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Learning from a Stream of Data: Value Function Learning

RL Setting and the Stream of Data

Planning setting: the model (P and R) is known.
VI, PI, LP

RL setting: no access to the model; instead, we observe data
of agent interacting with its environment.

Stream of Data

X1, A1, R1, X2, A2, R2,

with At ∼ π(·|Xt), Xt+1 ∼ P(·|Xt, At) and Rt ∼ R(·|Xt, At).

Questions:
How can we learn a value of policy π?
How can we learn V ∗ or Q∗ (and consequently, the optimal
policy π∗)?

We (often) assume exact representation of the value function.
Only feasible for finite MDPs.
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Online Estimation of the Mean of a Random Variable

Estimation of the Mean of a Random Variable

Let us start from a simple problem of estimating the mean of a
random variable, given samples from it. To be concrete, assume
that we are given n real-valued r.v.

Z1, . . . , Zt,

all drawn i.i.d. from a distribution ν.
Q: How can we estimate the expectation m = E [Z] with Z ∼ ν?
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Online Estimation of the Mean of a Random Variable

Sample Average Estimator

Use the sample (or empirical) average:

mt ,
1

t

t∑
i=1

Zi.

We know that under mild conditions, by the Law of Large
Numbers (LLN), mt → m, almost surely.
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Online Estimation of the Mean of a Random Variable

How to Get an Online Estimator?

The naive implementation of mt requires storing all
Z1, . . . , Zt.

This is infeasible when t is large.

But we can do it online too:

mt+1 =
1

t+ 1

t+1∑
i=1

Zi =
1

t+ 1

[
t∑
i=1

Zi + Zt+1

]

=
1

t+ 1
[tmt + Zt+1]

=

(
1− 1

t+ 1

)
mt +

1

t+ 1
Zt+1.
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Online Estimation of the Mean of a Random Variable

How to Get an Online Estimator?

Let us define αt = 1
t+1 . We can write

mt+1 = (1− αt)mt + αtZt.

The variable αt is called the learning rate or step size.
With this choice of αt, the estimate mt converges to m as t→∞.
This online procedure is an example of the family of stochastic
approximation (SA) methods.
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Online Estimation of the Mean of a Random Variable

Stochastic Approximation

θt+1 = (1− αt)θt + αtZt. (1)

Note that θt is a random variable.

Various choices of αt.

If αt = 1
t+1 , we get the sample mean estimator.

Fixed αt = α.
αt = c

tp+1

Let us study the fixed αt = α closer.

θt+1 = (1− α)θt + αZt.
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Online Estimation of the Mean of a Random Variable

Stochastic Approximation: Fixed α

θt+1 = (1− α)θt + αZt.

Studying its expectation and variance as a function of time t.
Take expectation of both sides to get

E [θt+1] = E [(1− α)θt + αZt]

= (1− α)E [θt] + αE [Zt]

= (1− α)E [θt] + αm.

Denote E [θt] by θ̄t (which is not a r.v. anymore), and write the
equation above as

θ̄t+1 = (1− α)θ̄t + αm.
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Online Estimation of the Mean of a Random Variable

Stochastic Approximation: Fixed α

θ̄t+1 = (1− α)θ̄t + αm.

We would like to study the behaviour of θ̄t as t increases.
Assuming that θ0 = 0 (so θ̄0 = 0) and 0 ≤ α < 1, we get that

θ̄t = αm,

θ̄2 = (1− α)αm+ αm,

θ̄3 = (1− α)2αm+ (1− α)αm+ αm,

...

θ̄t = α

t−1∑
i=0

(1− α)im =
αm(1− (1− α)t)

1− (1− α)
= m

[
1− (1− α)t

]
.
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Online Estimation of the Mean of a Random Variable

Stochastic Approximation: Fixed α

θ̄t = m
[
1− (1− α)t

]
=⇒ lim

t→∞
θ̄t = m.

θt converges to m in expectation.

Reassuring, but is not enough.

It is imaginable that θt converges in expectation, but has a
large deviation around its mean.

