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Value Function Approximation

— Motivation and Examples

Motivation

In many real-world problems, the state-action space X x A is so
large that we cannot represent quantities such as the value
function or policy exactly.

m X C R? with d > 1. Exact representation of an arbitrary
function on R?, or even on R, on a computer is infeasible.
m X is finite, but very large (millions or billions).
We need to approximate those functions using a representation
that is feasible to manipulate on a computer. This is called

function approximation (FA).
Function approximation is important for generalization too.
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Value Function Approximation

— Motivation and Examples

Function Approximation in RL

Function approximation is used and studied in many field:
approximation theory, ML /Statistics.
In RL:

m Value function approximation: V7™ ~ V7™ or V* ~ V*

m Policy approximation: 7* ~ 7*.

m Model approximation: PP
These function approximators should be easily represented on a
computer.

m This lecture: Value function approximation.

m Next lecture: Policy approximation



Value Function Approximation

— Motivation and Examples

Linear Function Approximation

We may use a linear function approximator defined based on a set
of basis functions, i.e.,

with w € RP and ¢ : X — RP.
Any V belongs to the space of functions F

f:{xb—>¢(x)Tw:w€Rp}. (1)

The function space F is called the value function space. In this
example, it is a span of a set of features. We simply call it a linear
function space.

The linearity is in the parameters w and not in the state x.
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Value Function Approximation

— Motivation and Examples

Piecewise Constant Approximation
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Assume that the domain is [—b, +b], we can define ¢; (for
i=0,1,...,[%2]) as
di(z) ={x € [-b+ie,—b+ (i + 1)e)}.
Any function V' can be approximated by a
Viz)=V(z;w) = ¢(z) Tw with w € RIZTHL So it is a linear
function approximator. Let us denote such a function space by F.. 6,12



Value Function Approximation

— Motivation and Examples

Piecewise Constant Approximation

Questions:
m How accurate can we approximate function V7?7
m How many parameters do we require in order to represent this
function approximator?
m What is the effect of the function approximation on statistical
estimation?



Value Function Approximation

— Motivation and Examples

Approximation Error

m The approximation quality depends on the regularity or
structure of the value function V.

m If we allow V to change arbitrary, we cannot hope to have a
good approximation.
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Value Function Approximation

— Motivation and Examples

Approximation Error

If the value function has some regularities, we can say more.
For any V that is L-Lipschitz,

inf HV—VH < Ie.
Ver. 0o

This is called the approximation error or bias.

Approximation error depends on:
m the structure of the function approximator, e.g., piecewise
constant, piecewise linear, etc.
m the class of functions that is being approximated, e.g.,
L-Lipschitz functions.
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Value Function Approximation

— Motivation and Examples

Curse of Dimensionality in the Number of Parameters

If the domain was X = [—1, +1]¢ for d > 1, we would need

(=)

parameters to describe such a function.

This increases exponentially fast as a function of d.

This exponential growth of the number of parameters required to
represent a high-dimensional function is an instance of the curse of
dimensionality.
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Value Function Approximation

— Motivation and Examples

Estimation Error

m We also need to pay attention to the statistical aspect of
estimating a function within this function space using a finite
number of data points.

m The estimation accuracy depends on some notion of
complexity or size of F.

m Quantifying this requires some further development, which we
shall do later in a simplified setting, but roughly speaking, the
statistical error behaves as O( lognim) where n is the

number of data points used in the estimation.

m This is called the estimation error or variance.
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Value Function Approximation

— Motivation and Examples

Different Function Approximators

There are many other ways to represent the value function
approximation V' (and effectively, F). Some examples are

m Deep neural networks
m reproducing kernel Hilbert spaces
m Decision trees and random forests

m Local methods such as smoothing kernels, k-nearest
neighbours, etc.
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Value Function Approximation

'—Value Function Computation with a Function Approximator

Value Function Computation with a Function Approximator

m Let us develop some general approaches for the value function
computation when we are restricted to use functions from a
value function space F.

m Most of the approaches are based on defining a loss function
that should be minimized in order to find an approximate
value function.

m The presentation focuses on the population version of these
approaches, when we have access to the model.
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Value Function Approximation

'—Value Function Computation with a Function Approximator

Approximation Given the Value Function

Reminder: L,-Norms

For a probability distribution v € M(X'), and a (measurable)
function V' € F, we define the L,(v)-norm of V with 1 < p < o0
as

vie, & /X V(@) Pdu(x). )
The Loo(X)-norm is

V] 2 sup [V(2)].
zekX

If we want to emphasize that the probability distribution is defined

on the state space X', we use vx and [V, . -
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Value Function Approximation

'—Value Function Computation with a Function Approximator

Approximation Given the Value Function

Approximation Given the Value Function

Suppose that we happen to know V™ (or Q™, V*, Q*), and we
want to represent it with a function V' € F.
Goal: finding V' € F such that

VaVT.



Value Function Approximation

'—Value Function Computation with a Function Approximator

Approximation Given the Value Function

Approximation Given the Value Function

To quantify V = V™, we have to pick a distance function between
function V and V™, ie., d : B(X) x B(X) — R.
Given such a distance function, we can express our goal as

V < argmind(V, V™).
VeF
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Value Function Approximation

'—Value Function Computation with a Function Approximator

Approximation Given the Value Function

Approximation Given the Value Function

A commonly used family of distances are based on the L,-norm
w.r.t. a (probability) measure € M(X) (2).

V « argmin ||V - V7| . (3)
VeF '

A common choice is the Lo-norm.
This should remind us of the mean squared loss function
commonly used in regression.
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Value Function Approximation

'—Value Function Computation with a Function Approximator

Approximation Given the Value Function

Approximation Given the Value Function: How to Get VV™?

m How can we even have access to V77

m If we do know it, what is the reason for approximating it after
all?

m One option: The MC estimate: For a state x, we can have
V™ (x) + e(z) with E [e(x)] = 0.

m When the state space is large (e.g., continuous), we cannot
run MC for all states, but only a finite number of them.

m The role of FA is to help us generalize from a finite number of
noisy data points to the whole state space.
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Value Function Approximation

'—Value Function Computation with a Function Approximator

Approximate Value Iteration (Population)

Approximate Value Iteration (Population Version)

Recall that VI is
Vg1 < TV,

with T being either T™ or T™*.
One way to develop its approximate version is to perform each step
only approximately, i.e., find Vi1 € F such that

Vk+1 ~ TVk .
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Value Function Approximation

'—Value Function Computation with a Function Approximator

Approximate Value Iteration (Population)

Approximate Value Iteration (Population Version)

We start from a V;y € F, and then at each iteration k of AVI we
solve

Va1 < argmin ||V — TV’f”p,u . (4)
VeF

The procedure for the action-value function is similar.
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Value Function Approximation

'—Value Function Computation with a Function Approximator

Approximate Value Iteration (Population)

Approximate Value Iteration (Population Version)

Even though Vi, € F, TV, may not be within F anymore.

