
CSC413 Neural Networks and Deep Learning
Lecture 2: Multi-layer Feedforward NN and Backpropagation

January 16 / 18, 2024

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 1 / 71

Table of Contents

1 Limits of Linear Models for Binary Classification

2 From Brain to Artificial Neural Networks

3 Multilayer Perceptrons (Feedforward Fully Connected Neural Networks)

4 Backpropagation

5 What to do this week?

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 2 / 71

Lecture Plan

Last week:

Review of linear models
linear regression
linear classification (logistic regression)

Gradient descent to train these models

This week:

Why we need nonlinearities and multi-layer feedforward neural networks
(multilayer Perceptron)
How to train a multi-layer neural network using backpropagation

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 3 / 71

Section 1

Limits of Linear Models for Binary Classification

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 4 / 71

XOR example
Recall that a linear classifier has the following form:

y = σ(w⊤x + b),
with w being the weights, b being the bias, x being the input, and σ(·) is
the activation function (for example, a sigmoid).

A linear classifier is very limited in expressive power.
XOR is an example of a function that is not linearly separable.

There is an elegant proof using convexity
January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 5 / 71

Convex Sets

A set S is convex if any line segment connecting points in S lies in S.

x1, x2 ∈ S → λx1 + (1 − λ)x2 ∈ S for 0 ≤ λ ≤ 1

A simple inductive argument shows that for x1, . . . , xN ∈ S, the weighted
average or convex combination lies in the set:

λ1x1 + · · · + λNxN ∈ S for λ1 + · · · + λN = 1

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 6 / 71

XOR not linearly separable

Half-spaces are convex

Suppose there were some feasible hypothesis. If the positive examples
are in the positive half-space, because of convexity of a half-space, the
green line segment must be in that half-space as well.

Similarly, red line segment must lie within the negative half-space.

But the intersection of these two line segments can’t lie in both
positive and negative half-spaces, as a point is either positive or
negative, but not both. This is a contradiction!

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 7 / 71

A more troubling example

These images represent 16-dimensional vectors. Want to distinguish
patterns A and B in all possible translations (with wrap-around).

Q: What is the difference between A and B?

We can show that a linear model cannot classify all translations of patterns
A and B correctly.

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 8 / 71

A more troubling example

Suppose there’s a feasible solution. Focus on Pattern A:
If x1 and x2 are two translations of pattern A and they are correctly
classified as pattern A, because of convexity of half-spaces induced by a
linear model, their convex combination is classified as pattern A too.
We can extend this argument for all possible translations of pattern A.
The average of all translations of A, which is a convex combination of
them, is the vector (0.25, 0.25, · · · , 0.25). This point is also classified as
pattern A.

Now focus on Pattern B. With a similar argument, the average of all
translations of B is also (0.25, 0.25, · · · , 0.25). This point must also be
classified as pattern B.

The same point is classified as pattern A and B. Contradiction!
January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 9 / 71

(Nonlinear) Feature Maps

Sometimes, we can overcome this limitation with nonlinear feature maps

Ψ(x) =

 x1
x2

x1x2

x1 x2 ϕ1(x) ϕ2(x) ϕ3(x) t

0 0 0 0 0 0
0 1 0 1 0 1
1 0 1 0 0 1
1 1 1 1 1 0

This is linearly separable (Try it!)

. . . but generally, it can be hard to pick good basis functions.

We’ll use neural nets to learn nonlinear hypotheses directly.
January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 10 / 71

Section 2

From Brain to Artificial Neural Networks

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 11 / 71

Neuron

Our brain has ∼ 1011 neurons, each of which communicates (is connected)
to ∼ 104 other neurons

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 12 / 71

Neuron Anatomy

The dendrites, which are connected to other cells that provide
information.
The cell body, which consolidates information from the dendrites.
The axon, which is an extension from the cell body that passes
information to other cells.
The synapse, which is the area where the axon of one neuron and the
dendrite of another connect.

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 13 / 71

Inspiration: The Brain

Figure 1: Brain mass and total number of neurons for the mammalian species.

Image credit: Suzana Herculano-Houzel, The Human Brain in Numbers: A
Linearly Scaled-up Primate Brain, 2009.

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 14 / 71

What does a neuron do?

A neuron receives input signals from other neurons and accumulate voltage.
If the accumulated voltage passes a threshold, it fires spiking responses.
This spreads along the axon to the synapse, then to the next neurons.

Right image credit: https://en.wikipedia.org/wiki/Action_potential

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 15 / 71

https://en.wikipedia.org/wiki/Action_potential

What makes a neuron fire?

