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How to Compute the Optimal Policy 7*?

m We have defined concepts and properties such as

m Value function for a policy m and optimal value function
m Relation between V* (or Q*) and 7* through the greedy policy

Question: How can we find the optimal policy?

Assumption: MDP is known, i.e., we know R and P.

The assumption of knowing the MDP does not hold in the RL
setting.

But designing methods for finding the optimal policy with
known model provides the foundation for developing methods
for the RL setting.
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Different Approaches to Find 7*

m Value-based: Compute Q* (or V*) and then 7* < 7, (Q*).

m Direct policy search: Search in the space of policies without
explicitly constructing the optimal value function.

m Hybrid: Explicitly construct value function to guide the search
in the policy space.
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Policy Evaluation vs. Control Problems

m Policy Evaluation (PE): Problem of computing the value
function of a given policy 7, i.e., V™ or Q™.

m Not the ultimate goal of an RL agent (finding the optimal
policy is), but is often needed as an intermediate step in
finding the optimal policy.

m Control: Problem of finding the optimal value function V* or
Q* or optimal policy 7*.

Dynamic Programming (DP): Methods that benefit from the
structure of the MDP, such as the recursive structure encoded in
the Bellman equation, in order to compute the value function.
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‘—Some Initial Attempts

Policy Evaluation

Problem Statement: Given an MDP (X, A, P,R,v) and a policy
m, we would like to compute V™ or Q7.

V™(z)=E [Z YV IRX, = x] .

t=1
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‘—Some Initial Attempts

Policy Evaluation: A Naive Approach

4

Xlix

A1 ~ T ‘Xl = I)
() X ~P(| X1, A1)

AzNﬂ' IXZ

Idea: Expand the tree of all possible futures!
Example: the expected reward at time t = 2 is

Z m(alz)P(2' |z, a)m(d |2 )r (2, d').

a,x’,a’

Remark

This is inefficient. The size of the tree grows very fast.
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‘—Some Initial Attempts

Policy Evaluation: Linear System of Equations

Q: Can we improve the efficiency?
Key ldea: Benefit from the recursive structure of the value function

vVt =T"VT".

V(z)=r"(x)+v Y P (@ |2)V(a'), VeeX
r'eX
In the discrete state-action case:
m n = |X| equations
m |X| unknowns (V(z1),...,V(zy))
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‘—Some Initial Attempts

Policy Evaluation: Linear System of Equations

We have n equations in the form of:

Viz) =y Y PT(@|2)V(2)) = r"(x),

z'ex
More compactly in the matrix form:
(I =PT)V =17,
which is the same form of a generic linear system of equations:

AnxnTnx1 = bnx1.
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‘—Some Initial Attempts

Policy Evaluation: Linear System of Equations

Solving Ay xnTnx1 = bnx1:
m Compute A~! and then calculate A=1b.

m Better: Use various linear solvers.

RENEILS

To solve the control problem of finding V*, we need to solve
V=T*V, ie,

V(z) = max {r(x, a)+ v Z 77(:1:'|x,a)V(x’)} :
z'eX

This is not a linear system of equations anymore!
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— Value Iteration

Value Iteration (PE)

Starting from Vj € B(X), we compute a sequence of (Vj)r>0 by
Vk—H — TWV]C.
By the contraction property of the Bellman operator:

Vi = V7l = 0.

lim
k—o0

Similar procedure to compute Q7, i.e., Qx11 + T™Qx.
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— Value Iteration

Value Iteration (Control)

Vig1 < TV,
Qi1 — T Q.

By the contraction property of the Bellman optimality operator, it
is guaranteed that V, — V* (or Qr — Q7).
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— Value Iteration

Value lteration

Qr+1

Qr
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— Value Iteration

Value lteration
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— Value Iteration

Value lteration
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— Value Iteration

Value lteration

VI is one of the fundamental algorithms for planning. Many RL
algorithms are essentially the sample-based variants of VI too.
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Policy lteration

A different approach is based on the iterative application of the

following two steps:
m (Policy Evaluation) Given a policy i, compute V™ (or Q7*).
m (Policy Improvement) Find a new policy 741 that is better
than 7y, i.e., V™41 > V7 (with a strict inequality in at least
one state, unless at convergence).

Qﬂ'

Policy Policy

Evaluation Improvement

7'+ argmax Q" (-, a)
acA 17 /44
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Policy lteration

Q: How to perform Policy Evaluation and Policy Improvement?

m Policy Evaluation: This is clear. We can either solve a linear
system of equations or even perform VI (PE) to compute the
value of a policy 7.

m Policy Improvement: Choose the greedy policy, i.e.,

Thy1(2) < mg(z; Q™) = argmax Q" (z, a), Ve e X.
acA

The Policy Iteration (Pl) algorithm refers to the specific case that
we pick the new policy w1 as wy(Q™*).
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— Policy Iteration

Why Greedy Policy for Policy Improvement? (Intuition)

Assume that at state x, we act according to my(z; Q™), and
afterwards, we follow .
The value of this new policy is

Q™ (z,mg(z; Q™)) = Q™ (x, argmax Q™ (x, a)) = max Q"*(x, a).
acA acA

Comparing max,e 4 Q™ (x, a) with V™ (x) = Q™ (x, m(x)), we
see

Q™ (x, mg(; Q™)) = V7 (x).