Let us compute its variance too.
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Online Estimation of the Mean of a Random Variable

Stochastic Approximation: Fixed α

Because of independent of Zt:

Var [θt+1] = Var [(1− α)θt + αZt] = (1−α)2Var [θt]+α2Var [Zt] .

As a quick calculation, we have that
Var [θt+1] ≥ α2Var [Zt] = α2σ2.
We can show that

lim
t→∞

Var [θt] =
ασ2

2− α
.

For a constant α, the variance of θt is not going to converge
to zero.

θt fluctuates around its mean (in different runs of the data
stream; though a similar conclusion would hold within the
same sequence (θt) too).
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Online Estimation of the Mean of a Random Variable

Stochastic Approximation

In order to make θt converge in a sense stronger than
expectation, we need αt → 0 with some schedule.

αt = 1
t+1 works, but is not the only acceptable one.

But any sequence αt going to zero is not working either.

It should not converge to zero too fast, as it would not allow
enough adaptation. Or too slow!

The SA Conditions:

∞∑
t=0

αt =∞,

∞∑
t=0

α2
t <∞.
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Online Learning of the Reward Function

Online Learning of the Reward Function

Recall the immediate reward problem:

At episode t, the agent starts at state Xt ∼ ρ ∈M(X ).

It chooses action At ∼ π(·|Xt).

It receives a reward of Rt ∼ R(·|Xt, At).

The agent then starts a new independent episode t+ 1, and
the process repeats.

The goal is to learn how to act optimally.

When the reward function r : X ×A → R was known, the
optimal policy would be

π∗(x)← argmax
a∈A

r(x, a).

What if when we do not know the reward function?
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Online Learning of the Reward Function

Online Learning of the Reward Function

Use SA to estimate r(x, a).

An extension of how we estimated the mean of a single
variable Z ∼ ν to many variables (one for each state-action
pairs (x, a) ∈ X ×A).

Denote r̂t : X ×A → R as our estimate of r at time t.

Let us denote the state-action-indexed sequence αt(x, a) as
the step size for (x, a).

At time/episode t, the state-action pair (Xt, At) is selected.
We update r̂t(Xt, At) as

r̂t+1(Xt, At)← (1− αt(Xt, At))r̂t(Xt, At) + αt(Xt, At)Rt,
(2)

and do not change our estimate r̂t+1(x, a) from what we had
r̂t(x, a) for all (x, a) 6= (Xt, At).
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Online Learning of the Reward Function

Online Learning of the Reward Function

r̂t+1(Xt, At)← (1− αt(Xt, At))r̂t(Xt, At) + αt(Xt, At)Rt.

The SA conditions should be satisfied for each state-action pair,
i.e., for any (x, a) ∈ X ×A, we need to have

∞∑
t=0

αt(x, a) =∞,

∞∑
t=0

α2
t (x, a) <∞.
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Online Learning of the Reward Function

Selecting αt(x, a)

To define αt(x, a), use a counter on how many times (x, a) has
been picked up to time t. We define

nt(x, a) , |{ i : (Xi, Ai) = (x, a), i = 1, . . . , t }| .

We can then choose

αt(x, a) =
1

nt(x, a)
.

This leads to r̂t(x, a) being a sample mean of all rewards
encountered at (x, a).
Q: What happens if

the sampling distribution Xt ∼ ρ never chooses a particular
state x0?

the policy π(·|x0) never chooses a particular action a0 at a
certain state x0?
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Online Learning of the Reward Function

From Reward Estimation to Action Selection

From Reward Estimation to Action Selection

By selecting
a← πg(x; r) = argmax

a∈A
r(x, a),

we would choose the optimal action at state x. In lieu of r, we can
use r̂t : X ×A → R, estimated using the SA (2), and choose the
action At = πg(Xt; r̂t) at state Xt.
This would be the greedy policy w.r.t. r̂t.
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Online Learning of the Reward Function

From Reward Estimation to Action Selection

Problem with the Greedy Policy

If r̂t is an inaccurate estimate of r, the agent may choose a
suboptimal action.

It is also possible that it gets stuck in choosing that action
forever, without any chance to improve its estimate (this is
not OK).

