e.,

$$V^{\pi} = T^{\pi}V^{\pi},$$

$$V^* = T^*V^*.$$

They can be computed from any $V_0 \in \mathcal{B}(\mathcal{X})$ by iteratively computing $V_{k+1} \leftarrow T^*V_k$ (and similar for V^π using T^π instead) for $k=0,1,\ldots$ We have that $V_k \to V^*$ (and similarly, $V_k \to V^\pi$).

The same result is true for Q^{π} and Q^* .

Uniqueness of Fixed Points (Proof)

- Consider the space of bounded functions $\mathcal{B}(\mathcal{X})$ with the metric d based on the uniform norm, i.e., $d(V_1,V_2) = \|V_1 V_2\|_{\infty}$. The space $(\mathcal{B}(\mathcal{X}),d)$ is a complete metric space.
- For any π , the operator T^{π} is a γ -contraction. Likewise, T^* has the same property too (Lemma 13).
- By the Banach fixed point theorem (Theorem 12), they have a unique fixed point. Moreover, any sequence (V_k) with $V_0 \in \mathcal{B}(\mathcal{X})$ and $V_{k+1} \leftarrow T^\pi V_k$ $(k=0,1,\dots)$ is convergent, which means that $\lim_{k \to \infty} \|V_k V^\pi\|_{\infty} = 0$.

Value of the Greedy Policy of V^* is V^*

Proposition

We have $T^{\pi}V^* = T^*V^*$ if and only if $V^{\pi} = V^*$.

Remark

The statement and the proof is from Proposition 2.1.1(c) of Bertsekas 2018.

Value of the Greedy Policy of V^* is V^* (Proof)

Proof of $T^{\pi}V^* = T^*V^* \Longrightarrow V^{\pi} = V^*$:

Assume that $T^{\pi}V^* = T^*V^*$.

As V^* is the solution of the Bellman optimality equation, we have $T^*V^*=V^*.$ Therefore,

$$T^{\pi}V^* = T^*V^* = V^*.$$

This shows that V^* is a fixed point of T^{π} .

The fixed point of T^{π} , however, is unique (Proposition 14) and is equal to V^{π} .

So V^{π} and V^{*} should be the same, i.e., $V^{\pi}=V^{*}$.

Value of the Greedy Policy of V^* is V^* (Proof)

Proof of $V^{\pi} = V^* \Longrightarrow T^{\pi}V^* = T^*V^*$: We apply T^{π} to both sides of $V^* = V^{\pi}$ to get

$$T^{\pi}V^* = T^{\pi}V^{\pi}.$$

As V^π is the solution of the Bellman equation for policy π , we have $T^\pi V^\pi = V^\pi$. Therefore,

$$T^{\pi}V^* = T^{\pi}V^{\pi} = V^{\pi}.$$

By assumption, $V^\pi=V^*$. So we have $T^\pi V^*=V^\pi=V^*$. On the other hand, we have $V^*=T^*V^*$, so

$$T^{\pi}V^* = V^* = T^*V^*,$$

which is the desired result.

Value of the Greedy Policy of V^* is V^*

Discussion:

- If $T^{\pi}V^* = T^*V^*$ for some policy π , the value function V^{π} of that policy is the same as the fixed point of T^* , which is V^* .
- We have not yet shown that the fixed point of T^* is an optimal value function, in the sense that it is $\pi^* \leftarrow \operatorname{argmax}_{\pi \in \Pi} V^\pi(x)$ (for all $x \in \mathcal{X}$) over the space of all stationary policies Π (or even more generally, over the set of all non-stationary policies)
- But it is indeed true!

Value of the Greedy Policy of V^* is V^*

To see the connection to the greedy policy:

- Given V^* , the greedy policy selects $\pi_g(x; V^*) = \operatorname{argmax}_{a \in \mathcal{A}} \left\{ r(x, a) + \gamma \int \mathcal{P}(\mathrm{d}x'|x, a) V^*(x') \right\}.$
- So $T^{\pi_g(V^*)}V^* = \max_{a \in \mathcal{A}} \left\{ r(x, a) + \gamma \int \mathcal{P}(\mathrm{d}x'|x, a)V^*(x') \right\}$
- Compare with T^*V^* , i.e., $(T^*V^*)(x) = \max_{a \in \mathcal{A}} \{r(x,a) + \gamma \int \mathcal{P}(\mathrm{d}x'|x,a)V^*(x')\}.$
- So $T^{\pi_g(V^*)}V^* = T^*V^*$.
- This proposition states that the value of following $\pi_g(V^*)$, that is $V^{\pi_g(V^*)}$, is the same as V^* .
- The practical consequence is that if we find V^* and its greedy policy $\pi_q(V^*)$, the value of following the greedy is V^* .
- Practical Consequence: To find an optimal policy, we can find V^* first and then follow its greedy policy $\pi_q(V^*)$.

