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This article  reviews how temporal difference (TD) learning 
algorithm provide an interpretation of the activity of dopamine 
neurons thought to mediate reward-processing and 
reward-dependent learning.



Introduction

● Fluctuating output of dopaminergic neurons in the primate, 
signals changes or errors in the predictions of future salient and 
rewarding events.

● One clear connection between reward and prediction derives 
from a wide variety of conditioning experiments.



● CS (Conditioned Stimulus): The arbitrary cue, such as the 
light or a tone. It has no intrinsic value but comes to predict 
the reward.

● US (Unconditioned Stimulus): The thing with intrinsic, 
biological value, such as food or a juice reward. This is what 
the animal truly wants.

● We call the appetitive CS the sensory cue and the US the 
reward.



● To establish classical conditioning, the sensory cue must reliably precede the 
reward. Once learned, the cue predicts the reward's timing and magnitude 
and the value of the reward is transferred to the cue.

● Some theories suggest that unpredictability of the reward by the sensory cue 
drives learning. 

● No further learning takes place when the reward is entirely predicted by a 
sensory cue (or cues).

● Once a rat is conditioned to expect food following a light, the subsequent 
pairing of that light with a sound preceding the food results in the rat relying 
exclusively on the light as the predictive cue, effectively ignoring the sound. 
This phenomenon is called “blocking.”



● Because the light perfectly predicts the food, the sound provides no 
new information, and therefore, no association is learned with it.

● It appears therefore that learning is driven by deviations or “errors” 
between the predicted time and amount of rewards and their actual 
experienced times and magnitudes.

● In reinforcement learning, systems learn to predict through temporal 
difference (TD) algorithm. This algorithm was originally inspired by 
behavioral data on how animals actually learn predictions.



Anatomy:
Dopamine neurons of the ventral tegmental area (VTA) and substantia nigra 
have long been identified with the processing of rewarding stimuli.

These neurons send their axons to brain structures involved in motivation and 
goal-directed behavior, for example, the striatum, nucleus accumbens, and 
frontal cortex.



After an animal repeatedly experiences a 
visual and auditory cue followed by a reward, 
its dopamine neurons shift their peak 
activation from the moment the reward 
arrives to the moment the cues begin.

When the expected reward is omitted 
following the light cue, dopamine neurons 
show a marked decrease in firing 
(depression) precisely at the moment the 
reward was anticipated.



Dopamine neurons code for a prediction error, the difference between the 
actual reward and the predicted time and magnitude of that reward.

● They show increased firing (a positive signal) if the reward is better 
than predicted (or entirely uncertain/unpredicted).

● They show no change in firing if the reward occurs exactly as 
predicted.

● They show decreased firing (a negative signal) if the reward is worse 
than predicted (or omitted).

Essentially, these neurons act as feature detectors for how "good" 
environmental events are relative to what has been learned and expected.



TD algorithm
● Temporal difference methods were introduced into the psychological and 

biological literature by Richard Sutton and Andrew Barto in the early 1980s. 

● The main assumption in Temporal Difference (TD) learning is that the 
computational goal is to use sensory cues to predict V(t), the discounted 
sum of all future rewards in a trial.

● The second main assumption of TD learning is the Markovian assumption: 
future cues and rewards depend only on the immediate, current cues.



The overall strategy is to use a vector of sensory cues (x(t)) combined with a 
vector of adjustable weights (w) to generate V^(t), an estimate of the true 
predicted future reward (V(t)).

To assess its predictions, this latter constraint would require the animal to 
remember over time which weights need changing and which weights do not.

Fortunately, there is information available at each instant in time that can act as a 
surrogate prediction error

An error (TD error) in the estimated predictions can now be defined with 
information available at successive time steps:



● A simple model using only one adaptable weight per sensory cue is insufficient 
because a cue can predict a reward at arbitrary times into the future. 
Experimental data show that when the time between the cue and reward is 
changed, the cue learns to predict this new time of delivery. 

● We assume that each sensory cue is represented by a vector of signals x(t) = 
{x_1(t), x_2(t), …}. Each component x_i(t) acts as a temporal feature, becoming 
1 exactly i time steps after the cue's onset and 0 otherwise. This allows the 
cue's representation to be distributed across future time points.

● If the light comes on at time s, x_1(s+1)=1, x_2(s+2)=1, . . . represent the light at 
1, 2,... time steps into the future and w_1, w_2, . . . are the respective weights. 
The net prediction for cue x(t) at time t takes the simple linear form: 



This type of temporal representation, where a sensory cue is encoded as a vector 
of signals active at successive time steps, is referred to as a complete 
serial-compound stimulus by Sutton and Barto, and is functionally related to 
Grossberg's spectral timing model.

The adaptable weights w are improved according to the correlation between the 
stimulus representations and the prediction error.

Where alpha is the learning rate for cue x(t) and the sum over t is taken over the 
course of a trial. 

If there were many different sensory cues, each would have its own vector 
representation and its own vector of weights, and the above equation would be 
summed over all the cues.



To construct and use an error signal similar to the TD error above, a neural 
system would need to possess four basic features: 

● Access to a measure of reward value r(t); 
● TD error: gamma*Vˆ(t + 1) - Vˆ(t); 
● A site where these signals could be summed 
● Delivery of the error signal to areas constructing the prediction in such a 

way that it can control plasticity.
● It has been shown that midbrain dopamine neurons satisfy the first three 

features.