Consider a problem where we only have one state x1 with two
actions a1 and a2. The reward function is

r(x1, a1) = 1,

r(x1, a2) = 2.

Suppose that the reward is deterministic. Suppose that the initial
estimate of the reward r̂(x1, ·) = 0.
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Online Learning of the Reward Function

From Reward Estimation to Action Selection

Problem with the Greedy Policy

Assume that in the first episode t = 1, the agent happen to choose
a1. So its estimates would be

r̂2(x1, a1) = (1− α1)× 0 + α1 × 1 > 0

r̂2(x1, a2) = r̂1(x1, a2) = 0.

The next time the agent encounters x1, the selected action
would be a1 again, and r̂3(x1, a1) remains positive.

Since a2 is not selected, the value of r̂3(x1, a2) remains zero.

As long as the agent follows the greedy policy, it always
chooses action a1 and never chooses action a2.

The estimate r̂t(x1, a1) becomes ever more accurate, but
r̂2(x1, a2) remains inaccurate.

This is problematic as the optimal action here is a2!
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Online Learning of the Reward Function

From Reward Estimation to Action Selection

Solution: ε-Greedy

Solution: Force the agent regularly picks actions other than the
one suggested by the greedy policy.
For ε ≥ 0 and a function r̂, we define πε as

πε(x; r̂) =

{
πg(x; r̂) w.p. 1− ε,
Uniform(A) w.p. ε.

The uniform choice of action in the ε-greedy helps the agent
explore all actions, even if the action is seemingly suboptimal.

The greedy part of its action select mechanism exploits the
current knowledge about the reward function, and chooses the
action that has the highest estimated reward.
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Online Learning of the Reward Function

From Reward Estimation to Action Selection

Exploration-Exploitation Tradeoff

Exploiting our knowledge is a reasonable choice when our
knowledge about the world is accurate.

When we have uncertainty about the world, we should not be
overconfident of our knowledge and exploit it all the time, but
instead explore other available actions, which might happen to
be better.

The tradeoff between exploration and exploitation is a major
topic in RL and is an area of active research.

22 / 68



Learning from a Stream of Data: Value Function Learning

Online Learning of the Reward Function

From Reward Estimation to Action Selection

Boltzmann distribution for Exploration-Exploitation
Tradeoff

Another heuristic: select actions according to the Boltzmann (or
Gibbs or softmax) distribution. Given a parameter τ > 0, and the
reward function r̂, the probability of selecting action a at state x is

π(a|x; r̂) =
exp( r̂(x,a)τ )∑

a′∈A exp( r̂(x,a
′)

τ )
.

More weight to actions with higher estimated value (i.e., reward).

When τ → 0, the behaviour of this distribution would be the
same as the greedy policy.

When τ →∞, the probability of all actions would be the
same (uniform distribution).
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Monte Carlo Estimation for Policy Evaluation

Monte Carlo Estimation for Policy Evaluation

The reward learning problem is a special case of value function
learning problem when the episode ends in one time step.
Goal: Methods to learn (or estimate) the value function V π and
Qπ of a policy.
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Monte Carlo Estimation for Policy Evaluation

Monte Carlo Estimation for Policy Evaluation

Recall that
V π(x) = E [Gπt |Xt = x] ,

with Gπt ,
∑

k≥t γ
k−tRk.

So Gπt (conditioned on starting from Xt = x) plays the same rule
as the r.v. Z in estimating m = E [Z].
Obtaining a sample from return Gπ is easy, at least conceptually:
If the agent starts at state x, and follows π, we can draw one
sample of r.v. Gπ by computing the cumulative average of rewards
collected during the episode.
Each trajectory is sometimes called a rollout.
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Monte Carlo Estimation for Policy Evaluation

Monte Carlo Estimation for Policy Evaluation

If we repeat this process from the same state, we get another draw
of r.v. Gπ.
Let us call the value of these samples
Gπ(1)(x), Gπ(2)(x), . . . , Gπ(n)(x). We can get an estimate V̂ (x) of
V π(x) by taking the sample average:

V̂ π(x) =
1

n

n∑
i=1

Gπ(i)(x).

