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Model-free RL Agent

Environment
(Real World)

X1 ~Po( | Xy, Ar)

~ (- |X) Xp R, Ry ~ R(-| X, At)

] \

Action Policy State  Reward

Agent (Planner)

Bertsekas & Tsitsiklis, 1996 — Busoniu, Babuska, De Schutter, & Ernst, 2010 — Szepesvari, 2010 — Sutton & Barto, 2018.



Model-based RL Agent

€ Learn a model of the environment

¢ Use the learned model for planning

Environment
(Real World)

Internal Model

Sutton, ICML, 1990 — Peng, Williams, Adaptive Behavior, 1993 — Sutton, Szepesvari, Geramifard, and Bowling, UAI, 2008. — Parr, Li, Taylor, et al., ICML, 2008 — Deisenroth, Fox,
Rasmussen, IEEE PAMI, 2015 — Levine, Finn, Darrell, Abbeel, JMLR, 2016 — Oh, Guo Lee, Lewis, Sing, NIPS, 2015 — Ha, Schmidhuber, NeurlPS, 2018.



Dyna Architecture:

A Prototypical MBRL Algorithm

// MDP (X, A, R*, P*)
Draw initial state X7 ~ vy
for each time step ¢ do
Take action A; ~ 7(-|X}), receive X; ~ P*(-| Xy, Ay) and Ry ~ R*(+| Xy, Ay).
Update model P and R
Update value function and/or policy using the new sample from the real
world
for p times do
Draw simulated /imaginary sample X; ~ Ux
Take action A; ~ 7(-|X}), receive X! ~ P(-|X;, A;)
Update value function and/or policy using the new sample from the
model
end for
Xt_|_1 < X{
end for

Environment
(Real World)

Agent (Planner)

—>(<—

Model



Dyna Architecture:

Finite State/Action Space

// MDP (X, A, R*,P*,7)

// a: Learning rate for TD(0)
Draw initial state X7 ~ vy
for each time step t do

MLE

Take action A; ~ 7(-| X3), receive X; ~ P*(-| Xy, A¢) and Ry ~ R* (| X3, Ay).

A #{X =2"|(X;=z,Ai=a)}
P(x'|z,a) « #{(X;=z,A;=a)}

Q(Xt7 At) — Q(Xt, At) + o (Rt - ’YzaeA W(Q‘Xé)Q(Xéa 0/) - Q(Xt, At))
for p times do
TD Draw simulated /imaginary sample X; ~ Ux

Take action A; ~ (- \Xt) receive X’ 77(\ z,fL) and 7; < f(XZ,AZ)
Qi A)) = QX i)+ (Fi 7 Ler (0l XDQ(XL 0/) = Q(Xi, A1)

end for

Xt—|—1 — X£

end for

Environment
(Real World)

Agent (Planner)

Model



Algorithm 1 Generic Model-based Reinforcement Learning Algorithm

// MDP (X, A, R*, P*,7)

// K: Number of interaction episodes

// M: Space of transition probability kernels

// G: Space of reward functions

Initialize a policy g

for k=0to K —1do
Generate training set DY) = {(X;, A;, R, X1)}_; by interacting with the
true environment (potentially using ), i.e., X ~ P*(:|X;, A;) and R; ~
R(-| X5, Aj).
P « argminpe y, Lossp (P; U, DY)

7 < argmin, . Lossg (7; Uk DY)
Tet1 < Planner(P,R)

end for

return mg




Issues In MBRL



Choice of Planner

Environment
(Real World)

e

Planner
© Value-based
© Policy Search

Model

Policy Search

* PILCO: Marc P. Deisenroth, Dieter Fox, and Carl E. Rasmussen, “Gaussian processes for data-efficient
learning in robotics and control,” IEEE Trans. on PAMI, 2015.

* GPS: - Sergey Levine and Pieter Abbeel, “Learning neural network policies with guided policy search
under unknown dynamics,” NIPS, 2014.