We may have some function approximation error at each iteration
of AVI.

The amount of this error depends on how expressive F is and how
much T can push a function within F outside that space.



Value Function Approximation

'—Value Function Computation with a Function Approximator

Bellman Residual Minimization (Population Version)

Bellman Residual Minimization (Population Version)

m If we find a V such that V = T7™V, that function must be V7.
m Under FA, we may not achieve this exact equality.
m Instead

VaT™V,
for some V € F.

m We can think of different ways to quantify the quality of
approximation.

The L,-norm w.r.t. a distribution /1 is a common choice.

Later we see that p might be the distribution induced by a
behaviour policy.
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Value Function Approximation

'—Value Function Computation with a Function Approximator

Bellman Residual Minimization (Population Version)

Bellman Residual Minimization (Population Version)

V <« argmin ||V = T™V = ||IBR(V . 5
g | . = IBRO)IL,, (5)

The value of p is often selected to be 2. This procedure is called
the Bellman Residual Minimization (BRM).

The same procedure works for the action-value function @) with
obvious changes.

This procedure is different from AVI in that we do not mimic the
iterative process of VI (which is convergent in the exact case
without any FA), but instead directly go for the solution of the
fixed-point equation.
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Value Function Approximation

'—Value Function Computation with a Function Approximator

Bellman Residual Minimization (Population Version)

Bellman Residual Minimization (Population Version): A
Geometric View

T us
o’

TV,

/. /
/
Vo

F W Vs

When F is the set of linear functions (1), its geometry is the
subspace spanned by ¢.

Given V € F, we apply T to it in order to get T™ V. In general,
T™V is not within F, so we visualize it with a point outside the
plane.

BRM minimizes the distance ||V — 7™V, , among all functions in
VeF.

T us
o
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Value Function Approximation

'—Value Function Computation with a Function Approximator

Bellman Residual Minimization (Population Version)

Bellman Residual Minimization (Population Version): A
Geometric View

F o v

If there exists a V' € F that makes [V —T7V{|, , =0, and if we
assume that pu(z) > 0 for all z € X, we can conclude that

V(z) = (T™V)(x) for x € X (a.s.).

This is the Bellman equation, so its solution is V = VT,

N
a
-
N
®



Value Function Approximation

'—Value Function Computation with a Function Approximator

Bellman Residual Minimization (Population Version)

Bellman Residual Minimization (Population Version): A
Geometric View

T.Vg

o
7

F WV Vs

TV
°

In general, the error is not zero, so the minimizer V' of (5) is not
the value function V7.
Nevertheless, it still has some good approximation properties.
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Value Function Approximation

'—Value Function Computation with a Function Approximator

Bellman Residual Minimization (Population Version)

Bellman Error-based Error Bound: Supremum Norm

m We can relate the error in approximating a value function to

the Bellman error:
||V_V7r|| < ”V*TWV”OO

m The Bellman error is a surrogate loss
m Caveat: This is the supremum norm.

m Very conservative and unforgiving
m In ML, we often minimize an Ly,-norms, e.g., Lo.

m We provide a similar bound using a stationary distribution of a
policy .
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Value Function Approximation

'—Value Function Computation with a Function Approximator

Bellman Residual Minimization (Population Version)

Stationary Distribution of Policy 7

Definition (Intuitive)

The stationary (or invariant) distribution of a policy 7 is the
distribution that does not change as we follow 7.

m We initiate the agent at X; ~ p € M(X).
m The agent follows 7 and gets to Xy ~ P™(-|X1).
m The probability distribution of X5 being in a (measurable) set
Bis
P{X, € B} = / p(dz)P™(B|z),

or for countable state space, the probability of being in state y
is

P{Xy=y}=> p(z)P"(ylv).

TeEX
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Value Function Approximation

'—Value Function Computation with a Function Approximator

Bellman Residual Minimization (Population Version)

Stationary Distribution of Policy 7

m If the distribution of X and X5 are both p™, we say that p™
is the stationary distribution induced by 7.

m It would be the distribution of X3, X4, ... too.

m If X7 and X5 are both at the stationary distribution, we have
P{X; =y} =P{Xy =y} forany y € X,

P{X1=y}=p"(y) = Y P (ylr)p"(z) = P{Xz =y},
TeEX

(6)

or
0"(B) = [ 57 ()P (Blo). (7)
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Value Function Approximation

'—Value Function Computation with a Function Approximator

Bellman Residual Minimization (Population Version)

Stationary Distribution of Policy 7

m For countable state spaces, we can write it in the matrix form

too.
m If we denote P™ by an n x n matrix with [P™],, = P (y|z),
we have
PT(y) =Y Prpr,  Vyex
x
so

pr _ pﬂ'T»Pﬂ" (8)

m The distribution p™ is the left eigenvector corresponding to
eigenvalue with value 1 of matrix P™ (or likewise, the right
eigenvector of P71).
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Value Function Approximation

'—Value Function Computation with a Function Approximator

Bellman Residual Minimization (Population Version)

Stationary Distribution of Policy 7

m Under certain conditions, a Markov chain induced by m
converges to p”, even if the initial distribution is not p™.

m For any € M(X), we have that

p(P™E = pr.
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Value Function Approximation

'—Value Function Computation with a Function Approximator

Bellman Residual Minimization (Population Version)

Stationary Distribution of Policy 7

The Bellman operator T™ is a y-contraction w.r.t. |||l -
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Value Function Approximation

'—Value Function Computation with a Function Approximator

Bellman Residual Minimization (Population Version)

Bellman Error-based Error Bound w.r.t. the Stationary
Distribution

Let p™ be the stationary distribution of P™. For any V € B(X)
and p > 1, we have

||V - TﬂpVHp,p"" )
-~

HV — ‘/ﬂ-Hl,p7T <

RENEILS

This is similar to ||V — V7| < | = but is w.r.t. the
stationary distribution p™.

[V—T7V||
1—y
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Value Function Approximation

'—Value Function Computation with a Function Approximator

Bellman Residual Minimization (Population Version)

Bellman Error-based Error Bound w.r.t. the Stationary
Distribution (Proof)

For any V, we have that

V-V =V_TV4+TV -V~
= (V=T"V)+ (T"V - T"V™). (9)

The second term, evaluated at a state z, is

(T"V) () = (T7V7")(x) = V/P”(dy\l’)(V(y) = V™(y))-



Value Function Approximation

'—Value Function Computation with a Function Approximator

Bellman Residual Minimization (Population Version)

Bellman Error-based Error Bound w.r.t. the Stationary
Distribution (Proof)

Take the absolute value, use the obtained form of the second term,
and integrate w.r.t. p™:

/ Vi(z) - V(@) dp™(x / V(@) - (TV) (@) dp™(z) +
y / ap () / P (dyle)(V(y) — V" (1))].

