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Section 1

Welcome to CSC413!
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Introduction: Instructors

Amanjit Singh Kainth

LEC 0101/2001: Tuesday (T) 1:00PM - 4:00PM
Office Hours: TBA

Amir-massoud Farahmand

LEC 0201/2101: Thursday (R) 1:00PM - 4:00PM
Office Hours: TBA

Robert (Rupert) Wu

LEC 5101/2501: Tuesday (T) 6:00PM - 9:00PM
Office Hours: T4-5 BA 2272
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Section 2

How can we make an intelligent agent?
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How can we make an intelligent agent?

What does it mean to have an intelligent agent?
What do we need to create it?
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An AI Agent

Figure 1: An agent ...
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An AI Agent

Figure 2: ... observes the world ...
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An AI Agent

Figure 3: ... takes an action and its states changes ...
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An AI Agent

Figure 4: ... with the goal of achieving long-term rewards.
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An AI Agent: Some Requirements
This agent has to

predict how the world works, e.g.,
classify different objects
estimate the probability of certain events happening in the future

plan its actions in order to achieve its long-term goals

We use Machine Learning and Neural Networks to move towards this goal.
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What is the difference between. . .

Artificial Intelligence
Machine Learning
Deep Learning
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AI vs ML vs DL
Artificial Intelligence: Create intelligent machines that perceive, reason,
and act like humans. (CSC384)

Machine Learning: Design algorithms to automatically learn from data.
(CSC311)

Deep Learning: Using deep neural networks to automatically learn from
data. (CSC413)
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Why machine learning after all?

Our agent lives in a complicated world. It is difficult to program the correct
behaviour (ex. recognizing chairs, apples, etc.) manually.

Machine learning approach: Write an algorithm to automatically learn
from data.
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Types of problems in Machine Learning

Supervised Learning: have labeled examples of the correct behaviour,
i.e. ground truth input/output response

Regression (e.g. height prediction)
Classification (e.g. sentiment classification)

Unsupervised Learning: no labeled examples; instead, looking for
interesting patterns in the data (e.g. clustering)
Reinforcement Learning: learning system receives a reward signal,
tries to learn to maximize the reward signal (e.g. playing StarCraft)

This categorization is not strict. There are overlaps between these problems,
and there are problems that belong to more than one category.

Examples: semi-supervised learning, self-supervised learning, model
learning for reinforcement learning, etc.
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The Machine Learning Approach

Reframe learning problems into optimization problems by:

Choosing a model (with parameters to be tuned)
Choosing a loss/cost function to measure how well the model fits the
data given a choice of parameters
Choosing an optimizer to minimize the cost function

Different machine learning approaches differ in the model, loss, and
optimizer choice.
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Section 3

Overview of Supervised Learning with Linear Models
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Overview of Supervised Learning with Linear Models

This is going to be quick! We assume that you are already familiar with
these material because you have taken CSC311.
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Supervised Learning with Linear Models

Let us review Linear Models.
They also appear as one of the building blocks in neural networks and
deep learning.

January 9 / 11, 2024 CSC413 Neural Networks and Deep Learning 19 / 102



Common supervised learning problems

Recall the types of supervised learning problems:

Regression: predict a scalar-valued target (e.g. stock price)
Classification: predict a label

Binary classification: predict a binary label (e.g. spam vs. non-spam
email)
Multi-class classification: predict a discrete label (e.g. object category,
from a list)
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Problem Setup: Regression

Input: Represented using the vector x

Example: x represents assignment grades (0-100)
To start, let’s assume that x is a scalar, and that we only have the
cumulative assignment grade

Output: Represented using the scalar t

Example: t represents the grade on an exam (0-100)
We’ll use the scalar y to denote a prediction of the value of t
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Example: Exam Grade Prediction

Data: (x(1), t(1)), (x(2), t(2)), . . . (x(N), t(N))
The x(i) are called inputs
The t(i) are called targets
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Regression with a Linear Model

A model implicitly or explicitly encodes our assumptions about the
underlying nature of the data we wish to learn about.

But recall the adage that All models are wrong, but some are useful.
In ML, we often choose models without really explicitly thinking about
our assumptions about the data generation process.

The model, or architecture defines the set of allowed family of
hypotheses.

