Linear Algebra Review¹

Reinforcement Learning (INF8250AE) Fall 2025

Polytechnique Montréal

¹Some parts borrowed from Punit Shah's slides.

Basics

- A scalar is a number.
- A vector is a 1-D array of numbers. The set of vectors of length n with real elements is denoted by \mathbb{R}^n .
 - Vectos can be multiplied by a scalar.
 - ▶ Vector can be added together if dimensions match.
- A matrix is a 2-D array of numbers. The set of $m \times n$ matrices with real elements is denoted by $\mathbb{R}^{m \times n}$.
 - ▶ Matrices can be added together or multiplied by a scalar.
 - ▶ We can multiply Matrices to a vector if dimensions match.
- In the rest of this tutorial we denote scalars with lowercase letters like a, vectors with bold lowercase v, and matrices with bold uppercase A.

Diagonal Matrix

- A diagonal matrix has all entries equal to zero except the diagonal entries which might or might not be zero, e.g. identity matrix.
- A square diagonal matrix with diagonal enteries given by entries of vector \mathbf{v} is denoted by diag(\mathbf{v}).
- lacktriangle Multiplying vector $oldsymbol{x}$ by a diagonal matrix is efficient:

$$\operatorname{diag}(\mathbf{v})\mathbf{x} = \mathbf{v} \odot \mathbf{x},$$

where \odot is the entrywise product.

■ Inverting a square diagonal matrix is efficient

$$\operatorname{diag}(\mathbf{v})^{-1} = \operatorname{diag}\left(\left[\frac{1}{v_1}, \dots, \frac{1}{v_n}\right]^{\top}\right).$$

Trace

■ Trace is the sum of all the diagonal elements of a matrix, i.e.,

$$\operatorname{Tr}(\mathbf{A}) = \sum_{i} A_{i,i}.$$

Cyclic property:

$$\mathrm{Tr}(\mathbf{ABC})=\mathrm{Tr}(\mathbf{CAB})=\mathrm{Tr}(\mathbf{BCA}).$$

Transposition

- Transposition is an operation on matrices (and vectors) that interchange rows with columns. $(\mathbf{A}^{\top})_{i,j} = \mathbf{A}_{j,i}$.
- $\bullet (\mathbf{A}\mathbf{B})^{\top} = \mathbf{B}^{\top}\mathbf{A}^{\top}.$
- **A** is called symmetric when $\mathbf{A} = \mathbf{A}^{\top}$.
- **A** is called orthogonal when $\mathbf{A}\mathbf{A}^{\top} = \mathbf{A}^{\top}\mathbf{A} = \mathbf{I}$ or $\mathbf{A}^{-1} = \mathbf{A}^{\top}$.

Dot Product

- Dot product is defined as $\langle \mathbf{v}, \mathbf{u} \rangle = \mathbf{v} \cdot \mathbf{u} = \mathbf{v}^{\top} \mathbf{u} = \sum_{i} u_{i} v_{i}$.
- The ℓ_2 norm can be written in terms of dot product: $\|\mathbf{u}\|_2 = \sqrt{\mathbf{u}.\mathbf{u}}$.
- Dot product of two vectors can be written in terms of their ℓ_2 norms and the angle θ between them:

$$\mathbf{a}^{\top}\mathbf{b} = \|\mathbf{a}\|_2 \|\mathbf{b}\|_2 \cos(\theta).$$

Cosine Similarity

• Cosine between two vectors is a measure of their similarity:

$$\cos(\theta) = \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\| \|\mathbf{b}\|}.$$

■ Orthogonal Vectors: Two vectors \mathbf{a} and \mathbf{b} are orthogonal to each other if $\mathbf{a} \cdot \mathbf{b} = 0$.