By Jensen's inequality, we have

[Iv@ v @lar @ < [ V) - V)@@ +

y / dp™ ()P (dyl) |V () — V™(1)].
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'—Value Function Computation with a Function Approximator

Bellman Residual Minimization (Population Version)

Bellman Error-based Error Bound w.r.t. the Stationary
Distribution (Proof)

Because p™ is the stationary distribution, the second integral in the
RHS can be simplified as

/dp”(ar)P”(dy!x) V(y) = V™(y)l = /dp”(y) V(y) = V™(y)l-
So
IV =Vl o SNV =TV pr + 7NV = VT4 -

After re-arranging, we get the result for p = 1.
By Jensen’s inequality, we have that
[V =TV, j» <V =T7V|[, y=, for any p > 1.
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'—Value Function Computation with a Function Approximator

Projected Bellman Error (Population Version)

Projected Bellman Error (Population Version)

TV
BRM ?

PBE (Minimized by LSTD)
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'—Value Function Computation with a Function Approximator

Projected Bellman Error (Population Version)

Projected Bellman Error (Population Version)

-
Ve< 7 Iy, T"V

\

PBE (Minimized by LSTD)

]:

Main idea: The distance between a value function V' € F and the
projection of T™V onto F should be made small.
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'—Value Function Computation with a Function Approximator

Projected Bellman Error (Population Version)

Projected Bellman Error (Population Version)

- -
Ve< ZH;,HT”V
F

\

PBE (Minimized by LSTD)

We find a V € F such that
V=1Ig,T"V, (10)

where IIx , is the projection operator onto F.
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'—Value Function Computation with a Function Approximator

Projected Bellman Error (Population Version)
Projection Operator

The projection operator Il , is a linear operator that takes
V € B(X) and maps it to closest point on F, measured according
to its La(p) norm.

I,V = alxr/gén;n HV/ — VHZM .

If the choice of distribution p is clear from the context, we may
omit it.
Some properties:
| H_7:7NV eF.
mIf VeF, wehavellr,V =V.
m The projection operator onto a subspace (also a closed convex
set) is a non-expansion, i.e.,
IMLr, Vi = TLe Vol < Vi = Vil
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Value Function Approximation

'—Value Function Computation with a Function Approximator

Projected Bellman Error (Population Version)

Projected Bellman Error (Population)

We can define a loss function based on V = IIz7"V (10).
We can use different norms. A common choice is the La(u)-norm:

|V =TTV, - (11)

This is called Projected Bellman Error or Mean Square Projected
Bellman Error (MSPBE).

We find the value function by solving the following optimization
problem:

V « argmin ||V - ILFT7V]], , . (12)
VeF ’
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'—Value Function Computation with a Function Approximator

Projected Bellman Error (Population Version)

Projected Bellman Error (Population)

AsV e F,

V —Tr, IV = 1lr,V — Uz, 7V
=ru(V-T"V)
—I17,,(BR(V)).

So the loss is
IV =TTV |y, = [ITF . (BRV))|,,,

The norm of the projection of the Bellman residual onto F.
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'—Value Function Computation with a Function Approximator

Projected Bellman Error (Population Version)

Bellman Residual Minimization vs Projected Bellman Error

TV

-
Ve< 7 r, IV

\

PBE (Minimized by LSTD)

f

Bellman Residual Minimization:

V « argmin ||V —T™V = ||BR(V .
g | p, = IBROV)II,, .

Projected Bellman Error:

V <« argmin ||V — H]:T”VHZM = HH;#(BR(V))HZH
VeF 43 /128
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'—Value Function Computation with a Function Approximator

Projected Bellman Error (Population Version)

Coupled (Nested) Formulation of Projected Bellman Error

TV

-
Ve< 7 r, IV

\

PBE (Minimized by LSTD)

f

We can think of the PBE as simultaneously solving these two
coupled (or nested) optimization problems:

V < argmin HV’ V(v ,
V'eF

V (V') ¢ argmin |V — T7V'||3 (13)

VI"eF 44 /128

‘2#



Value Function Approximation

'—Value Function Computation with a Function Approximator

Projected Bellman Error (Population Version)

Coupled (Nested) Formulation of Projected Bellman Error

m If F is a linear function space, the projection has a
closed-form solution.

m For more general spaces, the solution may not be simple.

m Regularized variants: suitable for avoiding overfitting when F
is a very large function space.

- 2
V < argmin Hv’ VY ‘ FAJ(VY),
VIeF 2,u
V (V') + argmin |v" - T”V’H; + AJ (V).
VIeF o
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'—Value Function Computation with a Function Approximator

Projected Bellman Error (Population Version)

Solving PBE: Several Surprisingly Disparate Approaches

There are different approaches to solve (12), some of which may
not appear to be related at first glance.

Let us look at the abstract problem of solving a linear system of
equation before getting back to this.
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'—Value Function Computation with a Function Approximator

Projected Bellman Error (Population Version)

Solving Az ~ b

Suppose that we want to solve a linear system of equations
Az ~ b, (14)

with A € RV*4 2 ¢ R?, and b € RY (N > d).
When N > d, this is an overdetermined system so the equality
may not be satisfied.
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'—Value Function Computation with a Function Approximator

Projected Bellman Error (Population Version)
Solving Az ~ b: Optimization Approach
Formulate it as an optimization problem:

z* < argmin || Az — b||5 = (Az — b) T (Az —b). (15)
xER4

We can use our favourite numerical optimizer to solve it, e.g.,
Gradient Descent (GD).
As the gradient of (Az —b)" (Az —b) is

A (Anxaz =),
the GD procedure would be
Tpt1 < T — aAT(A:Uk —b).
We can use more advanced optimization techniques too. This

approach finds a x* that minimizes the squared error loss function.
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'—Value Function Computation with a Function Approximator

Projected Bellman Error (Population Version)

Solving Az ~ b: Direct Approach

Solve for the zero of the gradient:
ATAz =ATb= 2" = (ATA) ATy, (16)

assuming the invertibility of AT A.
For this approach, we need to have a method to invert the matrix
ATA.
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'—Value Function Computation with a Function Approximator

Projected Bellman Error (Population Version)

Solving Ax ~ b: Fixed-Point Iteration

We can rewrite Az = b as
I-Az+b==x.
Suppose N = d. This is of the form of a fixed-point equation
Lx==x
with L : R? — R? being the mapping

L:xw— (I—-A)zx+b.
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'—Value Function Computation with a Function Approximator

Projected Bellman Error (Population Version)

Solving Ax ~ b: Fixed-Point Iteration

If L is a contraction mapping (not always the case), by the Banach
fixed point theorem, the iterative procedure

Tre1 < Lxg = (I — A)ij +b (17)

converges to x*, the solution of Az* = b.
It is also possible to define a slightly modified procedure of

g1 — (1 — &)z + aLxg. (18)

This is similar to the iterative procedure we saw before in the SA
(without noise).
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Projected Bellman Error (Population Version)

Least Squares Temporal Difference Learning (Population)

Instead of minimizing ||V — ILFT™ V||, , over value functions
V € F, we provide a direct solution similar to (16).
F: a linear FA with basis functions (or features) ¢1,. .., ¢p.

f:{wH¢(x)Tw : weRp}.
Goal: Find a value function that satisfies
V(z) = (r,T7V) (x), Ve e X, (19)

where V is restricted to be in F.
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'—Value Function Computation with a Function Approximator

Projected Bellman Error (Population Version)

Least Squares Temporal Difference Learning (Population)

We assume that X is finite and has IV states, potentially much
larger than p.