In linear regression, our model looks like

y =
∑

j
wjxj + b,

where y is a prediction for t, and the wj and b are parameters of the
model, to be determined based on the data.
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Linear Regression for Exam Grade Prediction

For the exam prediction problem, we only have a single feature, so we can
simplify our model to:

y = wx + b

Our hypothesis space includes all functions of the form y = wx + b. Here
are some examples:

y = 0.4x + 0.2
y = 0.9x + 0.2
y = 0.1x + 0.7
y = −x − 1
. . .

The variables w and b are called weights or parameters of our model.
(Sometimes w and b are referred to as coefficients and intercept/bias,
respectively.)
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Which hypothesis is better suited to the data?
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Hypothesis Space

We can visualize the hypothesis space or weight space:

Each point in the weight space represents a hypothesis.
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Cost Function (Loss Function)

The “badness” of an entire hypothesis is the average badness across our
labeled data.

E(w , b) = 1
N

∑
i
L(y (i), t(i))

= 1
2N

∑
i

(y (i) − t(i))2

= 1
2N

∑
i

((wx (i) + b)− t(i))2

This is called the cost of a particular hypothesis (in practice, “loss” and
“cost” functions are used inter-changeably).

Since the loss depends on the choice of w and b, we call E(w , b) the cost
function.
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Minimize Cost: Direct Solution

Find a critical point by setting

∂E
∂w = 0

∂E
∂b = 0

Possible for our hypothesis space, and covered in the notes.

However, let’s use a technique that can also be applied to more general
models.
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Minimize Cost: Gradient Descent

We can use gradient descent to minimize the cost function.

w← w− α
∂E
∂w

∂E
∂w =


∂E
∂w1
...
∂E

∂wD


The α is the learning rate, which we choose.
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Gradient Descent for Grade Prediction

We’ll initialize w = 0 and b = 0 (arbitrary choice)

We’ll also choose α = 0.5
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Gradient Descent: Step 0
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Gradient Descent: Step 1
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Gradient Descent: Step 2

January 9 / 11, 2024 CSC413 Neural Networks and Deep Learning 33 / 102



Gradient Descent: Step 3
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Gradient Descent: Step 4
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Gradient Descent: When to Stop?

In theory:

Stop when w and b stop changing (convergence)

In practice:

Stop when E “almost” stops changing (approximate convergence)
Stop until we run out of our computational budget or get tired of
waiting more
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Gradient Descent: How to Choose the Learning Rate?

If α is too small, then training will be slow
Take a long time to (approximately) converge

If α is too large, then we can have divergence!
It does not converge
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Computing the Gradient

To compute the gradient ∂E
∂w

∂E
∂w = 1

N

N∑
i=1

∂L(y (i), t(i))
∂w

But this computation can be expensive if N is large!

Solution: estimate ∂E
∂w using a subset of the data
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Stochastic Gradient Descent

Full batch gradient descent:

1
N

N∑
i=1

∂L(y (i), t(i))
∂w

Stochastic Gradient Descent:

Estimate the above quantity by computing the average of ∂L(y (i),t(i))
∂w across

a small number of i ’s

The set of examples that we use to estimate the gradient is called a
mini-batch.

The number of examples in each mini-batch is called the mini-batch size
or just the batch size
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Stochastic Gradient Descent Algorithm

In theory, any way of sampling a mini-batch is okay.

In practice, SGD is almost always implemented like this:

# repeat until convergence:
# randomly split the data into mini-batches of size k
# for each mini-batch:

# estimate the gradient using the mini-batch
# update the parameters based on the estimate

Each pass of the inner loop is called an iteration.
One iteration = one update for each weight

Each pass of the outer loop is called an epoch.
One epoch = one pass over the data set
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Iterations, Epochs, and Batch Size

Suppose we have 1000 examples in our training set.

Q: How many iterations are in one epoch if our batch size is 10?

Q: How many iterations are in one epoch if our batch size is 50?
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Batch size choice

Q: What happens if the batch size is too large?

