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Basics

A scalar is a number.

A vector is a 1-D array of numbers. The set of vectors of length n

with real elements is denoted by Rn.

▶ Vectos can be multiplied by a scalar.
▶ Vector can be added together if dimensions match.

A matrix is a 2-D array of numbers. The set of m× n matrices with

real elements is denoted by Rm×n.

▶ Matrices can be added together or multiplied by a scalar.
▶ We can multiply Matrices to a vector if dimensions match.

In the rest of this tutorial we denote scalars with lowercase letters like
a, vectors with bold lowercase v, and matrices with bold uppercase A.
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Diagonal Matrix

A diagonal matrix has all entries equal to zero except the
diagonal entries which might or might not be zero, e.g.
identity matrix.

A square diagonal matrix with diagonal enteries given by
entries of vector v is denoted by diag(v).

Multiplying vector x by a diagonal matrix is efficient:

diag(v)x = v ⊙ x,

where ⊙ is the entrywise product.

Inverting a square diagonal matrix is efficient

diag(v)−1 = diag
(
[
1

v1
, . . . ,

1

vn
]⊤
)
.
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Trace

Trace is the sum of all the diagonal elements of a matrix,
i.e.,

Tr(A) =
∑
i

Ai,i.

Cyclic property:

Tr(ABC) = Tr(CAB) = Tr(BCA).
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Transposition

Transposition is an operation on matrices (and vectors)
that interchange rows with columns. (A⊤)i,j = Aj,i.

(AB)⊤ = B⊤A⊤.

A is called symmetric when A = A⊤.

A is called orthogonal when AA⊤ = A⊤A = I or
A−1 = A⊤.
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Dot Product

Dot product is defined as ⟨v,u⟩ = v · u = v⊤u =
∑

i uivi.

The ℓ2 norm can be written in terms of dot product:
∥u∥2 =

√
u.u.

Dot product of two vectors can be written in terms of their
ℓ2 norms and the angle θ between them:

a⊤b = ∥a∥2 ∥b∥2 cos(θ).
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Cosine Similarity

Cosine between two vectors is a measure of their similarity:

cos(θ) =
a · b
∥a∥ ∥b∥

.

Orthogonal Vectors: Two vectors a and b are
orthogonal to each other if a · b = 0.
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Vector Projection

Given two vectors a and b, let b̂ = b
∥b∥ be the unit vector

in the direction of b.

Then a1 = a1 · b̂ is the orthogonal projection of a onto a
straight line parallel to b, where

a1 = ∥a∥ cos(θ) = a · b̂ = a · b

∥b∥

Image taken from wikipedia.

https://en.wikipedia.org/wiki/Vector_projection
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Multiplication

Matrix-vector multiplication is a linear transformation. In
other words,

M(v1 + av2) = Mv1 + aMv2 =⇒ (Mv)i =
∑
j

Mi,jvj .

Matrix-matrix multiplication is the composition of linear
transformations, i.e.,
(AB)v = A(Bv) =⇒ (AB)i,j =

∑
k Ai,kBk,j .

Image taken from wikipedia.

https://en.wikipedia.org/wiki/Vector_projection
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Norms

Norms measure how “large” a vector is. They can be
defined for matrices too.

The ℓp-norm for a vector x:

∥x∥p =

[∑
i

|xi|p
] 1

p

.

▶ The ℓ2-norm is known as the Euclidean norm.
▶ The ℓ1-norm is known as the Manhattan norm, i.e.,
∥x∥1 =

∑
i |xi|.

▶ The ℓ∞ is the max (or supremum) norm, i.e.,
∥x∥∞ = maxi |xi|.
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Matrix Norms: Basics

A matrix norm ∥A∥ is a function assigning a nonnegative
number to a matrix A.