Model Learning

Environment
(Real World)

s

Model Learning

¢ MLE

© Bayesian

© Decision-Aware Model Learning

Decision-Aware Model Learning Model
* AMF, André M.S. Barreto, and Daniel N. Nikovski, “Value-aware model learning for reinforcement

learning,” AISTATS, 2017.
* David Silver, Hado van Hasselt, Matteo Hessel, et al., “The Predictron: End-to-end learning and

planning,” ICML, 2017.
* Junhyuk Oh, Satinder Singh, and Honglak Lee, “Value prediction network,” NIPS, 2017.

* Joshua Joseph, Alborz Geramifard, John W Roberts, Jonathan P How, and Nicholas Roy, “Reinforcemgnt
learning with misspecified model classes,” ICRA, 2013.



Distribution Mismatch

Environment
(Real World)

e

Model

Distribution Mismatch in MBRL

* Erin Talvitie, “Self-correcting models for model-based reinforcement learning,” AAAI, 2017.

* Erik Talvitie, “Model regularization for stable sample rollouts,” UAI, 2014.

* Arun Venkatraman, Martial Hebert, and J. Andrew Bagnell, “Improving multi-step prediction of learned
time series models,” AAAI, 2015.
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Model-based RL Agent

€ Learn a model of the environment

¢ Use the learned model for planning

Environment
(Real World)

Internal Model

Sutton, ICML, 1990 — Peng, Williams, Adaptive Behavior, 1993 — Sutton, Szepesvari, Geramifard, and Bowling, UAI, 2008. — Parr, Li, Taylor, et al., ICML, 2008 — Deisenroth, Fox,
Rasmussen, IEEE PAMI, 2015 — Levine, Finn, Darrell, Abbeel, JMLR, 2016 — Oh, Guo Lee, Lewis, Sing, NIPS, 2015 — Ha, Schmidhuber, NeurlPS, 2018.



How should we learn a good model for
model-based RL?

The conventional approach to model learning might be an overkill!

12



Conventional Approaches to
Model Learning

Learn a model that captures
all aspects of the environment as much as
possible.

Maximum Likelihood Estimate (MLE)
Bayesian Inference
Maximum Entropy
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Artist Robot Cleaning Robot

The conventional approach to model learning might be an overkill!

Images: Artist Robot (Johan Scherft); Cleaning Robot (Mark H. Evans) 15



How to incorporate information about the decision problem/
task into the model learning process itself?

We have to pay attention to the interaction of
model and the value function or policy.

16



Decision-Aware
Model Learning

AMF, Barreto, Nikovski, “Value-Aware Loss Function for Model Learning in Reinforcement
Learning,” European Workshop on Reinforcement Learning (EWRL), 2016.

AMF, Barreto, Nikovski, “Value-Aware Loss Function for Model-Based Reinforcement
Learning,” Artificial Intelligence and Statistics (AISTATS), 2017.

AMF, “lterative Value-Aware Model Learning,” Neural Information Processing Systems
(NeurlPS), 2018.

Abachi, Ghavamzadeh, AMF, “Policy-Aware Model Learning for Policy Gradient Methods,”
preprint, 2020.



http://sologen.net/papers/VAML(EWRL2016).pdf
http://www.sologen.net/papers/VAML(AISTATS2017).pdf
http://www.sologen.net/papers/IterVAML(NeurIPS2018)(extended).pdf
https://arxiv.org/abs/2003.00030

Let us try to design a decision-aware model learning method!

18



True model of the environment: P*

We are given a dataset D, = {(X;, A;, X))}, with Z; = (X;, A;) ~

V(X x A) and X! ~ P*(-|X;, A;)

A

Policy of the MBRL: 7 < Planner(P)

How to estimate a model of the environment P such that 7w is a high-

performing policy?