We can also use a SA procedure too.
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Monte Carlo Estimation for Policy Evaluation

Monte Carlo Estimation (PE) (Initial-State Only)

Require: Step size schedule (αt(x))t≥1 for all x ∈ X .
1: Initialize V̂ π

1 : X → R arbitrary, e.g., V̂ π
1 = 0.

2: for each episode t do

3: Initialize X
(t)
1 ∼ ρ

4: for each step t of episode do

5: Follow π to obtain X
(t)
1 , A

(t)
1 , R

(t)
1 , X

(t)
2 , A

(t)
2 , R

(t)
2 , . . . .

6: end for
7: Compute Gπ1

(t) =
∑

k≥1 γ
k−1R

(t)
k .

8: Update

V̂ π
t+1(X

(t)
1 )←

(
1− αt(X(t)

1 )
)
V̂ π
t (X

(t)
1 ) + αt(X

(t)
1 )Gπ1

(t).

9: end for
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Monte Carlo Estimation for Policy Evaluation

First-Visit and Every-Visit Monte Carlo Estimators

The previous procedure might be a bit wasteful of our data. How
can we improve it?
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Temporal Difference Learning for Policy Evaluation

Temporal Difference Learning for Policy Evaluation

MC allows us to estimate V π(x) by using returns Gπ(x).

MC does not benefit from the recursive property of the value
function.

MC is agnostic to the MDP structure.

Advantageous: If the problem is not an MDP.
Disadvantageous: If the problem is an MDP.

We have seen methods benefitting from the structure of the
MDP in the previous lecture. Can we use similar methods,
even if we do not know P and R?
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Temporal Difference Learning for Policy Evaluation

Temporal Difference Learning for Policy Evaluation

Let us focus on VI for PE: At state x, the procedure is

Vk+1(x)← rπ(x) + γ

∫
P(dx′|x, a)π(da|x)Vk(x

′).

If we do not know rπ and P, we cannot compute this.
Suppose that we have n samples Ai ∼ π(·|x), X ′i ∼ P(·|x,Ai),
and Ri ∼ R(·|x,Ai).
Using these samples and Vk, we compute

Yi = Ri + γVk(X
′
i).

Now notice that
E [Ri|X = x] = rπ(x),

and

E
[
Vk(X

′
i)|X = x

]
=

∫
P(dx′|x, a)π(da|x)Vk(x

′).
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Temporal Difference Learning for Policy Evaluation

Temporal Difference Learning for Policy Evaluation

So the r.v. Yi satisfies

E [Yi|X = x] = E
[
Ri + γVk(X

′
i)|X = x

]
= (T πVk)(x).

This means that Yi is an unbiased sample from the effect of T π on
Vk, evaluated at x.
We can use a sample mean to estimate (T πVk)(x). Or we can
devise a SA procedure.
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Temporal Difference Learning for Policy Evaluation

Empirical Bellman Operator

The empirical Bellman operator:

(T̂ πVk)(x) , R(x) + γVk(X
′(x)),

It provides an unbiased estimate of (T πVk)(x):

E
[
(T̂ πVk)(x)|X = x

]
= (T πVk)(x).

The empirical version of the VI:

Vk+1 ← T̂ πVk = T πVk +
(
T̂ πVk − T πVk

)
︸ ︷︷ ︸

,εk

.

A deterministic part

A stochastic part
32 / 68



Learning from a Stream of Data: Value Function Learning

Temporal Difference Learning for Policy Evaluation

Temporal Difference Learning (Synchronous)

Require: Policy π, step size schedule (αk)k≥1.
1: Initialize V1 : X ×A → R arbitrary, e.g., V1(x) = 0.
2: for iteration k = 1, 2, . . . do
3: for each state x ∈ X do
4: Let A ∼ π(·|x)
5: X ′(x) ∼ P(·|X,A) and R(x) ∼ R(·|x,A)
6: Let (T̂ πVk)(x) , R(x) + γVk(X

′(x))
7: end for
8: Update

Vk+1 ← (1− αk)Vk + αkT̂
πVk

9: end for

33 / 68



Learning from a Stream of Data: Value Function Learning

Temporal Difference Learning for Policy Evaluation

Temporal Difference Learning: From Synchronous to
Asynchronous

We do not need to update all states at the same time.
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Temporal Difference Learning for Policy Evaluation