So this new policy is equal to or better than 7 at state x.
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— Policy Iteration

Policy lteration

Recall that:
m V™ is the unique fixed point of T7k.
m The greedy policy satisfies T™ +1Q™ = T*Q7*.
We can summarize each iteration of the Policy Iteration algorithm
as
m (Policy Evaluation) Given 7, compute Q7*, i.e., find a @
that satisfies Q = T™ Q).
m (Policy Improvement) Obtain 7,1 as a policy that satisfies
T™r+1Q™k = T*Q™*.
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— Policy Iteration

Approximate Policy Iteration

We also have approximate policy iteration algorithms too, where
policy evaluation or improvement steps are performed
approximately:

BQ~rT™Q
u Tﬂ'k+1Qﬂ'k ~ T*QWk

We discuss this later when we get to function approximation.
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— Policy Iteration
Convergence of Policy Iteration

Convergence of Policy Iteration

m The Policy lteration algorithm converges to the optimal policy.

m For finite MDPs, the convergence happens in a finite number
of iterations.
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— Policy Iteration
Convergence of Policy Iteration

Policy Improvement Theorem

Theorem (Policy Improvement)

If for policies m and 7', it holds that T™ Q™ = T*Q™, we have that
Qw’ > Q7r_

In other words, the greedy policy is a proper policy improvement
step.

23 /44



Planning with a Known Model

— Policy Iteration
Convergence of Policy Iteration

Policy Improvement Theorem (Proof)

We have T*Q™ > T™Q™ = Q™ because for any (z,a) € X X A, it
holds that

r(z,a) + v/P(dx’]x,a) flrlleaiQ”(x’,a/) >
r(z,a) +W/P(d:c'|m,a)Q”(m’,w(JJ’)).

Therefore, T™ Q™ = T*Q™ > T™Q™ = Q.
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— Policy Iteration
Convergence of Policy Iteration

Policy Improvement Theorem (Proof)

We have

T’TI' QT{' Z Qﬂ"
Apply T™ to both sides of T™ Q™ > QT, and use the monotonicity
property of the Bellman operator to conclude

Tw’(Tw/Qﬂ') > Tﬂ'/QT( _ T*Qﬂ' > Qﬂ"
By repeating this argument, we get that for any m > 1

(T™)™Q™ > T*Q™ > Q. (1)
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— Policy Iteration
Convergence of Policy Iteration

Policy Improvement Theorem (Proof)

(Tﬂ'/)mQﬂ' > T*Qﬂ' > Qﬂ'.
Take the limit of m — oo.
Because of the contraction property of the Bellman operator 77 :

W}ij)noo(Tﬁl)mQﬂ _ Qﬂ'/. (2)

By combining (1) and (2), we get that

Qﬂ'/ — lim (Tn’)me > T*Qﬂ' > Qﬂ" (3)

m—00
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— Policy Iteration
Convergence of Policy Iteration

Convergence of Policy Iteration

m The Policy Improvement theorem shows that if we are given
Tk, the new policy 7,11 is at least as good as the previous
one.

m We can show that the Pl algorithm converges to an optimal
policy. We shall prove this.

m If |X X A| < oo, this happens in a finite number of iterations.
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— Policy Iteration
Convergence of Policy Iteration

Convergence of Policy Iteration

Theorem (Convergence of the Policy Iteration Algorithm)

Let (mx)k>0 be the sequence generated by the Pl algorithm. For all
k, we have that V™k+1 > V™ with equality if and only if
V™ = V*. Moreover,

lim [|[V™ — V™| =0.

i | o

Furthermore, if the set of policies is finite, the Pl algorithm
converges in a finite number of iterations.

RENEILS

We follow the line of proof of Proposition 2.4.1 of Bertsekas 2018.
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— Policy Iteration
Convergence of Policy Iteration

Convergence of Policy Iteration (Proof)

The basic idea behind the proof is that we either can strictly
improve the policy, or if we cannot, we are already at the optimal
policy.
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— Policy Iteration
Convergence of Policy Iteration

Convergence of Policy Iteration (Proof)

Proof of V7k+1 > VV7k:

By Theorem 1, we have that V7k+1 > V7,

Proof of V™+1 = V7T = V7Tk = V*:

Suppose that instead of a strict inequality, we have an equality of

Vet = Y7k,
Apply T™ +1 to both side to get
T7k+1 Vﬂ'k — Tﬂk+1vﬂ'k+1_

As T™k+1V Tk = T*V Tk by the definition of the PI algorithm, we
get that
TTe+1YTh+1 — T* Tk — T*Vm“‘l,

where in the last step we used V™ +1 = V7 again.
30/ 44
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— Policy Iteration
Convergence of Policy Iteration

Convergence of Policy Iteration (Proof)

By these equalities, we have
TTFk+1 Vﬂk-q-l — T*Vﬂk"'l.