Environment
(Real World)

Internal Model 7)

M

A

P
x
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True model of the environment: P*

We are given a dataset D, = {(X;, A;, X))}, with Z; = (X;, A;) ~

V(X x A) and X! ~ P*(-|X;, A;)

A

Policy of the MBRL: 7 < Planner(P)
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performing policy?
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True model of the environment: P*

We are given a dataset D, = {(X;, A;, X))}, with Z; = (X;, A;) ~

V(X x A) and X! ~ P*(-|X;, A;)

A

Policy of the MBRL: 7 < Planner(P)

A X
How to estimate a model of the environment P such that 7 is a high- 7)

performing policy?

Environment
(Real World)

Internal Model 7)

M

d3(P*||P)

22



What kind of Planner?

¢ Variety of Planners
¢ Value-based, Policy Gradient, TRPO, etc.
¢ Let’s focus on Bellman operator-based ones:

T5Q(w.) = rlw.a) +7 [ P(da'[z,0) maxQ(a', )

*/
ZTQ< X' ~ 77‘96@

23
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Value-Aware Model Learning (VAML)

VAML and lterVAML

AMF, Barreto, Nikovski, “Value-Aware Loss Function for Model Learning in Reinforcement
Learning,” European Workshop on Reinforcement Learning (EWRL), 2016.

AMF, Barreto, Nikovski, “Value-Aware Loss Function for Model-Based Reinforcement
Learning,” Artificial Intelligence and Statistics (AISTATS), 2017.

AMF, “lterative Value-Aware Model Learning,” Neural Information Processing Systems
(NeurlPS), 2018. o



http://sologen.net/papers/VAML(EWRL2016).pdf
http://www.sologen.net/papers/VAML(AISTATS2017).pdf
http://www.sologen.net/papers/IterVAML(NeurIPS2018)(extended).pdf

Value-Aware Model Learning

Goal:
Finding a model that “preserves” the effect of the Bellman operator
as much as possible.

/T;Q ~ Th. ()

Bellman operator w.r.t. Bellman operator w.r.t.
the learned model the true model

T5Q(w.a) = r(w,a) + 7 [ P(da'|z,0) max Q' o)

25



Value-Aware Model Learning

et us construct a new loss function ...

T:Q ~ T Q



Value-Aware Model Learning

T5.Q(x,a) =r(x,a) + 7/77*(dx’|$, a) max Q(x',a’)

a’'c A

a’'c A

T5Q(w.) = rlw.a) +7 [ P(de'|z,0) maxQ(a'a)

0(75, P V)(x,a)

T:Q ~ Tp.Q
v

<77*(-|a:,a) — P(-|x,a), V>|

/ [P*(dx’\a’;, a) — P(dz'|x, a)} Vx')




Maximum Likelihood Estimator

Let Py, P> be defined over X’ (just to simplify). Note that

|P, — P, < /2KL(Py||P;).  (Pinsker)
So we may find P that minimizes KL(P*||P):

P*(x)
P(x)

P <+ argmin Z P*(x) log

PeM v

Or its empirical version: Given D,, = {X;}, with X; ~ P*, define the empir-
ical measure Pr(-) =+ > " dx,(-).

The Maximum Likelihood Estimator (MLE) is

. 1
P < argmin KL(P||P) = argmax — Z log P(X;).
rPeM rPeM X,€D,



VAML vs. MLE

(P*(lw,a) = P(la,a), V)| < ||P*(fz,a) = Plla,a)|| V]I,

\ /
Y

< \/2KL (P (e, )P, )

: 1
P argmin KL(P;||P) = argmax — Y~ logP(X]|X;, 4;) P~

PeM PemM T (X:, A, X1)ED, “
M KL(P*[|P)

A

MLE ignores any possible D
information about the decision
problem.

Joseph, Geramifard, Roberts, How, Roy, ICRA, 2013 — Silver, van Hasselt, Hessel, et al., ICML, 2017 — Farquhar, Rocktaeschel Igl,
Whiteson, ICLR, 2018 — Oh, Singh, Lee, NIPS, 2017



€ No need to accurately (in the KL sense) estimate
the true model.
€ Any model is sufficient.

¢ MLE is an overkill for this reward (value) function.