Temporal Difference Learning

Require: Policy π, step size schedule (αt)t≥1.
1: Initialize V1 : X ×A → R arbitrary, e.g., V1(x) = 0.
2: Initialize X1 ∼ ρ
3: for each step t = 1, 2, . . . do
4: Let At ∼ π(·|x)
5: Take action At, observe Xt+1 ∼ P(·|Xt, At) and
Rt ∼ R(·|Xt, At)

6: Update

Vt+1(x)←

{
Vt(x) + αt(x)[Rt + γVt(Xt+1)− Vt(Xt)] x = Xt

Vt(x) x 6= Xt

7: end for
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Temporal Difference Learning for Policy Evaluation

Temporal Difference Learning for Policy Evaluation

The update rule could be written in perhaps a simpler, but less
precise, form of

V (Xt)← V (Xt) + αt(Xt)[Rt + γV (Xt+1)− V (Xt)],

without showing any explicit dependence of V on time index t.
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Temporal Difference Learning for Policy Evaluation

Temporal Difference Error

The term

δt , Rt + γV (Xt+1)− V (Xt)

is called temporal difference (TD) error.
This is a noisy measure of how close we are to V π.
To see this more clearly, let us define the dependence on the TD
error on its components more explicitly: Given a transition
(X,A,R,X ′) and a value function V , we define

δ(X,R,X ′;V ) , R+ γV (X ′)− V (X).

We have

E
[
δ(X,R,X ′;V )|X = x

]
= (T πV )(x)− V (x) = BR(V )(x).

So in expectation, the TD error is equal to the Bellman residual of
V , evaluated at state x.
Recall that the Bellman residual is zero when V = V π.
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Temporal Difference Learning for Policy Evaluation

TD Learning for Action-Value Function

We can use a similar procedure to estimate the action-value
function.
To evaluate π, we need to have an estimate of (T πQ)(x, a) for all
(x, a) ∈ X ×A.
Suppose that (Xt, At) ∼ µ and X ′t ∼ P(·|Xt, At) and
Rt ∼ R(·|Xt, At).
The update rule would be

Qt+1(Xt, At)← Qt(Xt, At) + αt(Xt, At) [Rt + γQt(X
′
t, π(X ′t))−Qt(Xt, At)] ,

and
Qt+1(x, a)← Qt(x, a)

for all other (x, a) 6= (Xt, At).
It is easy to see that

E
[
Rt + γQt(X

′
t, π(X ′t))|X = x,A = a

]
= (T πQ)(x, a).
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Temporal Difference Learning for Policy Evaluation

On-policy and Off-policy Sampling Scenarios

Qt+1(Xt, At)← Qt(Xt, At) + αt(Xt, At) [Rt + γQt(X
′
t, π(X ′t))−Qt(Xt, At)] .

Observation:

π appears only in Qt(X
′
t, π(X ′t)) term.

The action At does not need to be selected by π itself.

This entails that the agent can generate the stream of data
X1, A1, R1, X2, A2, R2, . . . by following a policy πb that is
different from the policy that we want to evaluate π.
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Temporal Difference Learning for Policy Evaluation

On-policy and Off-policy Sampling Scenarios

When πb = π, we are in the on-policy sampling scenario, in
which the agent is evaluating the same policy that it is
following.

When πb 6= π, we are in the off-policy sampling scenario, in
which the agent is evaluating a policy that is different from
the one it is following.
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Monte Carlo Estimation for Control

Monte Carlo Estimation for Control

We can use similar methods for solving the control problem,
i.e., finding the optimal value function and the optimal policy.

The general idea is to use some version of PI.

If we run many rollouts from each state-action pair (x, a), we
can define Q̂πt that converges to Qπ.

If we wait for an infinite time, Q̂π∞ = limt→∞ Q̂
π
t = Qπ. We

can then choose π′ ← πg(Q̂
π
∞).