Q: What happens if the batch size is too small?
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Linear Regression Summary

Model y = w⊤x + b
Loss
Func-
tion

L(y , t) = (y − t)2

Optimization
Method

minw,b E(w, b) via Gradient Descent

w← w− α ∂E
∂w , b ← b − α∂E

∂b
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Linear Regression Vectorization

Use vectors rather than writing

E(w, b) = 1
2N

∑
i((wx(i) + b)− t(i))2

So we have:

y = Xw + b1, where

X =


x (1)

1 x (1)
2 ... x (1)

D
x (2)

1 x (2)
2 ... x (2)

D
...

x (N)
1 x (N)

2 ... x (N)
D

 , w =


w1
w2
...
wD

 , y =


y (1)

y (2)

...

y (N)

 , t =


t(1)

t(2)

...

t(N)



(You can also fold the bias b into the weight w, but we won’t.)
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Vectorized Loss Function

After vectorization, the loss function becomes:

E(w) = 1
2N (y− t)⊤(y− t)

or

E(w) = 1
2N (Xw + b1− t)⊤(Xw + b1− t)
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Vectorized Gradient Descent

b ← b − α
∂E
∂b

w← w− α
∂E
∂w

Where ∂E
∂w is the vector of partial derivatives:

∂E
∂w =


∂E
∂w1
...
∂E

∂wD
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Why vectorize?

Vectorization is not just for mathematical elegance.

When using Python with numpy/PyTorch/Tensorflow/JAX, code that
performs vector computations is faster than code that loops.

Same holds for many other high level languages and software.
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Problem Setup: Classification

Data: (x (1), t(1)), (x (2), t(2)), . . . (x (N), t(N))
The x (i) are called inputs
The t(i) are called targets

In classification, the t(i) are discrete.

In binary classification, we’ll use the labels t ∈ {0, 1} (or {−1, +1}).
Training examples with

t = 1 is called a positive example
t = 0 is called a negative example
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Classification Example

x (i) represents a person’s assignment grade
t(i) represents whether that person had a “high” exam grade (arbitrary
cutoff)
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Q: Why not use regression?

Why can’t we set up this problem as a regression problem?

Use the model:

y = wx + b

Our prediction for t would be 1 if y >= 0.5, and 0 otherwise.

With the loss function

L(y , t) = 1
2(y − t)2

And minimize the cost function via gradient descent?
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Classification as Regression: Problem

If we have L(y , t) = 1
2(y − t)2, then points that are correctly classified

will still have high loss!

(blue dotted line above = decision boundary)
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The Problem (continued)

Example: a point on the top right

Model makes the correct prediction for point on top right
However, (y − t)2 is large
So we are penalizing our model, even though it is making the right
prediction!
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Q: Why not use classification error?

Why not still use the model:

y =
{

1 if w⊤x + b > 0
0 otherwise

But use this loss function instead:

L(y , t) =
{

0 if y = t
1 otherwise
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First attempt at a loss function: the 0-1 loss

L(y , t) =
{

0 if y = t
1 otherwise

The gradient of this function is 0 almost everywhere!

So gradient descent will not change the weights! We need to define a
surrogate loss function that is better behaved.
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Logistic Model

Apply a non-linearity or activation function to the linear model z :

z = wx + b also called the logit
y = σ(z) also called a log-linear model

where
σ(z) = 1

1 + e−z

is called the logistic or sigmoid function.
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The Sigmoid Function

σ(z) = 1
1 + e−z

Properties:

σ(z) is between 0 and 1
σ(0) is 0.5
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Logistic Regression Example

A logistic model has this shape:

But how do we train this model?
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Logistic Model with Squared Error Loss?

Suppose we define the model like this:

z = wx + b
y = σ(z)

LSE (y , t) = 1
2(y − t)2

The gradient of L with respect to w is (homework):

∂L
∂w = ∂L

∂y
dy
dz

∂z
∂w

= (y − t)y(1− y)x
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The Problem of Squared Error Loss

Suppose we have a positive example (t = 1) that our model classifies
extremely wrongly (z = −5):

Then we have y = σ(z) ≈ 0.0067

Ideally, the gradient should give us strong signals regarding how to update
w to do better.

But. . . ∂L
∂w = (y − t)y(1− y)x is small!

Which means that the update w ← w − α ∂L
∂w won’t change w much!
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Gradient Signal

The problem with using sigmoid activation with square loss is that we get
poor gradient signal.