As V™41 s the value function of 1, it satisfies
TTe+1/Tk+1 = VVTk+1_ Therefore, we also have

VTR = THY TR

This means that V7*+1 is a fixed point of T™*.
But the fixed point of T™ is unique and is equal to V*.
So we must have that

VTt = V7*,
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— Policy Iteration
Convergence of Policy Iteration

Convergence of Policy Iteration (Proof)

Proof of V™ = V* = V7ktl = /7k:
If VT = V*, then 7 is an optimal policy. The greedy policy of
V™ = V* is still an optimal policy, hence V™ +1 = V* = V7,

32/44
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Convergence of Policy Iteration
Convergence of Policy Iteration (Proof)

Proof of limy_, ||V — V*||  =0.
To prove the convergence, recall from (3) that

QU 2 T Q™ > Q. (4)
By induction,
Qﬂ'k+1 2 T*Qﬂk 2 T*(T*Qﬂk,l) 2 . Z (T*)kQﬂO.

By the definition of the optimal policy, we have Q™ < Q* for any T,
including all 7, generated during the iterations of the PI algorithm.
So Q™+ is sandwiched between Q* and (T*)*Q™, i.e.,

Q* > QT+t > (T*)kQ™.
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— Policy Iteration
Convergence of Policy Iteration

Convergence of Policy Iteration (Proof)

By the contraction property of the Bellman optimality operator, we

have that
=0.

o0

hm H (T*)FQ™ — Q*

As

lQm = Q" < [T Q™ - @

we have that

)
o0

li Tk _ ()* —
Jim Q7 — @,

This implies the convergence of V™ too.
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— Policy Iteration
Convergence of Policy Iteration

Convergence of Policy Iteration (Proof)

Proof of finite convergence:
If the number of policies is finite, the number of times (4) can be a
strict inequality is going to be finite too.
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— Policy Iteration
Convergence of Policy Iteration

Convergence of Policy Iteration: Some Remarks

m The Pl algorithm converges to the optimal policy in a finite
number of iterations whenever the number of policies is finite.

m If the state space X and the action space A are finite, the
number of policies are finite and is |A[I¥].

m Even though finite, this can be very large.

m Example: A 10 x 10 grid world problem with 4 actions at each
state has 4190 ~ 1.6 x 10%° possible policies.

m In practice, Pl converges much faster.

m This suggest that the previous analysis might be crude.
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— Policy Iteration
Convergence of Policy Iteration

Fast Convergence of Policy lteration

It can be shown that the Pl algorithm converges in
X 1
0( HA!lOg< ))
-~ 11—~
iterations.

The proof is in the lecture notes.

Remark

This is a relatively recent result, which in various forms have been
proven by Ye [2011]; Hansen et al. [2013]; Scherrer [2016].
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— Linear Programming

Linear Programming for Finding V*

We can find V* by solving a Linear Program (LP) too.
Consider the set of all V' that satisfy V > T*V, i.e.,

C={V:V>TV}.

Interesting property:
For any V' € C', we have

V>TV = TV > TT*V) = (T*)?*V.
Repeating this argument, we get that for any m > 1,

V> (T*)™V.
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— Linear Programming

Linear Programming for Finding V*

From
V> (T)"V.
we get that
V> lim (TH"V =V™.
m—0o0
Interpretation:
m Any V € C'is a lower bounded by V*.

m (OR) V* is the function in C that is smaller or equal to any
other function in C' (pointwise sense).
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— Linear Programming

Linear Programming for Finding V*

Choose a strictly positive vector i > 0 with the dimension of X.
Solve

T
min 'V,
Veo peovs

Can be written as

miny 'V,
st.  V(z) > (T*V)(x), Ve e X.

Linear objective; nonlinear constraints.
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— Linear Programming

Linear Programming for Finding V*

Each nonlinear constraint:

V(x) > max {r(x, a)+y Z Py, a)V(y)}

acA
Yy

is equivalent to

V(z) >r(z,a)+ 7273(3/|a:, a)V(y), Va € A.
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— Linear Programming

Linear Programming for Finding V*

miny 'V,

st.  V(z)>r(x,a)+ 'yZP(y|x, a)V(y), V(z,a) € X x A.

This is a linear program with |X x A| constraints.
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Summary

m Three methods for computing the optimal value function

m Value lteration
m Policy lteration
m Linear Programming

m Established convergence of VI and PI

m These methods have variants for the RL setting.
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