This PI can be described by the following sequence of π and
Qπ:

π0
E−−→ Qπ0

I−→ π1
E−−→ Qπ1

I−→ · · · .
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Monte Carlo Estimation for Control

Monte Carlo Estimation for Control

We do not need to have a very accurate estimation of Qπk

before performing the policy improvement step.

We can perform MC for a finite number of rollouts from each
state, and then perform the improvement step.
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Monte Carlo Estimation for Control

Monte Carlo Control (Initial-State Only)

Require: Initial policy π1, step size schedule (αk)k≥1.
1: Initialize Q1 : X ×A → R arbitrary, e.g., Q1 = 0.
2: for each iteration k = 1, 2, . . . do
3: for all (x, a) ∈ X ×A do
4: Initialize X1 = x and A1 = a.
5: Generate an episode from X1 by choosing A1, and then

following πk to obtain X1, A1, R1, X2, A2, R2, . . . .
6: Compute Gπk1 (X1, A1) =

∑
t≥1 γ

t−1Rt.
7: Update

Q̂πk+1(X1, A1)← (1− αk(X1, A1)) Q̂πk (X1, A1)+αk(X1, A1)Gπk
1 (X1, A1)

8: end for
9: Improve policy: πk+1 ← πg(Qk+1).

10: end for
43 / 68



Learning from a Stream of Data: Value Function Learning

Monte Carlo Estimation for Control

Monte Carlo Control (Initial-State Only)

Proposition (Convergence of MC for Control – Proposition 5
of Tsitsiklis 2002)

The sequence Qk generated by the previous algorithm with the
learning rate (αk) satisfying the SA conditions (3) converges to Q∗

almost surely.

∞∑
t=0

αt(x) =∞,
∞∑
t=0

α2
t (x) <∞. (3)
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Temporal Difference Learning for Control: Q-Learning and SARSA Algorithms

Temporal Difference Learning for Control: Q-Learning

We can use TD-like methods for the problem of control too.
Consider any Q ∈ B(X ×A). Let X ′ ∼ P(·|X,A) and
R ∼ R(·|X,A) and define

Y = R+ γmax
a′∈A

Q(X ′, a′).

We have

E [Y |X = x,A = a] = r(x, a) + γ

∫
P(dx′|x, a) max

a′∈A
Q(x′, a′)

= (T ∗Q)(x, a).

So Y is an unbiased noisy version of (T ∗Q)(x, a).
The empirical Bellman optimality operator is

(T̂ ∗Q)(x, a) , R+ γmax
a′∈A

Q(X ′, a′).
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Temporal Difference Learning for Control: Q-Learning and SARSA Algorithms

Q-Learning Algorithm

We can use SA to update the estimate of Q∗:

Qt+1(Xt, At)←(1− αt(Xt, At))Qt(Xt, At)+

αt(Xt, At)

[
Rt + γmax

a′∈A
Qt(Xt+1, a

′)

]
(4)

for the observed (Xt, At) and

Qt+1(x, a)← Qt(x, a)

for all other states (x, a) 6= (Xt, At).
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Q-Learning Algorithm

Require: Step size schedule (αk)k≥1.
Require: Policy mechanism π.
1: Initialize Q : X ×A → R arbitrary, e.g., Q = 0.
2: Initialize X1 ∼ ρ
3: for each step t do
4: At ∼ π(·|Xt),
5: Take action At, observe Xt+1 and Rt
6: Update:

Qt+1(Xt, At)←Qt(Xt, At)+

αt(Xt, At)

[
Rt + γ max

a′∈A
Qt(Xt+1, a

′)−Qt(Xt, At)

]
.

7: end for
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Q-Learning Algorithm

Q: What is the policy that the Q-Learning algorithm is evaluating?
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SARSA Algorithm

Follow a PI-like procedure: Estimate Qπ for a given π, and
perform policy improvement to obtain a new π.

Usual PI: Wait long enough until the TD method produces a
Q→ Qπ; then improve.

Generalized policy iteration (or optimistic policy iteration):
improve the policy before Q converges to Qπ
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SARSA Algorithm

The SARSA algorithm:

At state Xt

Choose At = πt(Xt)

Receives Xt+1 ∼ P(·|Xt, At) and Rt ∼ R(·|Xt, At)

At the time step t+ 1, choose At+1 = πt(Xt+1)

Update rule:

Qt+1(Xt, At)←(1− αt(Xt, At))Qt(Xt, At) +

αt(Xt, At) [Rt + γQt(Xt+1, At+1)] .