Properties (similar to vector norms):

1. ∥A∥ ≥ 0 and ∥A∥ = 0 ⇐⇒ A = 0.
2. ∥αA∥ = |α| · ∥A∥.
3. ∥A+B∥ ≤ ∥A∥+ ∥B∥.
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Operator (Induced) Norms

Given a vector norm ∥ · ∥, the induced matrix norm is

∥A∥ = max
x ̸=0

∥Ax∥
∥x∥

.

Intuition: measures how much A can stretch a vector.

Properties:

1. ∥AB∥ ≤ ∥A∥∥B∥ (submultiplicative).
2. ∥Ax∥ ≤ ∥A∥ · ∥x∥.
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Examples of Matrix Norms

Spectral norm:
∥A∥2 = max

∥x∥2=1
∥Ax∥2.

Frobenius norm:

∥A∥F =

√∑
i,j

|aij |2.

ℓ1-norm:
▶ Induced:

∥A∥1 = max
j

∑
i

|aij |

▶ Entrywise:

∥A∥1,entry =
∑
i,j

|aij |

ℓ∞-norm:
▶ Induced:

∥A∥∞ = max
i

∑
j

|aij |

▶ Entrywise:
∥A∥∞,entry = max

i,j
|aij |
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Frobenius Norm and Trace

Frobenius norm can also be written using the trace:

∥A∥F =

√∑
i,j

|Ai,j |2 =
√
Tr(A⊤A)

Intuition: it’s the Euclidean norm of the flattened matrix.

Useful in optimization: appears naturally in least-squares
and SVD approximations.
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Invertibility

I denotes the identity matrix which is a square matrix of
zeros with ones along the diagonal. It has the property
IA = A (BI = B) and Iv = v

A square matrix A is invertible if A−1 exists such that
A−1A = AA−1 = I.

Not all non-zero matrices are invertible, e.g., the following
matrix is not invertible: [

1 1
1 1

]
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Inverse of Special Matrices

Diagonal Matrix: D = diag(d1, . . . , dn)

D−1 = diag
( 1

d1
, . . . ,

1

dn

)
Block-Diagonal Matrix: A = diag(A1, A2, . . . , Ak)

A−1 = diag(A−1
1 , A−1

2 , . . . , A−1
k )

Orthogonal Matrix: Q⊤Q = I

Q−1 = Q⊤

Lower-Triangular Matrix: L (invertible)

L−1 can be computed efficiently via forward substitution.
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Lemma A.2 (Golub & Van Loan, 2013)

Lemma: If A ∈ Rd×d and ∥A∥p < 1, then I −A is
non-singular, and

∥(I −A)−1∥p ≤
1

1− ∥A∥p
.

and

(I −A)−1 =

∞∑
k=0

Ak.
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Incremental Matrix Inversion (Golub & Van Loan, 2013)

Sherman–Morrison–Woodbury formula: For A ∈ Rd×d

invertible, and U, V ∈ Rd×k,

(A+ UV ⊤)−1 = A−1 −A−1U
(
I + V ⊤A−1U

)−1
V ⊤A−1,

assuming A and (I + V ⊤A−1U) are invertible.

UV ⊤ is a rank-k update of A.

Inverting the smaller k × k matrix
(
I + V ⊤A−1U

)
is much

cheaper than re-inverting the full d× d matrix.

Special case (Sherman–Morrison): For u, v ∈ Rd,

(A+ uv⊤)−1 = A−1 − A−1uv⊤A−1

1 + v⊤A−1u
,

provided 1 + v⊤A−1u ̸= 0.
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Determinant

Determinant of a square matrix is a mapping to scalars.

det(A) or |A|

Measures how much multiplication by the matrix expands
or contracts the space.

Determinant of product is the product of determinants:

det(AB) = det(A)det(B)

∣∣∣∣a b
c d

∣∣∣∣ = ad− bc
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List of Equivalencies

Assuming that A is a square matrix, the following statements
are equivalent

Ax = b has a unique solution (for every b with correct
dimension).

Ax = m0 has a unique, trivial solution: x = m0.

Columns of A are linearly independent.

A is invertible, i.e. A−1 exists.

det(A) ̸= 0
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Zero Determinant

If det(A) = 0, then:

A is linearly dependent.

