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Basics

m A scalar is a number.

m A vector is a 1-D array of numbers. The set of vectors of length n
with real elements is denoted by R™.

» Vectos can be multiplied by a scalar.
» Vector can be added together if dimensions match.

m A matrix is a 2-D array of numbers. The set of m x n matrices with
real elements is denoted by R™*™.

» Matrices can be added together or multiplied by a scalar.
» We can multiply Matrices to a vector if dimensions match.

m In the rest of this tutorial we denote scalars with lowercase letters like
a, vectors with bold lowercase v, and matrices with bold uppercase A.
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Diagonal Matrix

m A diagonal matrix has all entries equal to zero except the
diagonal entries which might or might not be zero, e.g.
identity matrix.

m A square diagonal matrix with diagonal enteries given by
entries of vector v is denoted by diag(v).

m Multiplying vector x by a diagonal matrix is efficient:
diag(v)x = vOx,

where © is the entrywise product.

m Inverting a square diagonal matrix is efficient

diag(v)™t = diag([i, ce i]T)

U1 Un
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Trace

m Trace is the sum of all the diagonal elements of a matrix,
ie.,

m Cyclic property:

Tr(ABC) = Tr(CAB) = Tr(BCA).
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Transposition

Transposition is an operation on matrices (and vectors)
that interchange rows with columns. (AT);; = A;;.

s (AB)T =BTAT,
m A is called symmetric when A = AT,

m A is called orthogonal when AAT = ATA =Tor
A l1=AT,
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Dot Product

T

m Dot product is defined as (v,u) =v-u=v' u= )", u;v;.

m The /5 norm can be written in terms of dot product:

|lul|2 = vu.u.

m Dot product of two vectors can be written in terms of their
£ norms and the angle 6 between them:

a™h = all, [[bll, cos(s).

_ dist (A, B)

B
COS 6
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Cosine Similarity

m Cosine between two vectors is a measure of their similarity:

a-b

)= ——.
<os(0) = [alTol

m Orthogonal Vectors: Two vectors a and b are
orthogonal to each other if a-b = 0.
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Vector Projection

m Given two vectors a and b, let b= II%H be the unit vector

in the direction of b.

m Then a; = ap - b is the orthogonal projection of a onto a
straight line parallel to b, where
b

a1 = ||laljcos(d) =a-b=a  —
b

Image taken from wikipedia.


https://en.wikipedia.org/wiki/Vector_projection
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Multiplication

m Matrix-vector multiplication is a linear transformation. In
other words,
M(vy + ave) = Muy + aMuve = (Mw); = ZMi,jvj.
J

m Matrix-matrix multiplication is the composition of linear
transformations, i.e.,

(AB)’U = A(BU) — (AB)ZJ = Zk Ai,k:Bk,j-

(o9)
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https://en.wikipedia.org/wiki/Vector_projection
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Norms

m Norms measure how “large” a vector is. They can be
defined for matrices too.

m The /,-norm for a vector x:

Ixll, = | leal?

%

» The /5-norm is known as the Euclidean norm.

» The ¢1-norm is known as the Manhattan norm, i.e.,
Ixl[1 =225 |2l

» The ¢ is the max (or supremum) norm, i.e.,
[I%|lco = max; |2
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Matrix Norms: Basics

m A matrix norm ||A[ is a function assigning a nonnegative
number to a matrix A.
m Properties (similar to vector norms):
L. [[A >0and [[A| =0 < A=0.
2. [JecAll = [l - Al
3. A+ B[ < [|A] +[1B]].
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Operator (Induced) Norms

m Given a vector norm || - ||, the induced matrix norm is

| Aal
el

I|A|| = max
z#0

m Intuition: measures how much A can stretch a vector.
m Properties:

1. |AB| < ||A|||B]| (submultiplicative).
2. || Az|| < A - (|-
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Examples of Matrix Norms

m Spectral norm:

[Allz = max [lAzll2.
llzll2=1

Allr = /> laijl>.
i

lAllL = mfxz |ais]
i

s Frobenius norm:

m /1-norm:
» Induced:

> Entrywise:
Al

1,entry — E Ialjl
1,5
B {so-norm:
» Induced:

4lloe = max " fai|
J

> Entrywise:
HAHOO,entry = IIzlaJX |aij|
,



INF8250AE — Tut 2 — Linear Algebra

Frobenius Norm and Trace

m Frobenius norm can also be written using the trace:

1AlF = [ 145512 = /(AT A)
i

m Intuition: it’s the Euclidean norm of the flattened matrix.

m Useful in optimization: appears naturally in least-squares
and SVD approximations.
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Invertibility

m I denotes the identity matrix which is a square matrix of
zeros with ones along the diagonal. It has the property
JA=A BI=B)andIv=v

m A square matrix A is invertible if A~! exists such that
ATA=AA'=1

m Not all non-zero matrices are invertible, e.g., the following
matrix is not invertible:
11
11
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e
Inverse of Special Matrices

m Diagonal Matrix: D = diag(dy,...,d,)

1 1
D! = di (7 7)
lag dl, ’dn

m Block-Diagonal Matrix: A = diag(A;, Aa, ..., Ag)
A7l =diag(A7 N A ALY
m Orthogonal Matrix: Q'Q =1
Q'=QT
m Lower-Triangular Matrix: L (invertible)

L~ can be computed efficiently via forward substitution.
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Lemma A.2 (Golub & Van Loan, 2013)

Lemma: If A € R4 and ||A|, < 1, then [ — A is
non-singular, and

1
I—A Y, <—.
and
o]
(I-A)t=>" Ak
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Incremental Matrix Inversion (Golub & Van Loan, 2013)

Sherman—Morrison-Woodbury formula: For A € R4*¢
invertible, and U,V € Rk,

(A+UvH) ' =Aa7' —AU(I+VvTATU) 'vTA T,
assuming A and (I + VT A~1U) are invertible.

m UV is a rank-k update of A.

m Inverting the smaller k x k matrix (I + VTA_lU) is much
cheaper than re-inverting the full d x d matrix.

Special case (Sherman—Morrison): For u,v € RY,

Ay T AL

A T —1:A—1_
(Atuv) 1+vTA 1y’

provided 14+ vT A1y #£ 0.
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Determinant
m Determinant of a square matrix is a mapping to scalars.
det(A) or |A]

m Measures how much multiplication by the matrix expands
or contracts the space.

m Determinant of product is the product of determinants:

det(AB) = det(A)det(B)

a b = ad — be
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List of Equivalencies

Assuming that A is a square matrix, the following statements
are equivalent

m Ax = b has a unique solution (for every b with correct
dimension).

m Ax = m0 has a unique, trivial solution: x = m0.
m Columns of A are linearly independent.
m A is invertible, i.e. Al exists.

det(A) # 0
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Zero Determinant

If det(A) = 0, then:

m A is linearly dependent.

m Ax = b has infinitely many solutions or no solution. These
cases correspond to when b is in the span of columns of A
or out of it.

m Ax =m0 has a non-zero solution. (since every scalar
multiple of one solution is a solution and there is a
non-zero solution we get infinitely many solutions.)
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Matrix Decomposition

m We can decompose an integer into its prime factors, e.g.,
12=2x2x3.

m Similarly, matrices can be decomposed into product of
other matrices.

A = VdiagA\) V™!

m Examples are Eigendecomposition, SVD, Schur
decomposition, LU decomposition, ....
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Eigenvectors
m An eigenvector of a square matrix A is a nonzero vector v
such that multiplication by A only changes the scale of v.

Av = )v
m The scalar X is known as the eigenvalue.

m If v is an eigenvector of A, so is any rescaled vector sv.
Moreover, sv still has the same eigenvalue. Thus, we
constrain the eigenvector to be of unit length:

vll2 =1
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e
Characteristic Polynomial(1)

m Eigenvalue equation of matrix A.

Av = )v
Av —Av = m0
(AI-—A)v = m0

m If nonzero solution for v exists, then it must be the case
that:
det(\I-A) = 0

m Unpacking the determinant as a function of A\, we get:
Pa(A) =det(\I—A) =1 x A"+ cp1 x N1+ + ¢

m This is called the characterisitc polynomial of A.
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e
Characteristic Polynomial(2)

m If Ay, Ag,..., A\, are roots of the characteristic polynomial,
they are eigenvalues of A and we have

Pa(A) = [Tim (A = o).

mCpo1=—y A =—tr(A). This means that the sum of
eigenvalues equals to the trace of the matrix.

mco=(—1)"][;-; \i = (=1)"det(A). The determinant is
equal to the product of eigenvalues.

m Roots might be complex. If a root has multiplicity of r; > 1
(This is called the algebraic dimension of eigenvalue), then
the geometric dimension of eigenspace for that eigenvalue
might be less than 7; (or equal but never more). But for
every eigenvalue, one eigenvector is guaranteed.
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Example

m Consider the matrix:
2 1
ro
m The characteristic polynomial is:

A—2 -1

det(/\I—A)—det[_1 \_o

]_3—4)\+>\2_0

m [t has roots A = 1 and A = 3 which are the two eigenvalues
of A.

m We can then solve for eigenvectors using Av = Av:

V=1 = [17 _1]T and Vi=3 = [17 1]T
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Eigendecomposition

Suppose that n x n matrix A has n linearly independent
eigenvectors {v(D) ... v("} with eigenvalues {\i,..., \,}.

m Concatenate eigenvectors (as columns) to form matrix V.

m Concatenate eigenvalues to form vector mA = [A1,..., \,]".

The eigendecomposition of A is given by:

AV = Vdiag(\) = A = Vdiag(m\)V~!
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Symmetric Matrices

m Every symmetric (hermitian) matrix of dimension n has a
set of (not necessarily unique) n orthogonal eigenvectors.
Furthermore, all eigenvalues are real.

m Every real symmetric matrix A can be decomposed into
real-valued eigenvectors and eigenvalues:

A = QAQT
m Q is an orthogonal matrix of the eigenvectors of A, and A

is a diagonal matrix of eigenvalues.

m We can think of A as scaling space by \; in direction v(®).

Plot of unit vectors ucR* Plot of vectors Au
(circle) (ellipse)
[p—

with two variables z; and z,
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Eigendecomposition is not Unique

m Decomposition is not unique when two eigenvalues are the
same.

m By convention, order entries of A in descending order.
Then, eigendecomposition is unique if all eigenvalues have
multiplicity equal to one.

m If any eigenvalue is zero, then the matrix is singular.
Because if v is the corresponding eigenvector we have:
Av=0v=0.
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Positive Definite Matrix

m If a symmetric matrix A has the property:
xAx >0 for any nonzero vector x
Then A is called positive definite.

m If the above inequality is not strict then A is called
positive semidefinite.

m For positive (semi)definite matrices all eigenvalues are
positive(non negative).



INF8250AE — Tut 2 — Linear Algebra

Cholesky Decomposition (Positive Definite Matrices)

m For a symmetric positive definite matrix A € R™*", there
exists a lower-triangular matrix L such that

A=LL"

m Useful properties:
» Solving Ax = b reduces to forward/backward substitution.
» Numerically stable, used in Gaussian processes, Kalman
filters, and RL covariance updates.
» Efficient way to test positive definiteness: attempt Cholesky
decomposition.

m Example:
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Singular Value Decomposition (SVD)

m If A is not square, eigendecomposition is undefined.
m SVD is a decomposition of the form A = UDV'.
m SVD is more general than eigendecomposition.

m Every real matrix has a SVD.
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SVD Definition (1)

m Write A as a product of three matrices: A = UDV .
mIf Aismxmn,then Uismxm, Dismxn, and V is n X n.

m U and V are orthogonal matrices, and D is a diagonal
matrix (not necessarily square).

Diagonal entries of D are called singular values of A.

m Columns of U are the left singular vectors, and columns
of V are the right singular vectors.
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SVD Definition (2)

m SVD can be interpreted in terms of eigendecompostion.
m Left singular vectors of A are the eigenvectors of AA .
m Right singular vectors of A are the eigenvectors of AT A.

m Nonzero singular values of A are square roots of
ecigenvalues of ATA and AAT.

m Numbers on the diagonal of D are sorted largest to
smallest and are non-negative (AT A and AAT are
semipositive definite.).
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e
SVD Optimality

m Given a matrix A, SVD allows us to find its “best” (to be
defined) rank-r approximation A,.

We can write A = UDV' as A = > diwgv, .
For r < n, construct A, =Y/, diw;v, .

The matrix A, is a rank-r approximation of A. Moreover,
it is the best approximation of rank r by many norms:

» When considering the operator (or spectral) norm, it is
optimal. This means that ||A — A, || < ||A — B2 for any
rank r matrix B.

» When considering Frobenius norm, it is optimal. This
means that |A — A, || < ||A — B||r for any rank r matrix
B. One way to interpret this inequality is that rows (or
columns) of A, are the projection of rows (or columns) of A
on the best r dimensional subspace, in the sense that this
projection minimizes the sum of squared distances.
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Norms and Singular Values

m Definition (induced from ¢y vector norm):

[Allz = max {|Az[s.
lzll2=1

m Equivalent formulations:
[A]l2 = 1/ Amax(AT A).

m In terms of singular values:
[Allz = omax(A),

the largest singular value of A.
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Norms and Singular Values

Let 01 > 09 > -+ > 0, > 0 be the singular values of A.