Each ¢; (i =1,...,p) is an N-dimensional vector.
® € RV*P, the matrix of concatenating all features:
@:[¢1 ¢p],

The value function corresponding to a weight w € RP is

VNx1 = Pnxpwp.
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'—Value Function Computation with a Function Approximator

Projected Bellman Error (Population Version)

Least Squares Temporal Difference Learning (Population)

Solving V = (Il ,7™V') when V = V(w) = ®w € F means that
we have to find a w € R such that

dw =r,T"dw. (20)

54 /128



Value Function Approximation

'—Value Function Computation with a Function Approximator

Projected Bellman Error (Population Version)

Least Squares Temporal Difference Learning (Population)

The p-weighted inner product between Vi, V5 € RV

(Vi,Va), Zvl (x) = ViT MV5, (21)

with M = diag(u).
The La(p)-norm:

Vi3, = =) V(= =VTMV.
reX
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'—Value Function Computation with a Function Approximator

Projected Bellman Error (Population Version)
Least Squares Temporal Difference Learning (Population)

The projection operator onto a linear F would be
_ : I 2
7,V = argmin V" = V|,

— argmin || dw — V|3 i
wERP ’

= argmin(dw — V) M (dw — V).
weRP

Taking the derivative and setting it to zero:
PTMOw—-V)=0=>w= (2" M®) "MV

(assuming that ® " M@ is invertible.)
The projected function is dw, i.e.,

Mr,V==0(0 Mo) o MV, (22)
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Projected Bellman Error (Population Version)

Least Squares Temporal Difference Learning (Population)

We have
(TTQw)Nx1 = TR x1 T VPR <N PNxptp-
Combining all these:
dw = |®(@T M) ST M| 1" + P dw]. (23)

Two approaches to solve this:
m Solve directly, cf (16).
m Fixed-point iteration, cf (18).
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'—Value Function Computation with a Function Approximator

Projected Bellman Error (Population Version)
Least Squares Temporal Difference Learning (Population)
Multiply both sides of (23) by ® M and simplify:
' Mdw=>" MO M) 1d" M [r™ + 4P duw]
=3 "M [r" 4+ P " dw].
=& M [r™ + P dw — dw] = 0. (24)
Re-arrange to
[(I)TM@ - y(I)TMPWI)} w=& M.
Solving for w:
w= [T M(® - P"®)] ST (25)

This is the population version of the Least Squares Temporal
Difference (LSTD) method.
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Least Squares Temporal Difference Learning (Population)
— Geometric Intuition

°<’ - —Hf Ty

PBE (Mimmized by LSTD)

B T M[r™ + 4P Tdw — dw] =0
L] <V1,V2>#:V1TMV2
(65, T*V(w) — V(w)), = (6, BRIV(w)), =0,  Vi=1,..p

LSTD finds a w such that the Bellman Residual is orthogonal to
the basis of F.
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Fixed Point lteration for Projected Bellman Operator —
Approach #1

m We design two iterative approaches for finding the fixed-point
of Il , T, see (10).

m We attempt to design methods that look like an SA iteration,
so when we deal with the samples, instead of the true model,
they can handle the noise.

m We specifically focus on the case when the distribution p is
the stationary distribution p™ of .
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Fixed Point lteration for Projected Bellman Operator —
Approach #1

Consider
Vil «— (1 — a)Vi 4 ollz = T™V, (26)

withan 0 < a < 1.
A fixed-point iterative method with the operator

L:V—=[1-a)l+adllrT"]V.
This operator is a contraction w.r.t. La(p™):

[LVL = LVally pr < (1 = @) [Vi = Vallg pr + @ [[TF =TT (V2 = Vo)l v -
(27)
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Fixed Point lteration for Projected Bellman Operator —
Approach #1

m The projection operator Il ,~ is non-expansive w.r.t. the
La(p™)

m The Bellman operator T™" is «y-contraction w.r.t. the same
norm (Lemma 2).

ITLe e T (Vi = Vo)l e < IT7 (VA = Vi)l
S Y Hvl - ‘/QHQ,/J” .
This along with (27) shows that
[LV1 = LVally pr < [(1 = @) + ][V = Vallg yr -

If 0 < <1, L is a contraction.
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Projected Bellman Error (Population Version)

Fixed Point lteration for Projected Bellman Operator —
Approach #1

m The iterative method (26) is going to be convergent.
Vk—H — (1- Oz)f/k + OéH]f7p7rTﬂ.‘7k

= Note: Its projection operator is w.r.t. |||, ,=. The
convergence property may not hold for other y £ p™.

63 /128



Value Function Approximation

'—Value Function Computation with a Function Approximator

Projected Bellman Error (Population Version)

Fixed Point lteration for Projected Bellman Operator —
Approach #1

Let us use a linear FA:
Vi = Pwy.

We use the explicit formula (22) for the projection operator IIfz ,«.
We use D = diag(p™), instead of M, in order to emphasize the
dependence on p".

The iteration (26) can be written as

Vip1 = ®wpy1 (1 — a)Dwy, +
a®(®' DRI DT [T 4 4P Duwy] .
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Fixed Point lteration for Projected Bellman Operator —
Approach #1
Multiply both sides by & D™:
(@D ®)wjyy (1 —a) (@ D™®)wy, +
a(@TDT®) (@ D) Lo D™ [T + AP T Dwy] .
Assuming that ®" D™ ® is invertible:
Wey1 — (1 — a)wy, + (@' D™®) 1o D™ 1™ + 4P dwy]. (28)
This is a convergent iteration and converges to the fixed point of

w = Iz, T"dw (19).
This is the same as the LSTD's solution (25).
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Fixed Point lteration for Projected Bellman Operator —
Approach #1

wiy1 (1 —a)wy, +a(®TD®) 1T D™ 1™ 4+ yP Dy .

m This requires a one-time inversion of a p X p matrix
(@TD™®) =3 p'(x)¢" (z)d(z), which is O(p®) operation.

m A matrix-vector multiplication at every time step O(p?).

m When we move to the online setting, where this matrix itself
is updated as every new data point arrives, a naive approach
of updating the matrix and re-computing its inverse, would be
costly.
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Fixed Point lteration for Projected Bellman Operator —
Approach #2

From (24):
OTD™ 1™ + AP dw — dw] = 0. (29)
The same solution as the LSTD solution.

m If Lw =0, we also have aLw = 0.
m Adding an identity to both sides does not change the equation

w+ alw = w.
m This is in the form of a fixed-point equation for a new operator
L':we I+ al)w.