The loss for a very wrong prediction (y = 0.0001) vs a wrong
prediction (y = 0.01) are similar
This is a problem, because the gradients in the region would be close
to 0

We need a loss function that distinguishes between a wrong prediction and
a very wrong prediction.
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The Cross Entropy Loss

The cross entropy loss provides the desired behaviour:

L(y , t) =
{
− log(y) if t = 1
− log(1− y) if t = 0

We can write the loss as:

L(y , t) = −t log(y)− (1− t) log(1− y)

We we use the Logistic Model with cross entropy loss, the resulting model is
called Logistic Regression model. Note that it is a classification method
and not a regression one, as we use it in this course.
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Logistic Regression Summary

Model y = σ(w⊤x + b)
Loss
Func-
tion

L(y , t) = −t log(y)− (1− t) log(1− y)

Optimization
Method

minw,b E(w, b) via Gradient Descent

w← w− α ∂E
∂w , b ← b − α∂E

∂b
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Grade Classification Example

After running gradient descent, we’ll get a model that looks something like:
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Multi-Class Classification

Instead of there being two targets (pass/fail, cancer/not cancer,
before/after 2000), we have K > 2 targets.

Example:

Beatles (K = 4):
John Lennon, Paul McCartney, George Harrison, Ringo Starr

Pets (K = something large):
cat, dog, hamster, parrot, python, . . .
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Representing the Targets

We use a one-hot vector to represent the target:

t = (0, 0, ..., 1, ..., 0)

This vector contains K − 1 zeros, and a single 1 somewhere.

Each index (column) in the vector represents one of the classes.
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Representing the Predictor

The prediction y will also be a vector. Like in logistic regression there will
be a linear part, and an activation function.

Linear part: z = W⊤x + b

So far, this is like having K separate logistic regression models, one for each
element of the one-hot vector.

Q: What are the shapes of z, W, x and b?
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Activation Function

Instead of using a sigmoid function, we instead use a softmax activation
function:

yk = softmax(z1, ..., zK )k = ezk∑K
m=1 ezm

The vector of predictions yk is now a probability distribution over the
classes!
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Why Softmax?

Softmax is like the multi-class equivalent of sigmoid
Softmax is a continuous analog of the “argmax” function
If one of the zk is much larger than the other, then the softmax will be
approximately the argmax, in the one-hot encoding
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Cross-Entropy Loss

The cross-entropy loss naturally generalizes to the multi-class case:

L(y, t) = −
K∑

k=1
tk log(yk)

= −t⊤ log(y)

Recall that only one of the tk is going to be 1, and the rest are 0.
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Multi-class Classification Summary

Model y = softmax(W⊤x + b)
Loss
Func-
tion

L(y, t) = −t⊤ log(y)

Optimization
Method

minw,b E(w, b) via Gradient Descent

W←W− α ∂E
∂W , b← b− α∂E

∂b

January 9 / 11, 2024 CSC413 Neural Networks and Deep Learning 70 / 102



Example: Beatle Recognition

Given a 100x100 pixel colour image of a face of a Beatle, identify the Beatle

Four possible labels:

John Lennon
Paul McCartney
George Harrison
Ringo Starr
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Side Note: Representing an Image

This is what John Lennon looks like to a computer:
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Image as a Vector of Features
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Features and Targets

Each of our input images are 100× 100 pixels

y = softmax(W⊤x + b)

Questions:

What will be the length of our input (feature) vectors x?

What will be the length of our one-hot targets t?

What are the shapes of W and b?

How many (scalar) parameters are in our model, in total?
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Section 4

Deep Learning
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From Linear Models to Neural Networks

Design of an ML system follows a modular approach. We have to
make choice on

Model
Loss function
Regularizer, etc.

In your Introduction to ML course (ex. CSC311), you have seen many
examples.
We just reviewed Linear Models.January 9 / 11, 2024 CSC413 Neural Networks and Deep Learning 76 / 102



Beyond Linear Models

Feature mapping can make linear models much more powerful.
Coming up with feature mapping can be challenging.
Kernel-based approach is a way to partially address it.
(Artificial) Neural Networks (NN) is a general approach to represent
complex models.
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What is a Model After All?

The predictor can be seen as a computer program that processes the
input in order to generate the output. Some programs are simpler,
some are more complex.
Neural networks are general and flexible ways to specify a computer
program.
Different NN architectures correspond to different ways of specifying
the overall architecture of the program.
We are going to study several different ways in this course.
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What are Neural Networks? A Sneak Peak!

Neural networks are a class of models originally inspired by the brain.

Most of the biological details aren’t essential, so we use vastly
simplified models of neurons.

Nowadays we mostly think about math, statistics, etc

Neural networks are collections of thousands (or millions) of these
simple processing units that together perform useful computations

y = ϕ(wTx + b)
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Why Neural Networks?

