INF8250AE — Tut 3 — Optimization for Machine Learning

Optimization for Machine Learning

Reinforcement Learning (INF8250AE)
Fall 2025

Polytechnique Montréal

INF8250AE — Tut 3 — Optimization for Machine Learning

Mathematical Formulation of Optimization

Optimization Problem:

0" = arg min f(9)

or equivalently (for maximization):
0" = 0
arg max f(6)

m f:R™ — R is the objective (loss or reward) function.
m 0 € R™ are the parameters to be optimized.
m Goal: find 6" that minimizes (or maximizes) f(6).

m Gradient descent/ascent and its variants are iterative methods to
solve this.

INF8250AE — Tut 3 — Optimization for Machine Learning

Statistical Learning Formulation in RL

Setup:
m Parameters: 6 € R™ (policy parameters or value function parameters).
m State: s € S, Action: a € A.

Policy: mg(a | s), the probability of taking action a in state s.

Reward function: r(s,a) and/or return R =3, v'r¢.

Objective: Maximize expected return
J(0) = Ernry [R(7)]
where 7 denotes a trajectory (so,ao, o, S1,...).

Policy Gradient: Gradient ascent on expected return

VoJ(0) = Ermr, [Z Vologm(ar | st) Ry
t

m Analogous to maximum likelihood: we adjust 6 to increase probability
of ”good” trajectories.

INF8250AE — Tut 3 — Optimization for Machine Learning

First-Order Optimality Condition

At an optimum:
af(6")
00

m This means that the slope of the function vanishes at 6.

=0

m [t is a necessary condition for local minima, maxima, or saddle points.

Gradient:

af of of
Vof(0) = (891 96>’ ’%)

m The gradient is a vector of all partial derivatives.
m It points in the direction of steepest increase of f(0).

m Gradient descent moves in the opposite direction to reach a local
minimum.

INF8250AE — Tut 3 — Optimization for Machine Learning

Gradient Descent Algorithm

Goal: Find parameters 6 that minimize f(8).
Algorithm (for i =1,2,...):

1. Initialize parameters #°) (random or heuristic).

2. Compute gradient: ‘

9i = Vo (6©)
3. Update rule:
0i < —1mgi
plith . p® 46

4. Repeat until convergence (or stopping criterion).

Notes:
m 7 = learning rate (step size).
m Too large n — divergence; too small n — slow progress.

m Stopping criteria: small gradient, max iterations, or loss tolerance.

INF8250AE — Tut 3 — Optimization for Machine Learning

Why Gradient Descent Works (via Taylor expansion)

First/Second-Order Taylor at z:
fla+A) = f@)+Vf@)'A + JATVf(A
Descent step: choose A = —V f(z).
Fla=nVi@) ~ fz)-nlVi@)|*+ % Vi) VFE) V()
Smoothness bound (Descent Lemma): if Vf is L-Lipschitz,
fle+A) < f@)+ Vi) A+ EA)%
Plugging A = —V f(z):
fla—nVi@) < f@)—n(-5) Vi@
Conclusion: For 0 < n < 2, we have
F@ria) <) — | VE@)P (c=n(1l- %) >0),

so each step decreases f unless V f(zx) = 0.
Gradient ascent: apply the same argument to —f to get an increase
guarantee.

INF8250AE — Tut 3 — Optimization for Machine Learning

Momentum Method (Polyak, Heavy-ball)

Introduce a velocity term &;:

0; = —nVeL(0i—1) + ad;—1
0; =0;—1+0;

m a € [0,1) is the momentum coefficient.
m Reuses part of the previous update.

m Accelerates learning in consistent directions.

INF8250AE — Tut 3 — Optimization for Machine Learning

Intuition

m Imagine rolling a ball down a hill.
m Gradient descent: step-by-step, always reacts to slope.

m Momentum: keeps velocity, smooths oscillations.

Key Benefit

Momentum speeds up convergence and stabilizes training.

INF8250AE — Tut 3 — Optimization for Machine Learning

Variants

Nesterov Accelerated Gradient (NAG):
0; = —nVoL(0i—1 + adi—1) + ad;i—1
0; =0;_1+9;

m Looks ahead before computing gradient.

m More accurate update direction.

INF8250AE — Tut 3 — Optimization for Machine Learning

Pros and Cons of Optimization Methods

Vanilla GD

m Pros:

» Simple
> Intuitive

m Cons:

> Slow

» Oscillates in
narrow
valleys

Momentum
m Pros:

» Faster
convergence

» Smooth
updates

» Exploits
consistent
gradients

m Cons:

» Sensitive to
«

» Can
overshoot
minima

NAG
m Pros:

» Looks ahead
» More stable
» Often better
minima
m Cons:

» Slightly
more
complex

» Extra
gradient
computation

INF8250AE — Tut 3 — Optimization for Machine Learning

Trajectory of Different Optimizers

Concept: Different optimization algorithms follow different paths when
minimizing a loss function.

m Gradient Descent (GD): May oscillate, especially in elongated
valleys.

m Momentum: Smooths oscillations, faster convergence along
consistent directions.

m Nesterov: Looks ahead, can overshoot if learning rate or momentum
is large.

Elliptical Loss Rotated Elliptical Loss

INF8250AE — Tut 3 — Optimization for Machine Learning

Regularization

Concept: Regularization helps prevent overfitting by penalizing overly
complex models. Regularized Optimization Problem:

6" = argmin [,c(o) + AR(@)}

m Without regularization: model fits noise — poor generalization

m With regularization: smoother model — better generalization

\ w1 .

Y AT [] , Wy is small
9 1000 l\‘ A wy
= N

@

wo -10 10

Y [4]
HW) = wyx + wyx? "

INF8250AE — Tut 3 — Optimization for Machine Learning

Gradient Descent Variants

1. Batch Gradient Descent

m Computes gradient using all training samples:
1 X
0+—0—n— VoLi(6
N ; 0L:i(0)
m Pros: stable, accurate gradient
m Cons: slow for large datasets
2. Stochastic Gradient Descent (SGD)
m Computes gradient using one random sample at a time:
0+ 0—nVaeLli(0)
m Pros: fast, can escape shallow local minima

m Cons: noisy updates, may oscillate

3. Mini-batch Gradient Descent: compromise between batch and
stochastic — uses small subsets of data.

INF8250AE — Tut 3 — Optimization for Machine Learning

Important Function Derivatives in RL/ML

Sigmoid: Softmax:
1 - evi
= Softma: i =8 = —
o(x) Tre= max(); = s Zg:l oo
do(x) _d 1 s; .
dr drl+e* ox; si($i);
do(z) e~ ¥ 0Os; oy
= = —8iS;, &
dz (1+e—=)2 Oz e J

90@) _)1 — o) 05 _ {Si(lsi), i=j

dz)
Tj

Function of
Linear Operation:

h=f(WZ+b),
F=Wi+b
d
z; = ZWijx]‘ + b;

Jj=1