The fixed point of L’ is the same as the solution of Lw = 0.
We may apply wii1 < L'wg = (I+ aL)wy, assuming L' is a
contraction.
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Fixed Point lteration for Projected Bellman Operator —
Approach #2

If we choose L : w i+ &' D™ [r™ + 4P dw — dw], we get the
following iterative procedure, which is somewhat similar to (18):
Wiyl < Wy + ad ' D™ [r™ 4+ APTdwy, — Pwy]
=1 - ad)wy +a® ' D™r", (30)
with A =& " D™(I — +P™)®.

This iterative procedure is not a convex combination of Il ,T™
with the identity matrix, as (26) was, so the condition for
convergence does not follow from what we had before.

Despite that, we can show that for small enough «, it is
convergent.
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Error Bound on the LSTD Solution

Suppose that we find
V — H]:’pﬂTTrV

For the linear FA, the LSTD method (population) (25) and the
fixed point iterations (26) and (30) find this solution. Let us call
this the TD solution Vp.

Q: How close is this value function to the true value function V77
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Error Bound on the LSTD Solution

m If the value function space F cannot represent V™ precisely,
which is often the case under function approximation, we
cannot expect to have a small error.

m The smallest error we can hope is ||IIz V7™ — V7.

m The TD solution is not as close to V™ as the projection of V7™
onto F, but it can be close to that.

If p™ is the stationary distribution of 7, we have

”HF,/J”V7r - VTFHZ,p”

VD = Vg pr <
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From Population-based Methods to Sample-based Methods

m We use ideas developed in the previous section to develop RL
algorithms that work with function approximators.

m Key step: Finding an empirical version of the relevant
quantities and estimate them using data.

m For example, many of the aforementioned methods require the
computation of T'V. If the model is not known, this cannot

be computed. We have to come up with a procedure that
estimate T'V based only on data.
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Batch RL

We consider the batch data setting.

m The data is already collected, and we are interested in using it
to estimate quantities such as Q™ or Q™.

m Suppose that we have
Dn: {(XHAUR’LJX'Z) ?:17 (31)

with (X;, 4;) ~ p € M(X x A), and X] ~ P(-]X;, 4;) and
R; ~ R(-|X;, 4;).
m The data could be generated by following a behaviour policy

7, and having trajectories in the form of
(Xl, Al, R, Xo, AQ, R, ... ) In this case, Xt/ = X¢t1-
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Batch RL

m In the batch setting, the agent does not interact with the
environment while it is computing Q™, Q*, etc.

m This can be contrasted with the online method such as TD or
Q-Learning, where the agent updates its estimate of the value
function as each data point arrives.

m The boundary between the batch and online methods is blurry.

m A method may collect a batch of data, process them, and
then collect a new batch of data, possibly based on a policy
resulted from the previous batch processing computation.
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Value Function Approximation Given the Monte Carlo
Estimates

A batch of data:
Dn = {(sz Aia GW(Xia Ai))}?:h

with G™(X;, A;) being a return of being at state X, taking action
A;, and following the policy 7 afterwards.

The distribution of (X;, 4;) ~ u.

The return can be obtained using the initial-state only MC by
selecting (X, A;) ~ p and then following 7 until the end of
episode (in the episodic case).

Q: Any other approach?
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Value Function Approximation Given the Monte Carlo
Estimates

Population loss function:
Q < argmin [|Q — Q7| , - (32)
QEeF

Two differences with the current setup:

m We do not have a direct access to the distribution © and only
have samples from it.

m We do not know @7 itself and only we have unbiased estimate
G™ at a finite number of data points.
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Value Function Approximation Given the Monte Carlo
Estimates

Having access to unbiased noisy estimate of Q™ does not change
the solution of the minimization problem.
For any @, we can decompose:

E[|Q(X, 4) - G"(X, A)P| =
E[IQ(X,4) - Q7(X, 4) + Q"(X, 4) - G"(X, A)| =
E[lQ(X, 4) - @"(X, A)P] +

E[|Q7(x, 4) - 6"(X, AP +
2E [(Q(X, 4) - Q7(X, 4)) (Q7(X, 4) - G"(X, 4))].

The first term is [|Q — Q™ ||, -
The second term is E [Var [G™ (X, A) | X, 4]].
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Value Function Approximation Given the Monte Carlo
Estimates

The inner product term:

E[(Q(X,4) - QT(X,4)) (QT(X,A) - GT(X, A))] =

E [E [(Q(Xv A) - Qﬂ(X7 A)) (Qﬁ(Xv A) - Gﬁ(Xﬂ A)) ’ X, AH =
E[(Q(X,4) - QT(X,4) (QT(X,A) —E[G"(X, A) | X, A])] = 0.
As E[G™(X,A) | X, A] is equal to Q™ (X, A), the inside of second

parenthesis in the last equality is zero. So the value of this whole
term is zero.
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Value Function Approximation Given the Monte Carlo
Estimates

argmin E []Q(X,A) - G"(X, A)ﬂ =
QeF

argmin {E[lQ(X, 4) - Q"(X, A)P"] + E[Var [G7(X, 4) | X, A)]]} =

argmin || — Qﬂ”%,u ,
QEeF

as the variance term E [Var [G™ (X, A) | X, A)]] is not a function
of (), so it does not change the minimizer. If we could find the

minimizer of E [\Q(X, A) — G7(X, A)ﬂ, the solution would be

the same as the minimizer of (32).
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Value Function Approximation Given the Monte Carlo
Estimates

m We cannot compute the expectation because we do not know
1h.
m We only have samples from it.

m A common solution in ML to address this issue is to use the
empirical risk minimization (ERM), which prescribes that we
solve

A 1 . ™ s
Q < argmin — > " |Q(X;, A;) — G™(X;, A)* = |Q = G7|[3 p, -
Qer i
(33)
m This is indeed a regression problem with the squared error loss.

m We can can add regularizer too.
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Value Function Approximation Given the Monte Carlo
Estimates

Some questions:
= How close is this Q) to the minimizer of ||Q — Q5,7
m How close is it going to be from Q™7
m What is the effect of the number of samples n?
m What about the effect of the function space F?
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Value Function Approximation Given the Monte Carlo
Estimates — Statistical Guarantee

Assumption A1 We assume that

(a) Zi = (X4, A;) (i=1,...,n) are i.i.d. samples from
distribution ;1 € M(X x A).