Vector Projection

- Given two vectors **a** and **b**, let $\hat{\mathbf{b}} = \frac{\mathbf{b}}{\|\mathbf{b}\|}$ be the unit vector in the direction of **b**.
- Then $\mathbf{a}_1 = a_1 \cdot \hat{\mathbf{b}}$ is the orthogonal projection of \mathbf{a} onto a straight line parallel to \mathbf{b} , where

$$a_1 = \|\mathbf{a}\|\cos(\theta) = \mathbf{a} \cdot \hat{\mathbf{b}} = \mathbf{a} \cdot \frac{\mathbf{b}}{\|\mathbf{b}\|}$$

Image taken from wikipedia.

Multiplication

 Matrix-vector multiplication is a linear transformation. In other words,

$$\mathbf{M}(v_1 + av_2) = \mathbf{M}v_1 + a\mathbf{M}v_2 \implies (\mathbf{M}v)_i = \sum_j M_{i,j}v_j.$$

Matrix-matrix multiplication is the composition of linear transformations, i.e.,

$$(\mathbf{A}\mathbf{B})v = \mathbf{A}(\mathbf{B}v) \implies (\mathbf{A}\mathbf{B})_{i,j} = \sum_{k} A_{i,k} B_{k,j}.$$

$$\mathbf{B}$$

$$\begin{bmatrix} b_{1,1} & b_{1,2} & b_{1,3} \\ b_{2,1} & b_{2,3} & b_{2,3} \end{bmatrix}$$

Norms

- Norms measure how "large" a vector is. They can be defined for matrices too.
- The ℓ_p -norm for a vector **x**:

$$\|\mathbf{x}\|_p = \left[\sum_i |x_i|^p\right]^{\frac{1}{p}}.$$

- ▶ The ℓ_2 -norm is known as the Euclidean norm.
- The ℓ_1 -norm is known as the Manhattan norm, i.e., $\|\mathbf{x}\|_1 = \sum_i |x_i|$.
- ► The ℓ_{∞} is the max (or supremum) norm, i.e., $\|\mathbf{x}\|_{\infty} = \max_{i} |x_{i}|$.

Matrix Norms: Basics

- A matrix norm ||A|| is a function assigning a nonnegative number to a matrix A.
- Properties (similar to vector norms):
 - 1. $||A|| \ge 0$ and $||A|| = 0 \iff A = 0$.
 - 2. $\|\alpha A\| = |\alpha| \cdot \|A\|$.
 - 3. $||A + B|| \le ||A|| + ||B||$.

Operator (Induced) Norms

• Given a vector norm $\|\cdot\|$, the **induced matrix norm** is

$$||A|| = \max_{x \neq 0} \frac{||Ax||}{||x||}.$$

- Intuition: measures how much A can stretch a vector.
- Properties:
 - 1. $||AB|| \le ||A|| ||B||$ (submultiplicative).
 - 2. $||Ax|| \le ||A|| \cdot ||x||$.

Examples of Matrix Norms

Spectral norm:

$$||A||_2 = \max_{||x||_2=1} ||Ax||_2.$$

■ Frobenius norm:

$$||A||_F = \sqrt{\sum_{i,j} |a_{ij}|^2}.$$

- ℓ_1 -norm:
 - Induced:

$$||A||_1 = \max_j \sum_i |a_{ij}|$$

Entrywise:

$$||A||_{1,\text{entry}} = \sum_{i,j} |a_{ij}|$$

- ℓ_{∞} -norm:
 - ► Induced:

$$||A||_{\infty} = \max_{i} \sum_{j} |a_{ij}|$$

► Entrywise:

$$||A||_{\infty,\text{entry}} = \max_{i,j} |a_{ij}|$$

Frobenius Norm and Trace

• Frobenius norm can also be written using the trace:

$$||A||_F = \sqrt{\sum_{i,j} |A_{i,j}|^2} = \sqrt{\text{Tr}(A^{\top}A)}$$

- Intuition: it's the Euclidean norm of the flattened matrix.
- Useful in optimization: appears naturally in least-squares and SVD approximations.

