
INF8250AE – Tut 3 – Optimization for Machine Learning

Optimization for Machine Learning

Reinforcement Learning (INF8250AE)
Fall 2025

Polytechnique Montréal



INF8250AE – Tut 3 – Optimization for Machine Learning

Mathematical Formulation of Optimization

Optimization Problem:

θ∗ = arg min
θ∈Rm

f(θ)

or equivalently (for maximization):

θ∗ = arg max
θ∈Rm

f(θ)

f : Rm → R is the objective (loss or reward) function.

θ ∈ Rm are the parameters to be optimized.

Goal: find θ∗ that minimizes (or maximizes) f(θ).

Gradient descent/ascent and its variants are iterative methods to
solve this.



INF8250AE – Tut 3 – Optimization for Machine Learning

Statistical Learning Formulation in RL

Setup:

Parameters: θ ∈ Rm (policy parameters or value function parameters).

State: s ∈ S, Action: a ∈ A.
Policy: πθ(a | s), the probability of taking action a in state s.

Reward function: r(s, a) and/or return R =
∑

t γ
trt.

Objective: Maximize expected return

J(θ) = Eτ∼πθ

[
R(τ)

]
where τ denotes a trajectory (s0, a0, r0, s1, . . . ).

Policy Gradient: Gradient ascent on expected return

∇θJ(θ) = Eτ∼πθ

[∑
t

∇θ log πθ(at | st)Rt

]
Analogous to maximum likelihood: we adjust θ to increase probability
of ”good” trajectories.



INF8250AE – Tut 3 – Optimization for Machine Learning

First-Order Optimality Condition

At an optimum:
∂f(θ∗)

∂θ
= 0

This means that the slope of the function vanishes at θ∗.

It is a necessary condition for local minima, maxima, or saddle points.

Gradient:

∇θf(θ) =

(
∂f

∂θ1
,
∂f

∂θ2
, . . . ,

∂f

∂θm

)
The gradient is a vector of all partial derivatives.

It points in the direction of steepest increase of f(θ).

Gradient descent moves in the opposite direction to reach a local
minimum.



INF8250AE – Tut 3 – Optimization for Machine Learning

Gradient Descent Algorithm

Goal: Find parameters θ that minimize f(θ).

Algorithm (for i = 1, 2, . . . ):

1. Initialize parameters θ(0) (random or heuristic).

2. Compute gradient:
gi = ∇θf(θ

(i))

3. Update rule:
δi ← −η gi

θ(i+1) ← θ(i) + δi

4. Repeat until convergence (or stopping criterion).

Notes:

η = learning rate (step size).

Too large η → divergence; too small η → slow progress.

Stopping criteria: small gradient, max iterations, or loss tolerance.



INF8250AE – Tut 3 – Optimization for Machine Learning

Why Gradient Descent Works (via Taylor expansion)

First/Second-Order Taylor at x:

f(x+∆) ≈ f(x) +∇f(x)⊤∆ + 1
2
∆⊤∇2f(ξ)∆

Descent step: choose ∆ = −η∇f(x).

f(x− η∇f(x)) ≈ f(x)− η∥∇f(x)∥2 + η2

2
∇f(x)⊤∇2f(ξ)∇f(x)

Smoothness bound (Descent Lemma): if ∇f is L-Lipschitz,

f(x+∆) ≤ f(x) +∇f(x)⊤∆+ L
2
∥∆∥2.

Plugging ∆ = −η∇f(x):

f(x− η∇f(x)) ≤ f(x)− η
(
1− Lη

2

)
∥∇f(x)∥2.

Conclusion: For 0 < η < 2
L
, we have

f(xk+1) ≤ f(xk)− c ∥∇f(xk)∥2 (c = η(1− Lη
2
) > 0),

so each step decreases f unless ∇f(xk) = 0.
Gradient ascent: apply the same argument to −f to get an increase
guarantee.



INF8250AE – Tut 3 – Optimization for Machine Learning

Momentum Method (Polyak, Heavy-ball)

Introduce a velocity term δi:

δi = −η∇θL(θi−1) + αδi−1

θi = θi−1 + δi

α ∈ [0, 1) is the momentum coefficient.

Reuses part of the previous update.

Accelerates learning in consistent directions.



INF8250AE – Tut 3 – Optimization for Machine Learning

Intuition

Imagine rolling a ball down a hill.

Gradient descent: step-by-step, always reacts to slope.

Momentum: keeps velocity, smooths oscillations.

Key Benefit

Momentum speeds up convergence and stabilizes training.



INF8250AE – Tut 3 – Optimization for Machine Learning

Variants

Nesterov Accelerated Gradient (NAG):

δi = −η∇θL(θi−1 + αδi−1) + αδi−1

θi = θi−1 + δi

Looks ahead before computing gradient.

More accurate update direction.



INF8250AE – Tut 3 – Optimization for Machine Learning

Pros and Cons of Optimization Methods

Vanilla GD

Pros:

▶ Simple
▶ Intuitive

Cons:

▶ Slow
▶ Oscillates in

narrow
valleys

Momentum

Pros:

▶ Faster
convergence

▶ Smooth
updates

▶ Exploits
consistent
gradients

Cons:

▶ Sensitive to
α

▶ Can
overshoot
minima

NAG

Pros:

▶ Looks ahead
▶ More stable
▶ Often better

minima

Cons:

▶ Slightly
more
complex

▶ Extra
gradient
computation



INF8250AE – Tut 3 – Optimization for Machine Learning

Trajectory of Different Optimizers

Concept: Different optimization algorithms follow different paths when
minimizing a loss function.

Gradient Descent (GD): May oscillate, especially in elongated
valleys.

Momentum: Smooths oscillations, faster convergence along
consistent directions.

Nesterov: Looks ahead, can overshoot if learning rate or momentum
is large.



INF8250AE – Tut 3 – Optimization for Machine Learning

Regularization

Concept: Regularization helps prevent overfitting by penalizing overly
complex models. Regularized Optimization Problem:

θ∗ = argmin
θ

[
L(θ) + λR(θ)

]

Without regularization: model fits noise → poor generalization

With regularization: smoother model → better generalization



INF8250AE – Tut 3 – Optimization for Machine Learning

Gradient Descent Variants

1. Batch Gradient Descent

Computes gradient using all training samples:

θ ← θ − η
1

N

N∑
i=1

∇θLi(θ)

Pros: stable, accurate gradient

Cons: slow for large datasets

2. Stochastic Gradient Descent (SGD)

Computes gradient using one random sample at a time:

θ ← θ − η∇θLi(θ)

Pros: fast, can escape shallow local minima

Cons: noisy updates, may oscillate

3. Mini-batch Gradient Descent: compromise between batch and
stochastic — uses small subsets of data.



INF8250AE – Tut 3 – Optimization for Machine Learning

Important Function Derivatives in RL/ML

Sigmoid:

σ(x) =
1

1 + e−x

dσ(x)

dx
=

d

dx

1

1 + e−x

dσ(x)

dx
=

e−x

(1 + e−x)2

dσ(x)

dx
= σ(x)(1− σ(x))

Softmax:

Softmax(x⃗)i = si =
exi∑d

k=1 e
xk

∂si

∂xi
= si(1− si),

∂si

∂xj
= −sisj , i ̸= j

∂si

∂xj
=

{
si(1− si), i = j

−sisj , i ̸= j

Function of
Linear Operation:

h⃗ = f(Wx⃗+ b⃗),

z⃗ = Wx⃗+ b⃗

zi =

d∑
j=1

Wijxj + bi

∂h⃗

∂Wij
=

∂f

∂zi
· xj