(b) The reward distribution R(-|x, a) is Rmax-bounded for any
(r,a) € X x A.

(c) The functions in F are Qumax = q%’i;‘ bounded.

(d) The function space has a finite number of members |F| < oco.
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Value Function Approximation Given the Monte Carlo
Estimates — Statistical Guarantee

Theorem (Regression)

Consider the solution Q returned by solving (33). Suppose that
Assumption Al holds. For any > 0, we then have

2 10— Q7I2, +5@2 \/2(1n(6|]:|)+21n(1/5)

2u ~ QEF max n

|o-e

)

with probability at least 1 — .

m Approximation Error

m Estimation Error
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Approximate Value lteration

The iteration of (4),

Quir - arguiin |~ TQul, . = [ 1Qw.0) = (7Q)(w. o) d,a),
QEeF
(34)

cannot be computed as
m [ is not known

m T'Qi cannot be computed as P is not available under the
batch RL setting (31).

We can use samples though, similar to how we converted the
population-level loss function (32) to the empirical one (33).
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If we are only given tuples in the form of (X, A, R, X’), we cannot
compute

(T™Q)(X, A) = r(X, A) + / P(da'|X, A)Q(a! n(x),

or similar for (T*Q)(X, A).
We can, however, form an unbiased estimate of them.
We use the empirical Bellman operator applied to Q:

(T7Q)(X, A) = R+Q(X', 7(X")),

(T*Q)(X,A) = R+ yg}gﬁQ(xx a).
For any integrable @), they satisfy

E|(TQ)(X,A)|X, A| = (TQ)(X, A).
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Approximate Value lteration

Replacing T'Q}, with TQk does not change the optimizer.
Given any Z = (X, A), we have

B |2 - rou@| 12 -
B ||o2) - rau@ + @) - dan @) 1 2] -
E[lQ(2) - @Qu(2)F | 7] +

B |[reue) - den @) 1 2]+
2 [(Q(2) - (TQu)(2)) (TQu)(2) - (TQi)(2)) | 2]

As E {(TQ;C)(Z) | Z} =TQr(Z), the last term is zero.
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Approximate Value lteration

Conditioned on Z, the function Q(Z) — (T'Q)(Z) is not random,
0 E ||Q(2) — (TQW)(2)] | Z| = 1Q(2) = (TQu)(2)P"

Therefore, we get that
B (o) - don) 17] -
Q) - Q@) +E||[(rQu(2) - a2 1 2] -
Q(2) — (TQW(Z)F + Var [(TQi)(2) | 2]
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Approximate Value lteration

Taking expectation over Z ~ u, we have that
B |2 - roua|| -
r ~ 2
e[z]jes) -t 12]) -
E[|Q(2) - (TQ0)(2)]| +E |Var [(TQu)(2) | Z]] -

The term E [|Q(Z) — (TQk)(Z)|2:| is [|Q — TQkH%,u-
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Approximate Value lteration

argmin £ “Q —(TQ)(Z )‘2] =
QeF

axgmnin (@ = TQuI3,, + & [var [(700)(2) | 2]]} =

argmin | Q — TQxl3,,
QeF

. 2
Instead of (34), we can minimize E UQ(Z) - (TQk)(Z)‘ }
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Approximate Value lteration

We do not have p though.
We can use samples and form the empirical loss function. The
result is the following ERM problem:

Q(—argmlnf ‘Q Xi, 4;) TQk Xi, Ay)
e n; )

o~ raf:

2Dy

This is the AVI procedure, also known as the Fitted Value lteration
(FVI) or Fitted Q Iteration (FQI) algorithm.

This is the basis of the Deep Q-Network (DQN) algorithm, where
one uses a DNN to represent the value function space.

We can add regularizer to avoid overfitting. It is called Regularized
Fitted Q Iteration (RFQI) algorithm.
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Bellman Residual Minimization

Q « argmin |Q — T™Q||3,, (35)
QEF

Empirical version:

@ < argmin — Q(X;, A;) 77Q Xi, A;)
i nz\ ~ (17Q)(

= Jlo-17],

2Dn

Using D,, = {(Xi, Ai, R;, X])}, to convert
B integration w.r.t. u to an integration w.r.t. u,

m substitute 77 () to its empirical version T”Q.

90 /128



Value Function Approximation

—Batch RL Methods
Bellman Residual Minimization

Bellman Residual Minimization

2

2 2l
=[]

Q « argmin - 3 |Q(X;, 4) — (17Q)(X;, A4) o
=1 o

QeF M=

m () appears in both terms inside the norm.
m As opposed to only the first term in AVI/FQI.
m This causes an issue: the minimizers of [|Q — T"Q|l3 , and

|Q — T’TQH%M are not necessarily the same for stochastic
dynamics.
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Bellman Residual Minimization

To see this, we compute E []Q(Z) —(T™Q)(2)|? | Z} for any @
and Z = (X, A):

E

E

E

E

|0 - @z 12 -

|02 - o2 + 1 Q)2) - Q2| 1 2] -

1Q(2) ~ (T7Q)(2)* | 2] +

@@ - @z 2]+

2 [(Q(2) - (17Q)(2)) ((17Q)(2) - (17Q)(2)) | 7]
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The inner product term is zero:
(Q(2) - (17Q)(2)) (I"Q)(2) ~ E [(17Q)(2) | 7] ) =
(Q(2) - (T7Q)(2)) (TTQ)(2) — (T7Q)(2)) =
Given Z, there is no randomness in |Q(Z) — (T™Q)(Z)|*:
E[IQ(2) - (T"Q)(2)] | 2] = 1Q(2) - TQ)(2)P.
Therefore,
2
[(Q - (1"Q)(2)| | Z} -
QZ) — (T"Q)(2) + Var |(17Q)(2) | 2]
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Bellman Residual Minimization

argminEE UQ — (FQ)Z )\2] (36)

QEF
argglfm{ucz —~TQ|13,, +E | Var [(7Q)(2) | Z|| } #

argmin [|Q — TQ|[3, -
QEF

m For stochastic dynamical systems, the variance term is
non-zero.

m For deterministic ones, it is zero.

m By replacing T™Q with T™Q in BRM in stochastic dynamics,
we obtain a solution that is not the same as minimizer of the
Bellman error within the function space F.
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Bellman Residual Minimization

Let us take a closer look at the variance term.
For simplicity, assume that the reward is deterministic, so

Ri = T(XZ', Az)

Var [(17Q)(2) | 7] =
2 >

E

(H(2) + 1 QX' 7(X1))) - (r<Z> 4o P(dxwm(x',w(x’)))

2

v’E | Z| .