Ax = b has infinitely many solutions or no solution. These
cases correspond to when b is in the span of columns of A
or out of it.

Ax = m0 has a non-zero solution. (since every scalar
multiple of one solution is a solution and there is a
non-zero solution we get infinitely many solutions.)
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Matrix Decomposition

We can decompose an integer into its prime factors, e.g.,
12 = 2× 2× 3.

Similarly, matrices can be decomposed into product of
other matrices.

A = Vdiag(λ)V−1

Examples are Eigendecomposition, SVD, Schur
decomposition, LU decomposition, . . . .
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Eigenvectors

An eigenvector of a square matrix A is a nonzero vector v
such that multiplication by A only changes the scale of v.

Av = λv

The scalar λ is known as the eigenvalue.

If v is an eigenvector of A, so is any rescaled vector sv.
Moreover, sv still has the same eigenvalue. Thus, we
constrain the eigenvector to be of unit length:

||v||2 = 1
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Characteristic Polynomial(1)

Eigenvalue equation of matrix A.

Av = λv

λv −Av = m0

(λI−A)v = m0

If nonzero solution for v exists, then it must be the case
that:

det(λI−A) = 0

Unpacking the determinant as a function of λ, we get:

PA(λ) = det(λI−A) = 1× λn + cn−1 × λn−1 + . . .+ c0

This is called the characterisitc polynomial of A.
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Characteristic Polynomial(2)

If λ1, λ2, . . . , λn are roots of the characteristic polynomial,
they are eigenvalues of A and we have
PA(λ) =

∏n
i=1(λ− λi).

cn−1 = −
∑n

i=1 λi = −tr(A). This means that the sum of
eigenvalues equals to the trace of the matrix.

c0 = (−1)n
∏n

i=1 λi = (−1)ndet(A). The determinant is
equal to the product of eigenvalues.

Roots might be complex. If a root has multiplicity of rj > 1
(This is called the algebraic dimension of eigenvalue), then
the geometric dimension of eigenspace for that eigenvalue
might be less than rj (or equal but never more). But for
every eigenvalue, one eigenvector is guaranteed.
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Example

Consider the matrix:

A =

[
2 1
1 2

]
The characteristic polynomial is:

det(λI−A) = det

[
λ− 2 −1
−1 λ− 2

]
= 3− 4λ+ λ2 = 0

It has roots λ = 1 and λ = 3 which are the two eigenvalues
of A.

We can then solve for eigenvectors using Av = λv:

vλ=1 = [1,−1]⊤ and vλ=3 = [1, 1]⊤
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Eigendecomposition

Suppose that n× n matrix A has n linearly independent
eigenvectors {v(1), . . . ,v(n)} with eigenvalues {λ1, . . . , λn}.

Concatenate eigenvectors (as columns) to form matrix V.

Concatenate eigenvalues to form vector mλ = [λ1, . . . , λn]
⊤.

The eigendecomposition of A is given by:

AV = Vdiag(λ) =⇒ A = Vdiag(mλ)V−1
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Symmetric Matrices

Every symmetric (hermitian) matrix of dimension n has a
set of (not necessarily unique) n orthogonal eigenvectors.
Furthermore, all eigenvalues are real.

Every real symmetric matrix A can be decomposed into
real-valued eigenvectors and eigenvalues:

A = QΛQ⊤

Q is an orthogonal matrix of the eigenvectors of A, and Λ
is a diagonal matrix of eigenvalues.

We can think of A as scaling space by λi in direction v(i).
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Eigendecomposition is not Unique

Decomposition is not unique when two eigenvalues are the
same.

By convention, order entries of Λ in descending order.
Then, eigendecomposition is unique if all eigenvalues have
multiplicity equal to one.

If any eigenvalue is zero, then the matrix is singular.
Because if v is the corresponding eigenvector we have:
Av = 0v = 0.
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Positive Definite Matrix

If a symmetric matrix A has the property:

x⊤Ax > 0 for any nonzero vector x

Then A is called positive definite.