(P, P*;V)(x,a) = / {P*(dx’\x,a) — ﬁ(dx’\w,a)} V(x')

Pointwise to expectation

v

037,/(75,73*;‘/) — /du($,a) / {P*(daﬂx,a) — 75((137’|:C,a;)] V(x')

31




C%’V(ﬁ,P*;V) = /du(x,a) / [P*(dx'\z,a) — ﬁ(dx’\x,a)} V(x") 2

/

Unknown!

e Value-Aware Model Learning (VAML): Suppose that Planner uses a
value function space F to represent the value function. We learn a model
in M that is uniformly good for any function in F.

o Iterative VAMUL: Learn models by benefiting from how Approximate
Value Iteration (AVI)-based Planner generates value functions and uses
models.

32



C%’V(ﬁ,P*;V) = /du(x,a) / [P*(dx'\z,a) —ﬁ(dx’\x,a)} V(x")

/

Unknown!

Suppose that Planner uses a value function space F to represent the value tunc-
tion. We learn a model in M that is uniformly good for any tunction in F.

c%),/(ﬁ,P*) = /du(:c,a) 31;]3_ / {P*(dx’\x,a) — ﬁ(dx’]z,a)} V(x")




Value-Aware Model Learning (VAML)

2

A 1 -
Pvami, < argmin — Z sup 'V(X{) — /P(dg;’\Xi,Ai)V(x/)

A T
PeEM " (x, A; x)eD, ¥
7)*
VAML
Remarks: M Puaris, ® KL(P* (D)
®
¢ For linear value function spaces, the PuMLE

inner optimization problem can be
solved efficiently.

¢ We have finite-sample error upper
bound for VAML.

AMF, Barreto, Nikovski, AISTATS, 2017



. * 2 : * 2 ! 10g(1/5)
E Lilé]g} (PZ—PZ)V‘ ] Spléljf\/lE L%pf](PZ—PZ)V\ } + O (B \/ - )
7?*
*

Matched Mismatched

35
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1 2

75VAML < argmin— Z Sup |V(X{) — /ﬁ(dl'/’XivAi)V(x/)
Pe M n (Xi,Ai,X,Z)EDn VerF

Solving VAML optimization problem might be difficult
for arbitrary function space!



Iterative VAML

AMF, “lterative Value-Aware Model Learning,” Neural Information Processing Systems
(NeurlPS), 2018



http://www.sologen.net/papers/IterVAML(NeurIPS2018)(extended).pdf

Value lteration

Qk_|_1 — T;;*Qk 2 r —+ ”)/P*Vk

Vi(z) = max Qr(x,a)



lterative VAML

Q() — 7T
Q1 < Tp. Vo =r+~P*V, PVo = P*V,
Q2 < Tp. Vi =r+~P"V; PVi = P*W;

Qr+1 < Tp Vi =1 +9P*" Vi, PV, =PV,

73‘//@ ~ P~ Vi



lterative VAML

QO <— T
Ql < T;;* V() =T I ’773*7“
QQ — T;;* Vl =T T ’}/P*Vl

Qi1 <+ T Vi = 1+ 4PV, 1A TR R

(P—P*)VkHz :/‘(P—P*)(dx’|z) nzgx@k(m’,a’) 2du(z)

C P argmin
PeM
Qk—l—l < Tf;(k)Qk

42




Policy-Aware Model Learning (PFAML)

Abachi, Ghavamzadeh, AMF, “Policy-Aware Model Learning for Policy Gradient Methogs,”
preprint, 2020.



https://arxiv.org/abs/2003.00030

Policy Gradient

Policy parameterized by 6 € ©.
Performance objective of an agent starting from an initial probability distribu-
tion p € M(X) and following policy 7 in an MDP P:

Ip(miP) 2 [ dp(a)VEe (a).