\Q(ch(X’) - [ P20 w(a
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Bellman Residual Minimization

2

Var [(17Q)(2) | 2] = +°E | Z

'Q(X’,ﬂx’) - [Pz at)

m This is the variance of (Q at the next-state X'.

m Having this variance term in optimization (36) encourages
finding @) that has small next-state variance.

m If ) is constant, this term would be zero.
m If Q is varying slowly as a function of state z (i.e., a smooth
function), it is going to be small.

m This induced smoothness is not desirable because it is not a
smoothness that is natural to the problem, but imposed by
the biased objective.

m Moreover, it is not controllable in the sense that we can
change its amount by a hyperparameter.
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Least Squares Temporal Difference Learning

Starting from the PBE, we got several approaches to approximate
VT
One of them was based on solving V' = (Il ,77V') (19) with V
being a linear FA with Vy = @y pw),.
We showed that the solution to this equation is
wrp = Ayl bpx1

with

A=0"M(®—yP™d),

b=&" Mr".

We need to use data D,, in order to estimate these.
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Least Squares Temporal Difference Learning

Expand A and b in terms of summation.
As M is a diagonal matrix, we have

AZJ = [q)TM<¢) - ’Y,}Dﬂ— :| Z q)zmu (I) - Vpﬂ(b)mj )

b - Z cI)zm:U'

Or expanded more explicitly in terms of state x and next-state x/,

!
A=Y ula)o(a) <¢<m> -y P“(x’|x>¢<x’>) ,

reX z'eX

b= ul@)o(a) ().

zeX

98 /128



Value Function Approximation

—Batch RL Methods
LSTD and Least Squares Policy Iteration (LSPI)

Least Squares Temporal Difference Learning

G|ven Dy, = {(X;, Ri, X)}1; with X; ~ p € M(X), and
~ P7(-|X;) and R; ~ R”( |.X;), we define the empirical
estlmates A, and b, as

Z¢ —76(X)) ",
= E Z ¢(Xz R;
i=1

m These are unbiased estimates of A and b (Exercise: Prove it!)

m If X;s are independent (or from a Markov chain), by the LLN,
they converge to A and b.
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Least Squares Temporal Difference Learning

We may use LSTD to estimate the action-value function Q™ too.
See the Lecture Notes for detail.
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Least Squares Policy Iteration (LSPI)

Q"= Q")

Approximate
Policy
Evaluation

Policy

Improvement

7'+ argmax Q" (-, a)
acA

m We can use LSTD to define an approximate Pl (API)

procedure to obtain a close to optimal policy.
m This is a policy iteration algorithm that uses LSTD to

evaluate a policy.
m It is approximate because of the use of a function

approximation and a finite number of data point. 01/ 18
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Least Squares Policy Iteration (LSPI)

Require: D, = {(X;, 4;, R;, X/}, and initial policy 7.
1: for k=1,2,...,K do

2 Q™ « LSTD(D,,, 71,) > Policy Evaluation
3 Thi1 < mg(Q™) > Policy Improvement
4: end for

5: return Q”K and Tx41.
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Least Squares Policy Iteration (LSPI)

m We may also collect more data during LSPI.
m As we obtain a new policy, we can follow it to collect new data
points.
m LSTD (for action-value function @) is an off-policy algorithm
because it can evaluate a policy 7 that is different from the
one collecting data.

m LSTD and LSPI are considered as sample efficient algorithms.

m They are, however, not computationally cheap.

= The matrix inversion A, is O(p?), if computed naively.

m If we want to perform it in an online fashion, as new samples
arrive, the computational cost can be costly: O(np?).

m We may use Sherman-Morrison formula to compute 121,;1
incrementally based on the previous inverted matrix A ! .
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Online RL Methods with Function Approximation

In the online setting, the agent updates the value function as it
interacts with the environment. We can use the update rules
derived in Section 2 in order to design a SA procedure.
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Online Method #1

We consider the weight update rule (28):
Wit — (1 — a)wy + a(®TDT®) 1T D™ [ 4+ 4P T dwy .

In order to convert this to a SA procedure, we need to empirically
estimate

m d'D"P
D™ 4 AP dwy).
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Online Method #1

We have

(®TD™®)psp = > p"(2)$(2)9 ()

TeEX
—E|6(X)o"(X)], X~

If we have t data points X, ... X; with X; ~ p™, the stationary
distribution of 7, we can estimate it by a matrix A;

o= o

This matrix is an unbiased estimate of (® " D™®), and converges
to it under usual conditions of LLN.

@L\H
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Online Method #1

We also have

O DT [ 4 AP dwy] =

> (@)ol) (r%) =D P”(w’mw(x»wk) e

TeEX r'eX

If X~ p™, X[ ~P7"(:|Xy), and Ry ~ R™(-|Xy), the r.v.
6(Xe) (Fe+70" (Xp)w)

is an unbiased estimate of (37).
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Online Method #1

Stochastic Approximation: at each time step ¢, after observing
Xy, Ry, X}, updates the weight w; to wy41 by

wia e (1= ao)we + oAy '6(X0) (R + 70T (Xpwi)  (38)

with

~

A, = [(t — DA+ ¢(Xt)¢T(Xt)]

I
/—\bk\)—‘

_1>AF1+1MXO¢WXJ
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Online Method #1

The inversion of A; is expensive, if done naively. We can use
Sherman-Morrison formula to incrementally update it:

(A1 = A, - AeadEK00T XA,
L+ T (X3) A= 0(X2)

Remark (Sherman-Morrison formula)

For an invertible matrix Agxq and vectors u,v € R%, the matrix
A+ uv' is invertible if and only if 1 + v A= u # 0. And if it is
invertible, we can compute it as

Ay T AL

-1
AtwT) =atoE
( e 1+o0T A1y
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Online Method #1 — Computational Complexity

s - .
(At)*l — At_—ll _ At_l(b_EXt)(bA(_)ft)At_l_
L+ 07 (Xe) A2 o(Xe)

m This requires a matrix-vector multiplication and is O(p?).
m The per-sample computational cost of (38) is then O(p?).

m This is significantly higher than the O(1) computational cost
of the TD update for a problem with finite state-action spaces
for which the value function can be represented exactly in a
lookup table.
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Online Method #1 — Computational Complexity

m This comparison may not be completely fair:
m The computational cost of evaluating V' (z) at any z for a finite
state problem with an exact representation was O(1) itself.
m The computational cost of evaluating the value function with a
linear FA with p features (i.e., V(z;w) = ¢ (z)w) is O(p).
m A better baseline is to compare the cost of update per time
step with the cost of computation of V for a single state:

cost of update per sample

cost of computing the value of a single state’

m For TD with a finite state(-action) space with the exact
representation, the ratio is O(1).

m For the method (38), the ratio is O(p).

m More graceful dependence on p, but still scales linearly with
the number of features.
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Online Method #2: TD Learning

We can have a better computational cost using the other update
rule (30).
The population version:

Wht1 < wi, + a® ' D™ [r™ 4+ yPT Pwy, — Dwy] .
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Online Method #2: TD Learning

Wit < Wi, + a® ' D™ [r™ + yP" dwy, — Pwy] .
If X; ~ p™, X] ~P7"(:|X;), and R ~ R™(-|X;), we use the r.v.
O(X1) (R + 79T (X)we — (Xe)wr) = 6(X0)o
with the TD error
8t = Ry + 70" (X[)w — ¢(Xy)wy.