πt: close to a greedy policy πg(Qt), but with some amount of
exploration, e.g., the ε-greedy policy.
The greedy part performs the policy improvement, while the
occasional random choice of actions allows the agent to have some
exploration.
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Q-Learning vs SARSA

Comparing the update rules:

Q-Learning: maxa′∈AQt(Xt+1, a
′)

SARSA: Qt(Xt+1, At+1) = Qt(Xt+1, πt(Xt+1)).

Comparing the evaluated policy:

Q-Learning: the greedy policy πg(Qt) (off-policy)

SARSA: πt, i.e., the same policy that selects actions
(on-policy)
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Stochastic Approximation: A Second Look

Suppose that we want to find the fixed-point of an operator L:

Lθ = θ,

for θ ∈ Rd, and L : Rd → Rd.
Consider the iterative update

θt+1 ← (1− α)θt + αLθt.

If L is c-Lipschitz with c < 1 and α is small enough, this would
converge.
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Stochastic Approximation

Stochastic Approximation: A Second Look

If we do not have access to Lθt, but only its noise contaminated
Lθt + ηt with ηt ∈ Rd being a zero-mean noise, we perform

θt+1 ← (1− αt)θt + αt(Lθt + ηt).

Similar to (1), with the difference that the latter concerns the
estimation of a mean given an unbiased noisy value of the mean,
while here we are dealing with a noisy evaluation of an operator L
being applied to θt.
Recall that αt cannot be a fixed number, or the variance of the
estimate would not go to zero.
We need the usual SA conditions on step sizes.
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Stochastic Approximation

Stochastic Approximation: A General Model

Assume that at time t, the i-th component of θt is updated as

θt+1(i)← (1− αt(i))θt(i) + αt(i) [(Lθt)(i) + ηt(i)] , (5)

with the understanding that αt(j) = 0 for j 6= i (components that
are not updated).
Next: We provide a result showing the convergence of θt to θ∗, the
fixed point of L.
This requires some assumptions!
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Stochastic Approximation

Assumptions on Noise

The history of the algorithm up to time t by Ft:

Ft = {θ0, θ1, . . . , θt} ∪ {η0, η1, . . . , ηt−1} ∪ {α0, α1, . . . , αt}.

Assumption A1

(a) For every i and t, we have E [ηt(i)|Ft] = 0.

(b) Given any norm ‖·‖ on Rd, there exist constants c1, c2 such
that for all i and t, we have

E
[
|ηt(i)|2|Ft

]
≤ c1 + c2 ‖θt‖2 .
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Stochastic Approximation

Convergence Result

Theorem (Convergence of the Stochastic Approximation –
Proposition 4.4 of Bertsekas and Tsitsiklis 1996)

Let (θt) be the sequence generated by (5). Assume that

1 (Step Size) The step sizes αt(i) (for i = 1, . . . , d) are
non-negative and satisfy

∞∑
t=0

αt(i) =∞,
∞∑
t=0

α2
t (i) <∞.

2 (Noise) The noise ηt(i) satisfies Assumption A1.

3 The mapping L is a contraction w.r.t. ‖·‖∞ with a fixed point
of θ∗.

Then θt converges to θ∗ almost surely.
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Convergence of Q-Learning

The Q-Learning update rule (4) has the same form as the SA
update rule (5):

θ is Q ∈ RX×A

the operator L is the Bellman optimality operator T ∗

the index i in the SA update is the selected (Xt, At)

the noise term ηt(i) is the difference between (T ∗Qt)(Xt, At)
and the sample-based version Rt + γmaxa′∈AQt(Xt+1, a

′).
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Convergence of Q-Learning

Theorem

Suppose that for all (x, a) ∈ X ×A, the step sizes αt(x, a) satisfy

∞∑
t=0

αt(x, a) =∞,
∞∑
t=0

α2
t (x, a) <∞.