Norm Expression in terms of singular values
Spectral norm (||All2) | All2 = 01
Frobenius norm ([ A]| ) IAllF = /> i, 07
Nuclear norm (|| A||«) [Alls = >, 04
1/p
Schatten-p norm (||A[|,) |All, = (22:1 Uf)

m Special cases: p =1 (nuclear norm), p = 2 (Frobenius norm),
p = oo (spectral norm).

m Entrywise norms (]| 4|1, ||Allco) are not singular-value based.
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Matrix Calculus: Basics

m We often need derivatives of scalar, vector, or matrix
functions with respect to vectors/matrices.
m Notation:

> %: gradient of scalar f w.r.t vector x (column vector).
> %: Jacobian of vector f(x) w.r.t vector x.

> g—;: matrix of derivatives of scalar or matrix function F

w.r.t matrix X.

m Example:
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Common Vector Derivatives

Scalar f =a'x: g—i
Scalar f =x"Ax: L =(A+AT)x
Scalar f = ||x|2: 9 =
Scalar f = Tr(AX): g—f =AT

Scalar f = Tr(XTAX): 2L =(A+ATX
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Useful Matrix Calculus Identities

m 5 Tr(X) =1

] %logdetX =(xXxHT

m 5 Tr(AXBX")=ATXBT + AXB
m x| X% =2X

] %xTAa: =(A+AN)x
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Matrix Calculus in RL: Example

Problem: Least-Squares TD error
2
L(w) = | Xw —ylf;
where X € R"*¢ is a feature matrix, w € R% are weights, and y € R"
are target values.

Gradient computation:

oL
— =2XT(Xw —
S (Xw —y)
Explanation:

m f(w)=Xw—y, then L=fTf.

m Use rule 2 [|Az — b||3 = 2AT (Az — b)

m Gradient points in direction of steepest increase; update rule:

W~ W — ng—va

Takeaway: Matrix calculus simplifies computing gradients for loss
functions common in RL and ML.
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Computational LA Tricks: Making Matrices Invertible

m Sometimes matrices are nearly singular, causing numerical
issues.

m Trick: Add a small diagonal (Tikhonov
regularization / ridge):

Areg = A+ el

where € > 0 small.
m Ensures A,eg is invertible and better conditioned.

m Widely used in ridge regression, TD(\), policy
evaluation.
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Computational LA Tricks: Solving Ax = b with
Cholesky Decomposition

Applicable when A is symmetric positive definite.

Compute the Cholesky decomposition:
A=LL",
where L is lower triangular.

m Solve in two steps:

1. Forward substitution: solve Ly = b for y.
2. Backward substitution: solve LTz = y for x.

m Efficient and numerically stable; avoids explicit matrix inversion.

m Useful in RL for least-squares problems:

w=(X"X)"'XTy = w via Cholesky of X' X
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Computational LA Tricks: Incremental / Online
Updates

m When a new sample (x¢,y;) arrives:
At = At—l + a:txtT, bt = bt—l + 21yt

m Use Sherman-Morrison or rank-1 updates to update A~'b
efficiently.

m Essential for online RL algorithms.
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Computational LA Tricks: Eigen Decomposition Tricks

m For SPD or diagonalizable A, A = VAV ™!

m Compute matrix powers or exponentials efficiently:
AR = VARV exp(A) = Vexp(A)V 1

m Useful in RL for propagating value functions or transition
operators.
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Computational LA Tricks: Preconditioning

m Idea: Improve convergence of iterative solvers by reducing the condition
number of the matrix.

R(A) = Al - [|A7Y

m Preconditioner M: Choose M ~ A~ to solve
MAx = Mb

instead of Az = b. This reduces k(M A) < k(A), leading to faster
convergence.

m Intuition: Preconditioning ”reshapes” the problem so all directions are
stretched more evenly.

m Example in RL: Policy evaluation using Least-Squares Temporal Difference
(LSTD):
w=(X"X)"1XxTy

- If XTX is ill-conditioned, solve instead:
(MXTX)w=MXTy

using a diagonal preconditioner M = diag(1/diag(X " X))
m This improves numerical stability and speeds up iterative solvers.