Invertibility

- I denotes the identity matrix which is a square matrix of zeros with ones along the diagonal. It has the property IA = A (BI = B) and Iv = v
- A square matrix **A** is invertible if \mathbf{A}^{-1} exists such that $\mathbf{A}^{-1}\mathbf{A} = \mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$.
- Not all non-zero matrices are invertible, e.g., the following matrix is not invertible:

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

Inverse of Special Matrices

■ Diagonal Matrix: $D = diag(d_1, ..., d_n)$

$$D^{-1} = \operatorname{diag}\left(\frac{1}{d_1}, \dots, \frac{1}{d_n}\right)$$

■ Block-Diagonal Matrix: $A = diag(A_1, A_2, ..., A_k)$

$$A^{-1} = \operatorname{diag}(A_1^{-1}, A_2^{-1}, \dots, A_k^{-1})$$

 \blacksquare Orthogonal Matrix: $Q^\top Q = I$

$$Q^{-1} = Q^{\top}$$

■ Lower-Triangular Matrix: L (invertible)

 L^{-1} can be computed efficiently via forward substitution.

Lemma A.2 (Golub & Van Loan, 2013)

Lemma: If $A \in \mathbb{R}^{d \times d}$ and $||A||_p < 1$, then I - A is non-singular, and

$$||(I-A)^{-1}||_p \le \frac{1}{1-||A||_p}.$$

and

$$(I - A)^{-1} = \sum_{k=0}^{\infty} A^k.$$

Incremental Matrix Inversion (Golub & Van Loan, 2013)

Sherman–Morrison–Woodbury formula: For $A \in \mathbb{R}^{d \times d}$ invertible, and $U, V \in \mathbb{R}^{d \times k}$,

$$(A + UV^{\top})^{-1} = A^{-1} - A^{-1}U(I + V^{\top}A^{-1}U)^{-1}V^{\top}A^{-1},$$

assuming A and $(I + V^{\top}A^{-1}U)$ are invertible.

- UV^{\top} is a rank-k update of A.
- Inverting the smaller $k \times k$ matrix $(I + V^{\top}A^{-1}U)$ is much cheaper than re-inverting the full $d \times d$ matrix.

Special case (Sherman–Morrison): For $u, v \in \mathbb{R}^d$,

$$(A + uv^{\top})^{-1} = A^{-1} - \frac{A^{-1}uv^{\top}A^{-1}}{1 + v^{\top}A^{-1}u},$$

provided $1 + v^{\top} A^{-1} u \neq 0$.

Determinant

■ Determinant of a square matrix is a mapping to scalars.

$$\det(\mathbf{A})$$
 or $|\mathbf{A}|$

- Measures how much multiplication by the matrix expands or contracts the space.
- Determinant of product is the product of determinants:

$$\det(\mathbf{AB}) = \det(\mathbf{A})\det(\mathbf{B})$$

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

List of Equivalencies

Assuming that \mathbf{A} is a square matrix, the following statements are equivalent

- $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a **unique** solution (for every b with correct dimension).
- **A** $\mathbf{x} = \mathbf{m}0$ has a unique, trivial solution: $\mathbf{x} = \mathbf{m}0$.
- Columns of **A** are linearly independent.
- **A** is invertible, i.e. A^{-1} exists.
- $\det(\mathbf{A}) \neq 0$

Zero Determinant

If $det(\mathbf{A}) = 0$, then:

- **A** is linearly dependent.
- $\mathbf{A}\mathbf{x} = \mathbf{b}$ has infinitely many solutions or no solution. These cases correspond to when b is in the span of columns of \mathbf{A} or out of it.
- **Ax** = **m**0 has a non-zero solution. (since every scalar multiple of one solution is a solution and there is a non-zero solution we get infinitely many solutions.)