Very effective across a range of applications (vision, text, speech,
medicine, robotics, etc.)
Widely used in both academia and the tech industry
Powerful software frameworks (PyTorch, TensorFlow, JAX, etc.) let us
quickly implement sophisticated algorithms
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What is Deep Learning?

A “deep” neural network contains many “layers”.

Later layers use the output of earlier layers as input.

The term deep learning emphasizes that the neural network
algorithms often involve hierarchies with many stages of processing.
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Deep Learning Caveats: Interpretability
Before getting deep in studying NN and Deep Learning, it is good to know
some of issues common with them.

Figure 5: from https://xkcd.com/1838/
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Deep Learning Caveats: Adversarial Examples

Image Credit: Goodfellow, Shlens, Szegedy, “Explaining and Harnessing
Adversarial Examples,” ICLR, 2015.
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Deep Learning Caveats: Fairness
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Fairness in Machine Learning

Image Credit: Solon Barocas and Moritz Hardt, “Fairness in Machine
Learning”, NeurIPS 2017
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Course Coverage

This is the tentative schedule and may slightly change.

Mostly supervised learning
Multi-layer Perceptron (fully connected feedforward)
Convolutional Neural Networks for images
Recurrent Neural Networks for sequences

Some unsupervised learning
Autoencoders
Generative Adversarial Networks

Special topic TBD/TBA

January 9 / 11, 2024 CSC413 Neural Networks and Deep Learning 86 / 102



Section 5

Logistics
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This Course

This is the second course in machine learning, with a focus on neural
networks and deep learning.
First 75%: Mostly supervised learning
Last 25%: Mostly unsupervised learning
Three sections: equivalent content, different instructors, same
deliverables.
Only attend the section you are officially enrolled.
Coursework is aimed at advanced undergrads. We will use multivariate
calculus, probability, and linear algebra.
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What happens every week?

We have three sessions per week.
Each session (usually) consists of:

2h of lecture
1h of tutorial/practice (bring your laptop).
You start working on a homework/practice assignment during the
tutorial/practice session. You have until next week to submit it.
We sometimes may use the tutorial time for lecture.
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How we communicate with you

Course Website: https://amfarahmand.github.io/NN-Winter2024/
Main source of information is the course webpage. Check regularly!
We will also use Quercus for announcements.
We will use Piazza for discussions.
We will use MarkUs for assignment submission.
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Do I have the right background?

Machine Learning: linear models for regression and classification,
maximum likelihood estimation, PCA, EM, etc.
Linear algebra: vector/matrix manipulations, basic properties of
matrices.
Calculus: partial derivatives/gradient.
Probability: common distributions; Bayes’ Rule.
Statistics: expectation, variance, covariance, median; maximum
likelihood.
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In the Classroom
Feel free to ask questions from the instructors. Don’t be shy! Asking
questions helps you learn better. We try to answer as many questions
as we can.

Cell phones and other electronics are allowed in lecture (it might help
your learning to annotate slides as we go through them).

Talking with others is discouraged in the middle of lecture, as it would
be distracting to us and others. We will have breaks so you can discuss
among yourselves.

Recording or taking pictures in class is strictly prohibited without the
consent of your instructor. Please ask before doing!

Even though pandemic is not in news anymore, COVID-19 and other
respiratory diseases are still around. Some of your friends and peers
might have weak immune system. Long COVID can be serious.

We encourage you to wear mask in the classroom and during in-person
office hours.
Do not sit close to each other, if possible.
Get vaccinated!
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Accomodations

Please refer to http://www.illnessverification.utoronto.ca in case of
illness (you need to fill out an absence declaration form on ACORN
and contact me).

If you require additional academic accommodations, please contact
UofT Accessibility Services:
https://studentlife.utoronto.ca/department/accessibility-services/

January 9 / 11, 2024 CSC413 Neural Networks and Deep Learning 93 / 102

https://studentlife.utoronto.ca/department/accessibility-services/
https://studentlife.utoronto.ca/department/accessibility-services/


Course Evaluation
This is tentative and may change in the next few days:

Ten (10) practice assignments (40%)
Most (8) are small programming exercises.
Two (2) are derivation-based exercises.
You start working on them during the Tutorial part of each session. Our
TAs will help you understand the assignment and guide you in solving
them.