What if $V \approx T^*V$?

- If we find a V such that $V=T^*V$, we know that $V=V^*$ (similar for T^π and Q).
- What if $V \approx T^*V$? What can be said about the closeness of V to V^* ?
- Practically important, because we often can only solve the Bellman equations approximately, because of various sources of errors
 - Computational
 - Approximation
 - Statistical

Error Bounds

An Error Bound based on the Bellman Error

Proposition

For any $V \in \mathcal{B}(\mathcal{X})$ or $Q \in \mathcal{B}(\mathcal{X} \times \mathcal{A})$, we have

$$||V - V^*||_{\infty} \le \frac{||V - T^*V||_{\infty}}{1 - \gamma}, \qquad ||Q - Q^*||_{\infty} \le \frac{||Q - T^*Q||_{\infty}}{1 - \gamma}.$$

The quantity $\mathsf{BR}(V) \triangleq T^\pi V - V$ and $\mathsf{BR}^*(V) \triangleq T^* V - V$ are called Bellman Residuals.

Their norms are called Bellman Errors.

Error Bounds

An Error Bound based on the Bellman Error (Proof)

We want to upper bound $\|V-V^*\|_{\infty}$. We start from $V-V^*$, and add and subtract T^*V to $V-V^*$. We then take the supremum norm, and use the triangle inequality to get

$$\begin{split} V - V^* &= V - T^*V + T^*V - V^* \\ \Rightarrow \|V - V^*\|_{\infty} &= \|V - T^*V + T^*V - V^*\|_{\infty} \\ &\leq \|V - T^*V\|_{\infty} + \|T^*V - V^*\|_{\infty} \,. \end{split}$$

An Error Bound based on the Bellman Error (Proof)

Let us focus on the term $||T^*V - V^*||_{\infty}$. Two observations:

- $V^* = T^*V^*$
- \blacksquare The Bellman optimality operator is a $\gamma\text{-contraction w.r.t.}$ the supremum norm.

Thus,

$$\left\|T^*V-V^*\right\|_{\infty}=\left\|T^*V-T^*V^*\right\|_{\infty}\leq \gamma\left\|V-V^*\right\|_{\infty}.$$

Therefore,

$$||V - V^*||_{\infty} \le ||V - T^*V||_{\infty} + \gamma ||V - V^*||_{\infty}.$$

Re-arranging this, we get

$$(1 - \gamma) \|V - V^*\|_{\infty} \le \|V - T^*V\|_{\infty}.$$

Consequences of Monotonicity and Contraction

Error Bounds

An Error Bound based on the Bellman Error (for policy π)

Proposition

For any $V \in \mathcal{B}(\mathcal{X})$ or $Q \in \mathcal{B}(\mathcal{X} \times \mathcal{A})$, and any $\pi \in \Pi$, we have

$$\|V - V^{\pi}\|_{\infty} \le \frac{\|V - T^{\pi}V\|_{\infty}}{1 - \gamma}, \qquad \|Q - Q^{\pi}\|_{\infty} \le \frac{\|Q - T^{\pi}Q\|_{\infty}}{1 - \gamma}.$$

V^* is the same as V^{π^*}

The fixed point of T^* is indeed the optimal value function within the space of stationary policies Π .

We use the monotonicity of T^{\ast} , in addition to contraction, to prove it.

V^* is the same as V^{π^*}

Proposition

Let V^* be the fixed point of T^* , i.e., $V^* = T^*V^*$. We have

$$V^*(x) = \sup_{\pi \in \Pi} V^{\pi}(x), \quad \forall x \in \mathcal{X}.$$

Remark

The statement and the proof is from Proposition 2.1.1 of Bertsekas 2018.

V^* is the same as V^{π^*} (Proof)

Overview:

- We show that $V^*(x) \leq \sup_{\pi \in \Pi} V^{\pi}(x)$.
- We show that $\sup_{\pi \in \Pi} V^{\pi}(x) \leq V^{*}(x)$.
- Combined, they show that $V^*(x) = \sup_{\pi \in \Pi} V^{\pi}(x)$.

V^* is the same as V^{π^*} (Proof)

Proof of $V^*(x) \leq \sup_{\pi \in \Pi} V^{\pi}(x)$:

From the error bound result (Proposition 17) with the choice of $V=V^*$, we get that for any $\pi\in\Pi$,

$$||V^* - V^\pi||_{\infty} \le \frac{||V^* - T^\pi V^*||_{\infty}}{1 - \gamma}.$$
 (8)

Let $\varepsilon > 0$. Choose a policy π_{ε} such that

$$||V^* - T^{\pi_{\varepsilon}}V^*||_{\infty} \le (1 - \gamma)\varepsilon.$$

This is possible because we have

$$(T^*V^*)(x) = \sup_{a \in \mathcal{A}} \left\{ r(x, a) + \gamma \int \mathcal{P}(\mathrm{d}x'|x, a) V^*(x') \right\},\,$$

so it is sufficient to pick a π_{ε} that solves the optimization problem up to $(1-\gamma)\varepsilon$ -accuracy of the supremum at each state x (if we find the maximizer, then $\varepsilon=0$).