Matrix Decomposition

- We can decompose an integer into its prime factors, e.g., $12 = 2 \times 2 \times 3$.
- Similarly, matrices can be decomposed into product of other matrices.

$$\mathbf{A} = \mathbf{V}\operatorname{diag}(\boldsymbol{\lambda})\mathbf{V}^{-1}$$

■ Examples are Eigendecomposition, SVD, Schur decomposition, LU decomposition,

Eigenvectors

■ An eigenvector of a square matrix \mathbf{A} is a nonzero vector \mathbf{v} such that multiplication by \mathbf{A} only changes the scale of \mathbf{v} .

$$\mathbf{A}\mathbf{v} = \lambda\mathbf{v}$$

- The scalar λ is known as the **eigenvalue**.
- If \mathbf{v} is an eigenvector of \mathbf{A} , so is any rescaled vector $s\mathbf{v}$. Moreover, $s\mathbf{v}$ still has the same eigenvalue. Thus, we constrain the eigenvector to be of unit length:

$$||\mathbf{v}||_2 = 1$$

Characteristic Polynomial(1)

■ Eigenvalue equation of matrix **A**.

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$$
$$\lambda \mathbf{v} - \mathbf{A}\mathbf{v} = \mathbf{m}0$$
$$(\lambda \mathbf{I} - \mathbf{A})\mathbf{v} = \mathbf{m}0$$

lacksquare If nonzero solution for f v exists, then it must be the case that:

$$\det(\lambda \mathbf{I} - \mathbf{A}) = 0$$

■ Unpacking the determinant as a function of λ , we get:

$$P_A(\lambda) = \det(\lambda \mathbf{I} - \mathbf{A}) = 1 \times \lambda^n + c_{n-1} \times \lambda^{n-1} + \dots + c_0$$

■ This is called the characteristic polynomial of A.

Characteristic Polynomial(2)

- If $\lambda_1, \lambda_2, \dots, \lambda_n$ are roots of the characteristic polynomial, they are eigenvalues of **A** and we have $P_A(\lambda) = \prod_{i=1}^n (\lambda \lambda_i)$.
- $c_{n-1} = -\sum_{i=1}^{n} \lambda_i = -tr(A)$. This means that the sum of eigenvalues equals to the trace of the matrix.
- $c_0 = (-1)^n \prod_{i=1}^n \lambda_i = (-1)^n det(\mathbf{A})$. The determinant is equal to the product of eigenvalues.
- Roots might be complex. If a root has multiplicity of $r_j > 1$ (This is called the algebraic dimension of eigenvalue), then the geometric dimension of eigenspace for that eigenvalue might be less than r_j (or equal but never more). But for every eigenvalue, one eigenvector is guaranteed.

Example

• Consider the matrix:

$$\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

■ The characteristic polynomial is:

$$\det(\lambda \mathbf{I} - \mathbf{A}) = \det\begin{bmatrix} \lambda - 2 & -1 \\ -1 & \lambda - 2 \end{bmatrix} = 3 - 4\lambda + \lambda^2 = 0$$

- It has roots $\lambda = 1$ and $\lambda = 3$ which are the two eigenvalues of **A**.
- We can then solve for eigenvectors using $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$:

$$\mathbf{v}_{\lambda=1} = \begin{bmatrix} 1, -1 \end{bmatrix}^{\top}$$
 and $\mathbf{v}_{\lambda=3} = \begin{bmatrix} 1, 1 \end{bmatrix}^{\top}$

Eigendecomposition

- Suppose that $n \times n$ matrix **A** has n linearly independent eigenvectors $\{\mathbf{v}^{(1)}, \dots, \mathbf{v}^{(n)}\}$ with eigenvalues $\{\lambda_1, \dots, \lambda_n\}$.
- Concatenate eigenvectors (as columns) to form matrix **V**.
- Concatenate eigenvalues to form vector $\mathbf{m}\lambda = [\lambda_1, \dots, \lambda_n]^{\top}$.
- The **eigendecomposition** of **A** is given by:

$$\mathbf{AV} = \mathbf{V}diag(\lambda) \implies \mathbf{A} = \mathbf{V}diag(\mathbf{m}\lambda)\mathbf{V}^{-1}$$