If the above inequality is not strict then A is called
positive semidefinite.

For positive (semi)definite matrices all eigenvalues are
positive(non negative).
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Cholesky Decomposition (Positive Definite Matrices)

For a symmetric positive definite matrix A ∈ Rn×n, there
exists a lower-triangular matrix L such that

A = LL⊤

Useful properties:
▶ Solving Ax = b reduces to forward/backward substitution.
▶ Numerically stable, used in Gaussian processes, Kalman

filters, and RL covariance updates.
▶ Efficient way to test positive definiteness: attempt Cholesky

decomposition.

Example:

A =

[
4 2
2 3

]
, L =

[
2 0

1
√
2

]
, A = LL⊤
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Singular Value Decomposition (SVD)

If A is not square, eigendecomposition is undefined.

SVD is a decomposition of the form A = UDV⊤.

SVD is more general than eigendecomposition.

Every real matrix has a SVD.
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SVD Definition (1)

Write A as a product of three matrices: A = UDV⊤.

If A is m×n, then U is m×m, D is m×n, and V is n×n.

U and V are orthogonal matrices, and D is a diagonal
matrix (not necessarily square).

Diagonal entries of D are called singular values of A.

Columns of U are the left singular vectors, and columns
of V are the right singular vectors.
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SVD Definition (2)

SVD can be interpreted in terms of eigendecompostion.

Left singular vectors of A are the eigenvectors of AA⊤.

Right singular vectors of A are the eigenvectors of A⊤A.

Nonzero singular values of A are square roots of
eigenvalues of A⊤A and AA⊤.

Numbers on the diagonal of D are sorted largest to
smallest and are non-negative (A⊤A and AA⊤ are
semipositive definite.).
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SVD Optimality

Given a matrix A, SVD allows us to find its “best” (to be
defined) rank-r approximation Ar.

We can write A = UDV⊤ as A =
∑n

i=1 diuiv
⊤
i .

For r ≤ n, construct Ar =
∑r

i=1 diuiv
⊤
i .

The matrix Ar is a rank-r approximation of A. Moreover,
it is the best approximation of rank r by many norms:

▶ When considering the operator (or spectral) norm, it is
optimal. This means that ∥A−Ar∥2 ≤ ∥A−B∥2 for any
rank r matrix B.

▶ When considering Frobenius norm, it is optimal. This
means that ∥A−Ar∥F ≤ ∥A−B∥F for any rank r matrix
B. One way to interpret this inequality is that rows (or
columns) of Ar are the projection of rows (or columns) of A
on the best r dimensional subspace, in the sense that this
projection minimizes the sum of squared distances.
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Norms and Singular Values

Definition (induced from ℓ2 vector norm):

∥A∥2 = max
∥x∥2=1

∥Ax∥2.

Equivalent formulations:

∥A∥2 =
√
λmax(A⊤A).

In terms of singular values:

∥A∥2 = σmax(A),

the largest singular value of A.
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Norms and Singular Values

Let σ1 ≥ σ2 ≥ · · · ≥ σr > 0 be the singular values of A.

Norm Expression in terms of singular values
Spectral norm (∥A∥2) ∥A∥2 = σ1

Frobenius norm (∥A∥F ) ∥A∥F =
√∑r

i=1 σ
2
i

Nuclear norm (∥A∥∗) ∥A∥∗ =
∑r

i=1 σi

Schatten-p norm (∥A∥p) ∥A∥p =
(∑r

i=1 σ
p
i

)1/p

Special cases: p = 1 (nuclear norm), p = 2 (Frobenius norm),
p =∞ (spectral norm).

Entrywise norms (∥A∥1, ∥A∥∞) are not singular-value based.
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Matrix Calculus: Basics

We often need derivatives of scalar, vector, or matrix
functions with respect to vectors/matrices.