This is an unbiased estimate of ® " D™ [r™ + yP™dwy, — Pwy].
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Online Method #2: TD Learning

The SA update rule would be
W1 < Wi + at¢<Xt)5t- (39)

This is the TD Learning with linear FA.
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m The population version of this update rule under X ~ p™
converges (see Lecture Notes).

m We do not show it for the SA version, but we might suspect
that it does because it follows a noise contaminated version of
a stable/convergent dynamical system.

m With proper choice of the step size sequence (ay), we can
expect convergence.

m This indeed true, as shown by Tsitsiklis and Van Roy [1997].

m This convergence holds only when X; ~ p™, the stationary
distribution of .

m If its distribution is not the same, the TD with linear FA
might diverge.

m This is contrast with the TD for finite state problems where
the conditions of convergence were much easier and we did
not have divergence.
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Online Method #2: TD Learning

The same method works for learning an action-value function Q™
of policy 7 using an approximation

Q(CU,CL) = Q(%,a; w) = ¢($>@)Tw-

For Xt ~ pﬁ, At = TI'(Xt), Xz{ ~ P('|Xt,At), and
Ry ~ R(:| X, A¢), we can update the weights as

W41 & Wg + oat¢(Xt, At)(st’ (40)
with the TD error

575 - Rt + VQS(XI‘Z W(XI{))th - ¢(Xt7 At)th'
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Online Method #2: TD Learning

m We may use a similar procedure for the control problem and
define SARSA-like and Q-Learning-like algorithms with linear
FA.

m For SARSA, the update uses the tuple (Xy, A¢, Ry, X/, A})
with A; ~ 7(-| X;) and A} ~ (-] X}), and 7 being a policy
that is close to being greedy w.r.t. @, e.g., an e-greedy
policy 7 (Q¢).

m The update would be the same with the difference that the
TD error would be

S = Ry + vo(X], A)) "wy — (X, Ar) Twy.
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Online Method #2: TD Learning

We may also form a Q-Learning-like algorithm by having

o0 = Ry + v max o(X],a")Twy — Xy, Ar) Ty
a'e

m Even though the agent may be following a policy m and have
samples X; ~ p™ and A; ~ 7(:|X;) (or similar for the
deterministic policy), the policy being evaluated is the greedy

policy 7y (- Q).
m The evaluated policy may not be the same as 7.
m This is an off-policy samplings scenario.

m The convergence guarantee for TD with linear FA, shown
by Tsitsiklis and Van Roy [1997], does not hold here.

m In fact, Q-Learning with linear FA might divergence.
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Semi-Gradient Viewpoint

m We motivated the TD method with linear FA by starting from
V =1IF »T™V with V = ®w, and devised an iterative SA
procedure for its computation.

m One may also see it as an SGD-like procedure, with some
modifications, as we explain here.

m It is that approach followed by Sutton and Barto [2019].
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Semi-Gradient Viewpoint

Suppose that we know the true value function V™, and we want to
find an approximation V', parameterized by w.
The population loss:

2

1 N
V <« argmin — HV’r — V(w)H . (41)
Ver 2 2,u
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Semi-Gradient Viewpoint

Using samples X; ~ u, we can define an SGD procedure that
updates w; as follows:

1 “ 2
W41 Wt — Oltvw |:2 ‘Vﬂ(Xt) — V(Xt, wt)‘ :|
=Wt -+ Qg (Vﬂ(Xt) - V(Xt, wt)> Vw‘A/(Xt, wt).

If the step size oy is selected properly, the SGD converges to the
stationary point if the objective of (41).

If we use a linear FA to represent V the objective would be
convex, so wy converges to the global minimum of the objective.
V7™ (X}) acts as the target, in the supervised learning sense.
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Semi-Gradient Viewpoint

When we do not know V™, we may use a bootstrapped estimate
instead:

(T™Vi)(Xs) = Ry +4Vi(X]) = Re + AV (Xg;wr).
With this substitution, the update rule would be

Wiyl < W + o <Rt =+ ’)/V(Xé, wt) — V(Xt; wt)> VwV(Xt; 'U}t>.

122 /128



Value Function Approximation

Semi-Gradient Viewpoint
Semi-Gradient Viewpoint

For linear FA, we have V(z;w) = ¢ (x)w, and we get the update
rule

Wil Wi + 0y (Rt + AV (X wy) = V(X5 wt)) P(X¢)
=w; + a0 p(Xy).
This is the same update rule that we had before for TD with linear
FA (39).
Remark

The substitution of V™ (X;) with (T™V;)(X;) does not follow from
the SGD of any loss function.

The TD update is not a true SGD update.

We call it a semi-gradient update.
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Semi-Gradient Viewpoint

One may wonder why we do not perform SGD on

1

|V wn) - (@ 0|

Certainly, we can write

e < i = e | [P (X = (77 () ()

—w; — o (f/(xt; w) — (T”V(wz))(Xt)) (vwv(xt; we) — VIU(T”V(wt))(Xt))

=w; — o (V(Xt;wt) — (Tﬂf/(wt))(Xt)) (VU,V(Xt;wt) — ’yVU,‘A/(Xé;wt)>
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Semi-Gradient Viewpoint

With linear FA, this becomes

wipr <y = ag (6(X0) Twr — (B +799(X]) Twr) (6(X0) —16(X)))
=w; — a0y - (¢(Xt) - ’Y¢(X£))

m This is similar to the TD update, with the difference that
instead of ¢(X;), we have ¢(X;) — yo(X)).

m The issue, however, is that this empirical loss function
V(X wi) — (T™V (wy))(Xy)|? is biased, as explained in
Section 3.

m Minimizing it does not lead to the minimizer of the Bellman
error.
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Gradient Temporal Difference Learning

We can also define an online algorithm to minimize MSPBE:

V ¢ argmin |V — Iz, T7V|3 .
VeF &
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Summary

Function approximation is needed for large problems

Several approaches for approximating the value function

m Direct estimate of V7™
m Bellman Error
m Projected Bellman Error

Batch RL methods

= AVI/FQI
= LSTD

m Online RL methods

m TD Learning with linear FA
m TD-like update

m Next: Policy Search methods
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