Symmetric Matrices

- Every symmetric (hermitian) matrix of dimension n has a set of (not necessarily unique) n orthogonal eigenvectors. Furthermore, all eigenvalues are real.
- Every real symmetric matrix **A** can be decomposed into real-valued eigenvectors and eigenvalues:

$$\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\top}$$

- **Q** is an orthogonal matrix of the eigenvectors of **A**, and Λ is a diagonal matrix of eigenvalues.
- We can think of **A** as scaling space by λ_i in direction $\mathbf{v}^{(i)}$.

Eigendecomposition is not Unique

- Decomposition is not unique when two eigenvalues are the same.
- By convention, order entries of Λ in descending order. Then, eigendecomposition is unique if all eigenvalues have multiplicity equal to one.
- If any eigenvalue is zero, then the matrix is **singular**. Because if \mathbf{v} is the corresponding eigenvector we have: $\mathbf{A}\mathbf{v} = 0\mathbf{v} = 0$.

Positive Definite Matrix

• If a symmetric matrix A has the property:

$$\mathbf{x}^{\top} \mathbf{A} \mathbf{x} > 0$$
 for any nonzero vector \mathbf{x}

Then A is called **positive definite**.

- If the above inequality is not strict then A is called **positive semidefinite**.
- For positive (semi)definite matrices all eigenvalues are positive(non negative).

Cholesky Decomposition (Positive Definite Matrices)

■ For a symmetric positive definite matrix $A \in \mathbb{R}^{n \times n}$, there exists a lower-triangular matrix L such that

$$A = LL^{\top}$$

- Useful properties:
 - Solving Ax = b reduces to forward/backward substitution.
 - ▶ Numerically stable, used in Gaussian processes, Kalman filters, and RL covariance updates.
 - ▶ Efficient way to test positive definiteness: attempt Cholesky decomposition.
- Example:

$$A = \begin{bmatrix} 4 & 2 \\ 2 & 3 \end{bmatrix}, \quad L = \begin{bmatrix} 2 & 0 \\ 1 & \sqrt{2} \end{bmatrix}, \quad A = LL^{\top}$$

Singular Value Decomposition (SVD)

- If **A** is not square, eigendecomposition is undefined.
- **SVD** is a decomposition of the form $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top}$.
- SVD is more general than eigendecomposition.
- Every real matrix has a SVD.

SVD Definition (1)

- Write **A** as a product of three matrices: $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top}$.
- If **A** is $m \times n$, then **U** is $m \times m$, **D** is $m \times n$, and **V** is $n \times n$.
- U and V are orthogonal matrices, and D is a diagonal matrix (not necessarily square).
- Diagonal entries of **D** are called **singular values** of **A**.
- Columns of U are the left singular vectors, and columns of V are the right singular vectors.

SVD Definition (2)

- SVD can be interpreted in terms of eigendecomposition.
- Left singular vectors of **A** are the eigenvectors of $\mathbf{A}\mathbf{A}^{\top}$.
- Right singular vectors of **A** are the eigenvectors of $\mathbf{A}^{\top}\mathbf{A}$.
- Nonzero singular values of \mathbf{A} are square roots of eigenvalues of $\mathbf{A}^{\top}\mathbf{A}$ and $\mathbf{A}\mathbf{A}^{\top}$.
- Numbers on the diagonal of D are sorted largest to smallest and are non-negative ($\mathbf{A}^{\top}\mathbf{A}$ and $\mathbf{A}\mathbf{A}^{\top}$ are semipositive definite.).