Furthermore, assume that the reward is of bounded variance.
Then, Qt converges to Q∗ almost surely.
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Convergence of Q-Learning

Convergence of Q-Learning (Proof)

Suppose that at time t, the agent is at state Xt, takes action At,
gets to X ′t ∼ P(·|Xt, At) and Rt ∼ R(·|Xt, At).
The update rule of the Q-Learning algorithm can be written as

Qt+1(Xt, At)←(1− αt(Xt, At))Qt(Xt, At) +

αt(Xt, At) [(T ∗Qt)(Xt, At) + ηt(Xt, At)] ,

with

ηt(Xt, At) = (Rt + γmax
a′∈A

Qt(X
′
t, a
′))− (T ∗Qt)(Xt, At),

and
Qt+1(x, a)← Qt(x, a) (x, a) /∈ (Xt, At).
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Convergence of Q-Learning

Convergence of Q-Learning (Proof)

T ∗ is a γ-contraction mapping, so condition (3) of the
theorem is satisfied.

Condition (1) is assumed too.

It remains to verify the conditions (2) on noise ηt, which are
conditions (a) and (b) of Assumption A1.
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Convergence of Q-Learning

Convergence of Q-Learning (Proof)

Let Ft be the history of algorithm up to and including when the
step size αt(Xt, At) is chosen, but just before X ′t and Rt are
revealed. We have:

E [ηt(Xt, At)|Ft] =E
[
Rt + γmax

a′∈A
Qt(X

′
t, a
′) | Ft

]
−

(T ∗Qt)(Xt, At) = 0.

This verifies condition (a): zero-mean noise.
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Convergence of Q-Learning

Convergence of Q-Learning (Proof)

To verify (b), we provide an upper bound on E
[
η2t (Xt, At)|Ft

]
:

E
[
η2t (Xt, At) | Ft

]
=

E

[∣∣∣(Rt − r(Xt, At))+

γ

(
max
a′∈A

Qt(X
′
t, a
′)−

∫
P(dx′|Xt, At) max

a′∈A
Qt(x

′, a′)

) ∣∣∣2 | Ft]

≤ 2Var [Rt | Xt, At] + 2γ2Var

[
max
a′∈A

Qt(X
′, a′) | Xt, At

]
.
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Convergence of Q-Learning

Convergence of Q-Learning (Proof)

We have

Var

[
max
a′∈A

Qt(X
′, a′) | Xt, At

]
≤ E

[∣∣∣∣max
a′∈A

Qt(X
′, a′)

∣∣∣∣2 | Xt, At

]
≤ max

x,a
|Qt(x, a)|2

≤
∑
x,a

|Qt(x, a)|2 = ‖Qt‖22 .
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Convergence of Q-Learning

Convergence of Q-Learning (Proof)

Denote the maximum variance of the reward distribution over the
state-action space max(x,a)∈X×AVar [R(x, a)] by σ2R, which is
assumed to be bounded.
We have

E
[
η2t (Xt, At) | Ft

]
≤ 2(σ2R + γ2 ‖Qt‖22).

Therefore, we can choose c1 = 2σ2R and c2 = 2γ2 in condition b.
All conditions of Theorem 2 are satisfied, so Qt converges to Q∗

(a.s.).
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Convergence of Q-Learning

Remarks

The step size condition is state-action dependent.

If there is a state-action pair that is not selected at all or only
a finite number of times, the condition cannot be satisfied.

We need each state-action pair to be visited infinitely often.
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Convergence of Q-Learning

Remarks

The state-action-dependence of the step size might be
different from how the Q-Learning algorithm is sometimes
presented, in which a single learning rate αt is used for all
state-action pairs.

A single learning rate suffices if the agent happens to visit all
(x, a) ∈ X ×A frequent enough, for example every M <∞
steps.

This is only an asymptotic guarantee. It does not show
anything about the convergence rate, i.e., how fast Qt
converges to Q∗.
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Summary

From Planning (known model) to Learning (unknown model)

Stochastic Approximation for online estimation of a noisy
quantity

Methods for estimation of value function

Monte Carlo
Temporal Difference Learning

Established convergence of Q-Learning
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