V^* is the same as V^{π^*} (Proof)

Proof of $V^*(x) \leq \sup_{\pi \in \Pi} V^{\pi}(x)$ (Continued):

For policy π_{ε} , (8) shows that

$$||V^* - V^{\pi_{\varepsilon}}||_{\infty} \le \varepsilon.$$

This means that

$$V^*(x) \le V^{\pi_{\varepsilon}}(x) + \varepsilon, \quad \forall x \in \mathcal{X}.$$

Notice that $V^{\pi_{\varepsilon}}(x) \leq \sup_{\pi \in \Pi} V^{\pi}(x)$ (as $\pi_{\varepsilon} \in \Pi$). We take $\varepsilon \to 0$ to get that for all $x \in \mathcal{X}$,

$$V^{*}(x) \leq \lim_{\varepsilon \to 0} \left\{ V^{\pi_{\varepsilon}}(x) + \varepsilon \right\} \leq \lim_{\varepsilon \to 0} \left\{ \sup_{\pi \in \Pi} V^{\pi}(x) + \varepsilon \right\} = \sup_{\pi \in \Pi} V^{\pi}(x).$$
(9)

This shows that V^* , the fixed point of T^* , is smaller or equal to the optimal value function within the space of stationary policies.

V^* is the same as V^{π^*} (Proof)

Proof of $\sup_{\pi \in \Pi} V^{\pi}(x) \leq V^*(x)$:

Consider any $\pi\in\Pi.$ By the definition of T^π and T^* , for any $V\in\mathcal{B}(\mathcal{X})$, we have that for any $x\in\mathcal{X}$,

$$(T^{\pi}V)(x) = \int \pi(\mathrm{d}a|x) \left[r(x,a) + \gamma \int \mathcal{P}(\mathrm{d}x'|x,a)V(x') \right]$$

$$\leq \sup_{a \in \mathcal{A}} \left\{ r(x,a) + \gamma \int \mathcal{P}(\mathrm{d}x'|x,a)V(x') \right\}$$

$$= (T^*V)(x).$$

In particular, with the choice of $V = V^*$, we have

$$T^{\pi}V^* \le T^*V^*.$$

V^* is the same as V^{π^*} (Proof)

Proof of $\sup_{\pi \in \Pi} V^{\pi}(x) \leq V^{*}(x)$ (Continued):

$$T^{\pi}V^* < T^*V^*.$$

As $T^*V^* = V^*$, we have

$$T^{\pi}V^* \le V^*. \tag{10}$$

We use the monotonicity of T^{π} (Lemma 3) to conclude that

$$T^{\pi}(T^{\pi}V^*) \le T^{\pi}V^*,$$

which by (10) shows that

$$(T^{\pi})^2 V^* \le V^*.$$

We repeat this argument for k times to get that

$$(T^{\pi})^k V^* \le V^*.$$

V^* is the same as V^{π^*} (Proof)

Proof of $\sup_{\pi \in \Pi} V^{\pi}(x) \leq V^{*}(x)$ (Continued):

$$(T^{\pi})^k V^* \le V^*.$$

As $k \to \infty$, Proposition 14 shows that $(T^{\pi})^k V^*$ converges to V^{π} (the choice of V^* is irrelevant). Therefore,

$$V^{\pi} = \lim_{k \to \infty} (T^{\pi})^k V^* \le V^*.$$

As this holds for any $\pi\in\Pi,$ we take the supremum over $\pi\in\Pi$ to get

$$\sup_{\pi \in \Pi} V^{\pi} \le V^*. \tag{11}$$

Inequalities (9) and (11) together show the desired result.

Summary

- Bellman equations describe an important recursive properties of value functions.
- Bellman operators T^{π} and T^* .
- Greedy policy and the optimal policy.
- Monotonicity and contraction properties of the Bellman operators.
- Bellman equations have uniqued solutions.
- Bellman error $\|V T^*V\|_{\infty}$ provides an upper bound on value error $\|V V^*\|_{\infty}$.
- The solution of the Bellman optimality equation is the optimal value function.

References

Dimitri P. Bertsekas. *Abstract dynamic programming*. Athena Scientific Belmont, 2nd edition, 2018.

John K. Hunter and Bruno Nachtergaele. *Applied analysis*. World Scientific Publishing Company, 2001.