SVD Optimality

- Given a matrix \mathbf{A} , SVD allows us to find its "best" (to be defined) rank-r approximation \mathbf{A}_r .
- We can write $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top}$ as $\mathbf{A} = \sum_{i=1}^{n} d_{i}\mathbf{u}_{i}\mathbf{v}_{i}^{\top}$.
- For $r \leq n$, construct $\mathbf{A}_r = \sum_{i=1}^r d_i \mathbf{u}_i \mathbf{v}_i^{\top}$.
- The matrix \mathbf{A}_r is a rank-r approximation of A. Moreover, it is the best approximation of rank r by many norms:
 - When considering the operator (or spectral) norm, it is optimal. This means that $||A A_r||_2 \le ||A B||_2$ for any rank r matrix B.
 - When considering Frobenius norm, it is optimal. This means that $||A A_r||_F \le ||A B||_F$ for any rank r matrix B. One way to interpret this inequality is that rows (or columns) of A_r are the projection of rows (or columns) of A on the best r dimensional subspace, in the sense that this projection minimizes the sum of squared distances.

Norms and Singular Values

■ Definition (induced from ℓ_2 vector norm):

$$||A||_2 = \max_{||x||_2=1} ||Ax||_2.$$

■ Equivalent formulations:

$$||A||_2 = \sqrt{\lambda_{\max}(A^{\top}A)}.$$

■ In terms of singular values:

$$||A||_2 = \sigma_{\max}(A),$$

the largest singular value of A.

Norms and Singular Values

Let $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$ be the singular values of A.

Norm	Expression in terms of singular values
Spectral norm $(\ A\ _2)$	$ A _2 = \sigma_1$
Frobenius norm $(A _F)$	$ A _F = \sqrt{\sum_{i=1}^r \sigma_i^2}$
Nuclear norm $(\ A\ _*)$	$ A _* = \sum_{i=1}^r \sigma_i$
Schatten- p norm $(A _p)$	$ A _p = \left(\sum_{i=1}^r \sigma_i^p\right)^{1/p}$

- Special cases: p = 1 (nuclear norm), p = 2 (Frobenius norm), $p = \infty$ (spectral norm).
- Entrywise norms ($||A||_1$, $||A||_\infty$) are not singular-value based.

Matrix Calculus: Basics

- We often need derivatives of scalar, vector, or matrix functions with respect to vectors/matrices.
- Notation:
 - ▶ $\frac{\partial f}{\partial \mathbf{x}}$: gradient of scalar f w.r.t vector \mathbf{x} (column vector). ▶ $\frac{\partial f}{\partial \mathbf{x}}$: Jacobian of vector $\mathbf{f}(\mathbf{x})$ w.r.t vector \mathbf{x} . ▶ $\frac{\partial F}{\partial \mathbf{x}}$: matrix of derivatives of scalar or matrix function F

 - w.r.t matrix \mathbf{X} .
- Example:

$$f(\mathbf{x}) = \mathbf{a}^{\mathsf{T}} \mathbf{x} \implies \frac{\partial f}{\partial \mathbf{x}} = \mathbf{a}$$

Common Vector Derivatives

• Scalar
$$f = \mathbf{a}^{\top} \mathbf{x}$$
: $\frac{\partial f}{\partial \mathbf{x}} = \mathbf{a}$

Scalar
$$f = \mathbf{x}^{\top} \mathbf{A} \mathbf{x}$$
: $\frac{\partial f}{\partial \mathbf{x}} = (\mathbf{A} + \mathbf{A}^{\top}) \mathbf{x}$

• Scalar
$$f = \|\mathbf{x}\|_2^2$$
: $\frac{\partial f}{\partial \mathbf{x}} = 2\mathbf{x}$

• Scalar
$$f = \text{Tr}(\mathbf{AX})$$
: $\frac{\partial f}{\partial \mathbf{X}} = \mathbf{A}^{\top}$

• Scalar
$$f = \text{Tr}(\mathbf{X}^{\top} \mathbf{A} \mathbf{X})$$
: $\frac{\partial f}{\partial \mathbf{X}} = (\mathbf{A} + \mathbf{A}^{\top}) \mathbf{X}$

Useful Matrix Calculus Identities

Matrix Calculus in RL: Example

Problem: Least-Squares TD error

$$L(\mathbf{w}) = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|_2^2$$

where $\mathbf{X} \in \mathbb{R}^{n \times d}$ is a feature matrix, $\mathbf{w} \in \mathbb{R}^d$ are weights, and $\mathbf{y} \in \mathbb{R}^n$ are target values.