Notation:
▶ ∂f

∂x : gradient of scalar f w.r.t vector x (column vector).
▶ ∂f

∂x : Jacobian of vector f(x) w.r.t vector x.
▶ ∂F

∂X : matrix of derivatives of scalar or matrix function F
w.r.t matrix X.

Example:

f(x) = a⊤x =⇒ ∂f

∂x
= a
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Common Vector Derivatives

Scalar f = a⊤x: ∂f
∂x = a

Scalar f = x⊤Ax: ∂f
∂x = (A+A⊤)x

Scalar f = ∥x∥22:
∂f
∂x = 2x

Scalar f = Tr(AX): ∂f
∂X = A⊤

Scalar f = Tr(X⊤AX): ∂f
∂X = (A+A⊤)X
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Useful Matrix Calculus Identities

∂
∂X Tr(X) = I
∂
∂X log detX = (X−1)⊤

∂
∂X Tr(AXBX⊤) = A⊤XB⊤ +AXB
∂
∂X ∥X∥

2
F = 2X

∂
∂xx

⊤Ax = (A+A⊤)x
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Matrix Calculus in RL: Example

Problem: Least-Squares TD error

L(w) = ∥Xw − y∥22
where X ∈ Rn×d is a feature matrix, w ∈ Rd are weights, and y ∈ Rn

are target values.

Gradient computation:

∂L

∂w
= 2X⊤(Xw − y)

Explanation:

f(w) = Xw − y, then L = f⊤f .

Use rule ∂
∂x∥Ax− b∥22 = 2A⊤(Ax− b)

Gradient points in direction of steepest increase; update rule:
w← w − η ∂L

∂w

Takeaway: Matrix calculus simplifies computing gradients for loss
functions common in RL and ML.
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Computational LA Tricks: Making Matrices Invertible

Sometimes matrices are nearly singular, causing numerical
issues.

Trick: Add a small diagonal (Tikhonov
regularization / ridge):

Areg = A+ ϵI

where ϵ > 0 small.

Ensures Areg is invertible and better conditioned.

Widely used in ridge regression, TD(λ), policy
evaluation.
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Computational LA Tricks: Solving Ax = b with
Cholesky Decomposition

Applicable when A is symmetric positive definite.

Compute the Cholesky decomposition:

A = LL⊤,

where L is lower triangular.

Solve in two steps:

1. Forward substitution: solve Ly = b for y.
2. Backward substitution: solve L⊤x = y for x.

Efficient and numerically stable; avoids explicit matrix inversion.

Useful in RL for least-squares problems:

w = (X⊤X)−1X⊤y ⇒ w via Cholesky of X⊤X
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Computational LA Tricks: Incremental / Online
Updates

When a new sample (xt, yt) arrives:

At = At−1 + xtx
⊤
t , bt = bt−1 + xtyt

Use Sherman-Morrison or rank-1 updates to update A−1b
efficiently.

Essential for online RL algorithms.
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Computational LA Tricks: Eigen Decomposition Tricks

For SPD or diagonalizable A, A = V ΛV −1.

Compute matrix powers or exponentials efficiently:

Ak = V ΛkV −1, exp(A) = V exp(Λ)V −1

Useful in RL for propagating value functions or transition
operators.
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Computational LA Tricks: Preconditioning

Idea: Improve convergence of iterative solvers by reducing the condition
number of the matrix.

κ(A) = ∥A∥ · ∥A−1∥

Preconditioner M : Choose M ≈ A−1 to solve

MAx = Mb

instead of Ax = b. This reduces κ(MA) ≪ κ(A), leading to faster
convergence.

Intuition: Preconditioning ”reshapes” the problem so all directions are
stretched more evenly.

Example in RL: Policy evaluation using Least-Squares Temporal Difference
(LSTD):

w = (X⊤X)−1X⊤y

- If X⊤X is ill-conditioned, solve instead:

(MX⊤X)w = MX⊤y

using a diagonal preconditioner M = diag(1/diag(X⊤X))

This improves numerical stability and speeds up iterative solvers.