Research Project (30%)
Research proposal (10%), written report and submitted codebase (20%).

Take-Home Test: 20% (close to the end of the semester)

Readings (10%)
Read some (5) research papers from a paper bank of 10-15 papers.
Write a short 1-paragraph summary and two questions on how the
method(s) can be used or extended.
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Collaboration and Assignments
Collaboration:

Collaboration on the Homework Assignments is allowed, under certain
conditions:

You can discuss the assignment with another student (group of two).
In your submission, you need to be very clear about the contribution of
each individual. For example, you should say we did a pair-programming
or person A solved this part while person B solved another part.
You can use copilot, ChatGPT, etc. to solve the problem, but that
would consider as your group member. That is, you can have either a
2-human group or 1 human + 1 machine group (no 2 machine group). If
you do it, you should report it as well.

You need to form a team of 3–4 members to work on your projects (the
exact number will be determined after finalizing the number of students
enrolled).

Similar to the homework assignments, you need to report the
contribution of each collaborator.
If you get the help of a machine, you need to clearly indicate that. The
machine will cost you one of the team members.

Collaboration on the Take-home Test or Paper Readings is not allowed.
These should be done as individual.
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Collaboration and Assignments

Late Submissions (assignments, proposals, reports, etc)
Submissions should be handed in by deadline; a late penalty of 10% per
day will be assessed thereafter (up to 3 days, then submission is
blocked).
Extensions will be granted only in special situations, and you will need a
Student Medical Certificate or a written request approved by the course
coordinator at least one week before the due date.
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Academic Integrity

By this point in your studies, you should know how to follow the
academic integrity rules. You need to know what cheating and
plagiarism are.
If you need a review, read the U of T’s Code of Behaviour on
Academic Matters.
Don’t cheat or plagiarize!
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Useful Resources

Recommended readings will be given for each lecture. But the following will
be useful throughout the course:

Deep Learning, a textbook by Yoshua Bengio, Ian Goodfellow, and
Aaron Courville.

Dive into Deep Learning

Video lectures for the U of T Professor Geoffrey Hinton’s course.

Andrej Karpathy’s lecture notes on convolutional networks.

Richard Socher’s lecture notes, focusing on RNNs.

Video lectures for Hugo Larochelle’s neural networks course.

If you need to brush up your basic knowledge of ML, you can take a
look at one of the previous offerings of it at the U of T. For example,
CSC2515 - Fall 2022 (the content is almost the same as CSC311).
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Other Useful Resources:

Trevor Hastie, Robert Tibshirani, and Jerome Friedman, The Elements
of Statistical Learning, Second Edition, 2009.
Christopher M. Bishop, Pattern Recognition and Machine Learning,
2006
Richard S. Sutton and Andrew G. Barto, Reinforcement Learning: An
Introduction, Second Edition, 2018.
Amir-massoud Farahmand, Lecture Notes on Reinforcement Learning,
2021.
Kevin Murphy, Machine Learning: A Probabilistic Perspective, 2012.
Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani,
An Introduction to Statistical Learning, 2017.
Shai Shalev-Shwartz and Shai Ben-David, Understanding Machine
Learning: From Theory to Algorithms, 2014.
David MacKay, Information Theory, Inference, and Learning
Algorithms, 2003.

January 9 / 11, 2024 CSC413 Neural Networks and Deep Learning 99 / 102

https://web.stanford.edu/~hastie/ElemStatLearn/
https://web.stanford.edu/~hastie/ElemStatLearn/
https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://amfarahmand.github.io/IntroRL/lectures/LNRL.pdf
http://faculty.marshall.usc.edu/gareth-james/ISL/
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/index.html
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/index.html
http://www.inference.org.uk/mackay/itila/book.html
http://www.inference.org.uk/mackay/itila/book.html


Compute

Colaboratory: Programming assignments are to be completed in
Google Colab, which is a web-based iPython Notebook service that has
access to a free Nvidia K80 GPU per Google account. Highly
recommended for homeworks and some course projects.
Department Teaching Labs: Linux compute servers with desktop or
datacentre-class GPUs. Recommended for course project.
Google Compute Engine: GCE delivers virtual machines running in
Google’s data center. Recommended for course project.
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Section 6

What to do this week?
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What to do this week?

No tutorials this week.
Review your linear algebra, probability, and ML background
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