M1 and M2 represent two different cortical 
modalities whose output is assumed to 
arrive at the VTA in the form of a temporal 
derivative (surprise signal) V˙ (t), which 
reflects the degree to which the current 
sensory state differs from the previous 
sensory state.



We assume that the dopamine neurons’ output 
actually reflects:

Where b(t) is a basal firing rate.

Figure shows the training of the model on a task 
where a single sensory cue predicted the future 
delivery of a fixed amount of reward 20 time steps 
into the future.  The model's prediction error signal 
successfully replicates the activity of dopamine 
neurons during learning. The resulting pattern of 
adaptable weights explains key behavioral findings 
like blocking and secondary conditioning, as well 
as dopaminergic changes when the reward timing 
is altered.



The model makes two main predictions regarding the phasic dopamine response 
in the presence of a cue sequence:

1. Transfer to the Earliest Cue: When multiple cues precede a reward, the 
phasic dopamine activation (the prediction signal) will transfer entirely to the 
earliest consistent cue in the sequence.

2. Omission Signal at Intermediate Cue: After training on a cue sequence 
(e.g., Light 1 -> Light 2 -> Reward), omitting an intermediate cue (Light 2) 
will cause a phasic decrease (depression) in dopamine activity precisely at 
the moment the omitted cue was expected to occur.



Challenge of temporal credit assignment: How does the rat, after hitting a dead 
end many steps later, correctly identify which specific action or "wrong turn" far in 
the past was responsible for the negative outcome?

One solution to the credit assignment problem is for the animal to develop a 
policy a rule dictating its actions for every state (the sensory cues at each maze 
position). To improve this policy, the animal must learn the value of each state. 
This value, used in dynamic programming, is the summed future reward expected 
from that state if the policy is followed. Since the TD method learns this exact 
expected future reward, it is suggested to be the mechanism underlying the brain's 
dopamine signal.



Bee foraging behavior on flowers can be 
constructed by a TD model.

Three color-sensitive units (b, g, r) report, 
respectively, the percentage of blue, 
green, and red in the visual field. Each 
unit influences neuron P ( VTA analog) 
through a single weight. 

The colored blocks contain varying 
amounts of reward with blue> green > 
red. After training, the weights (wb, wg, wr 
) reflect this difference in reward content. 



Using only a single weight for each sensory cue, the model can make only 
one-time step predictions; however, combined with its capacity to move its head or 
walk about the arena, a crude “value-map” is available in the output of neuron P. 

The height of the surface codes for the value V(x, y) of each location when viewed 
from the corner where the “creature” is positioned. All the creature needs to do is 
look from one location to another (or move from one position to another), and the 
differences in value V(t + 1) - V(t) are coded in the changes in the firing rate of P.



Summary

The dopamine neurons in the VTA and substantia nigra are proposed to report 
an ongoing prediction error signal for reward. This scalar (single-valued) error 
signal is delivered to target structures to influence how the brain processes 
predictions and chooses reward-maximizing actions.

Several issues for future work:

1. One issue is temporal representation: learning how a stimulus is encoded 
across time to make precise, time-based predictions of future events. Although 
animals clearly demonstrate this ability, the specific neural location and 
mechanism (the "temporal labels") used by the brain remain unknown.



2. Second issue is that dopamine system is mainly associated with rewards, not 
punishments. Authors suggest that the omission of an expected reward serves 
as a form of "punishment," which the dopamine neurons signal via a negative 
prediction error. This signal is then processed by target structures, supporting 
the role of opponent processes (rewards vs. punishments) in learning.



3. A third issue is the required relation between scalar and vector signals in 
reward learning. The model uses a simple scalar (single-value) prediction error, 
which is insufficient for complex environments. Realistic behavior requires vector 
signals (multi-component) to represent the specific type of reward (e.g., food vs. 
water) and the physical attributes of predictive cues.

Because dopamine neurons only emit a non-specific scalar appetitive error 
signal (a "teaching" signal without details), other brain structures must be 
responsible for the analysis and discrimination of specific rewards.



4. The model currently fails to account for attentional functions in target 
structures like the nucleus accumbens and frontal cortex, which are crucial 
when varying amounts of attention are paid to different stimuli. 

There's evidence suggesting attentional mechanisms might operate directly at 
the dopamine neuron level, as their responses decrease with repeated novel 
stimuli and they will generalize their responses to non appetitive stimuli that are 
physically similar to appetitive stimuli.



In the mammalian brain, the striatum is one site where this kind of scalar 
evaluation could have a direct effect on action choice, and activity relating to 
conditioned stimuli is seen in the striatum

Dopamine's influence extends to the cerebral cortex, dramatically affecting 
functions like working memory (in prefrontal cortex) and cognitive activation (in 
anterior cingulate cortex).

The prediction error signal (carried by dopamine) must be delivered specifically 
to the local cortical regions that actually made the faulty prediction, rather than 
broadcasting it globally. This mechanism of precisely timed, specific 
information delivery by the dopamine system is a significant shift from the 
traditional view that neuromodulators only provide slow, global state modulation, 
demonstrating their vital role in rapid and targeted cognitive functions.