Gradient computation:

$$\frac{\partial L}{\partial \mathbf{w}} = 2\mathbf{X}^{\top}(\mathbf{X}\mathbf{w} - \mathbf{y})$$

Explanation:

- $f(\mathbf{w}) = \mathbf{X}\mathbf{w} \mathbf{y}$, then $L = f^{\top}f$.
- Use rule $\frac{\partial}{\partial x} ||Ax b||_2^2 = 2A^\top (Ax b)$
- Gradient points in direction of steepest increase; update rule: $\mathbf{w} \leftarrow \mathbf{w} \eta \frac{\partial L}{\partial \mathbf{w}}$

Takeaway: Matrix calculus simplifies computing gradients for loss functions common in RL and ML.

Computational LA Tricks: Making Matrices Invertible

- Sometimes matrices are nearly singular, causing numerical issues.
- Trick: Add a small diagonal (Tikhonov regularization / ridge):

$$A_{\text{reg}} = A + \epsilon I$$

where $\epsilon > 0$ small.

- Ensures A_{reg} is invertible and better conditioned.
- Widely used in ridge regression, $TD(\lambda)$, policy evaluation.

Computational LA Tricks: Solving Ax = b with Cholesky Decomposition

- Applicable when A is symmetric positive definite.
- Compute the **Cholesky decomposition**:

$$A = LL^{\top},$$

where L is lower triangular.

- Solve in two steps:
 - 1. Forward substitution: solve Ly = b for y.
 - 2. Backward substitution: solve $L^{\top}x = y$ for x.
- Efficient and numerically stable; avoids explicit matrix inversion.
- Useful in RL for least-squares problems:

$$w = (X^{\top}X)^{-1}X^{\top}y \quad \Rightarrow \quad w \text{ via Cholesky of } X^{\top}X$$

Computational LA Tricks: Incremental / Online Updates

■ When a new sample (x_t, y_t) arrives:

$$A_t = A_{t-1} + x_t x_t^{\top}, \quad b_t = b_{t-1} + x_t y_t$$

- Use Sherman-Morrison or rank-1 updates to update $A^{-1}b$ efficiently.
- Essential for online RL algorithms.

Computational LA Tricks: Eigen Decomposition Tricks

- For SPD or diagonalizable A, $A = V\Lambda V^{-1}$.
- Compute matrix powers or exponentials efficiently:

$$A^k = V\Lambda^k V^{-1}, \quad \exp(A) = V \exp(\Lambda) V^{-1}$$

 Useful in RL for propagating value functions or transition operators.

Computational LA Tricks: Preconditioning

 Idea: Improve convergence of iterative solvers by reducing the condition number of the matrix.

$$\kappa(A) = ||A|| \cdot ||A^{-1}||$$

■ Preconditioner M: Choose $M \approx A^{-1}$ to solve

$$MAx = Mb$$

instead of Ax = b. This reduces $\kappa(MA) \ll \kappa(A)$, leading to faster convergence.

- Intuition: Preconditioning "reshapes" the problem so all directions are stretched more evenly.
- Example in RL: Policy evaluation using Least-Squares Temporal Difference (LSTD):

$$w = (X^{\top}X)^{-1}X^{\top}y$$

- If $X^{\top}X$ is ill-conditioned, solve instead:

$$(MX^{\top}X)w = MX^{\top}y$$

using a diagonal preconditioner $M = \operatorname{diag}(1/\operatorname{diag}(X^{\top}X))$

■ This improves numerical stability and speeds up iterative solvers.