Policy Gradient:
9k+1 < Hk + UVQJ,O(T‘-Qk : 7))



Policy Gradient

8J7T , Omg(a’|x") .,
Vo (m DS [ana) [P 32 T grata)
k>0 a’'eA

Olog
L o) S moala) PO T o 4, )

1_7 acA

Pr()=py (P21 —7) ) A / x)P7(|as k).

k>0

Discounted future-state stationary distribution



Policy-Aware Model Learning

Goal:
Finding a model that computes the Policy Gradient
as accurate as possible.

N\

VQJP(WQk;P) ~ vﬁjp(ﬂ-ek;f])*)

46



PAML vs MLE

I cpa(p, v mo) 1/ 2KLy () (P70 || P, )
| VoI (ro) — Vo.J (o) L QuaxB x{ G, i m0)/ 2KLi (1) (P[P,

<
/ p o (1=7)° T | 2y/2KL P”PV

Minimized by PAML Minimized by MLE
exp (¢ ' (alz)d) dp,y
SCERb e A ki

Loo (PT[P2) = sup KL(PT (-|2)[[P3 (-|z)), Kliw)(Pr[P7) = /dV(ﬂ?)KL(PT(-\fE)!!7’5’('@))-

reX



Convergence for Model-based PG

Projected PG: 0111 < Projg {975 + Uveju(ﬂek)}

Theorem 1. After T steps of the projected PG algorithm, we have

with
o Lpap(0; pi) < epag (policy approximation error)

o ||VoJ,(m) — ngﬂ(ﬂg)ﬂg < Emodel (Model error)

Lpag(0,w;v) = EXNV|:

S (7(alX) = m(alX) — wT Vom(al X)) Q" (X, 0)|]
acA



Experiment: Closed-loop Performance
with Exact Gradients
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Integral Probability Metric & Model Learning

Given two probability distributions pi, s € M(X) defined over the set X and
a space of functions F : X — R, the Integral Probability Metric (IPM) distance

is defined as dr (1, 2) = sup ez [ f(z) (dpa (z) — dpa(x))|.

e Total Variation distance: F is the space of bounded measurable function.
(Also recall that |[u1 — pallTv < +/2KL(p1||12))-

e 1-Wasserstein distance: JF is the space of 1-Lipschitz functions. Special
case of VAML (Asadi et al., 2018).

e VAML: F is the space of value functions.
e IterVAML: F is the most recent value function, i.e., F = {V}}.
e PAML:
1. F has a single function f(z) = Egr,(|2) [Vologme(A|z)Q™ (x, A)].

2. Comparison is not between P* and P, but between p~ (-3 P*"%) and
Py (3 P™).

IPM: Mller, 1997 — Asadi et al., 2018.



Other DAML Approaches

Several methods in the RL literature might be interpreted as doing some
form of DAML, though sometimes it is not explicitly mentioned.
Some examples:

¢ Joseph et al., ICRA, 2013.

€ Predictron (Silver et al., 2017)

€ VPN (Oh et al., 2017)

¢ TreeQN (Farquhar et al., 2018)

¢ Gradient-Aware Model-based Policy Search (D’Oro et al., 2020)
€ muZero (Schrittwieser et al., 2019)

¢ Value-targeted regression (Ayoub et al., 2020)

¢ Value equivalence viewpoint (Grimm et al., 2020)

¢ A few others in non-RL context (Tulabandhula and Rudin, 2013; Kao and
Van Roy, 2014; Elmachtoub and Grigas, 2017, Donti et al., 2017)



Take-Home Message

We should incorporate the structure of the
decision problem into model learning.

Unsupervised learning
should be guided by the
decision problem that
we want to solve

# “Pure” Reinforcement Learning (cherry)

» The machine predicts a scalar
reward given once in a while.

» A few bits for some samples

# Supervised Learning (icing)
» The machine predicts a category : LYY e
or a few numbers for each input ' e
» Predicting human-supplied data ’ -

» 10-10,000 bits per sample

# Unsupervised/Predictive Learning (cake)

» The machine predicts any part of
its input for any observed part.

» Predicts future frames in videos , ) 155
» Millions of bits per sample

# (Yes, I know, this picture is slightly offensive to RL folks. But I'll mak2 it up)
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