Neurons can fire in response to. . .

retinal cells
certain edges, lines, angles, movements
hands and faces (in primates)
specific people (in humans)

The existence of these “grandmother cells” (or “Jennifer Aniston” cell)
is contested.

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 16 / 71

Modeling Individual Neurons

x1, x2, ... = inputs to the neuron
w1, w2, ... = the neuron’s weights
b = the neuron’s bias
f = an activation function
f (

∑
i xiwi + b) = the neuron’s activation (output)

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 17 / 71

Linear Models as a Single Neuron

x1, x2, ... : inputs
w1, w2, ... : components of the weight vector w
b : the bias
f : identity function
y =

∑
i xiwi + b = wT x + b

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 18 / 71

Logistic Regression Model (for Binary Classification) as a
Single Neuron

x1, x2, ... : inputs
w1, w2, ... : components of the weight vector w
b : the bias
f = σ
y = σ(

∑
i xiwi + b) = σ(wT x + b)

If we use the cross-entropy loss function to train this neuron, this
becomes the same as the logistic regression model.

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 19 / 71

Logistic Regression Models (for Multi-Class Classification)
as a Neural Network

We use K neurons (one for each class):

x1, x2, ... : inputs
w1,1, w1,2, ... : components of the weight matrix W
b1, b2, ... : components of the bias vector b
f = softmax : applied to the entire vector of values
y = softmax(W x + b) : outputs of K neurons

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 20 / 71

Section 3

Multilayer Perceptrons (Feedforward Fully Connected
Neural Networks)

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 21 / 71

Multilayer Perceptrons (Feedforward Fully Connected Neural
Networks)

We can connect lots of units together into a directed acyclic graph.
Typically, units are grouped together into layers.

An input layer: feed in input features (e.g. like retinal cells in your eyes)
A number of hidden layers
An output layer: interpret output like a “grandmother cell”

This gives a feed-forward neural network.
That is in contrast to recurrent neural networks, which have cycles.January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 22 / 71

Multilayer Perceptrons (Feedforward FC Neural Networks)

Each hidden layer i connects Ni−1 input units to Ni output units.

In the simplest case, all input units are connected to all output units.
We call this a fully connected layer. We will consider other layer
types later.

The inputs and outputs for a layer are distinct from the inputs and
outputs to the network.

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 23 / 71

Multilayer Perceptrons (Feedforward FC Neural Networks)

If we need to compute M[= Ni] outputs from N = [Ni−1] inputs, we
can do so in parallel using matrix multiplication. This means we will be
using a M × N weight matrix.

The output units are a function of the input units:

y = f (x) = σ(Wx + b)

A multilayer network consisting of fully connected layers is called a
multilayer perceptron. Despite the name, it has nothing to do with
the Perceptron algorithm.

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 24 / 71

But what do these neurons mean?

Use xi to encode the input
e.g. pixels in an image
like the neurons that are connected to the receptors in the eye

Use y to encode the output (of a binary classification problem)
e.g. cancer vs. not cancer
like a “grandmother cell”

Use h(k)
i to denote a unit in the hidden layer

difficult to interpret

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 25 / 71

MNIST Digit Recognition

With a logistic regression model, we would have:

Input: An 28x28 pixel image
x is a vector of length 784

Target: The digit represented in the image
t is a one-hot vector of length 10

Model
y = softmax(W x + b)

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 26 / 71

Adding a Hidden Layer

Two layer neural network

Input size: 784 (number of features)
Hidden size: 50 (we choose this number)
Output size: 10 (number of classes)

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 27 / 71

Side note about machine learning models

When discussing machine learning and deep learning models, we usually

first talk about how to make predictions assume the weights are
trained
then talk about how to train the weights

Often the second step requires gradient descent or some other optimization
method

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 28 / 71

Making Predictions: computing the hidden layer

h1 = f (
784∑
i=1

w (1)
1,i xi + b(1)

1)

h2 = f (
784∑
i=1

w (1)
2,i xi + b(1)

2)

...

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 29 / 71

Making Predictions: computing the output (pre-activation)

z1 =
50∑

j=1
w (2)

1,j hj + b(2)
1

z2 =
50∑

j=1
w (2)

2,j hj + b(2)
2

...

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 30 / 71

Making Predictions: applying the output activation

z =

z1
z2
· · ·
z10

y = softmax(z)

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 31 / 71

Making Predictions: Vectorized

h = f (W (1)x + b(1))
z = W (2)h + b(2)

y = softmax(z)

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 32 / 71

Activation Functions: common choices

Common Choices:

Sigmoid activation
Tanh activation
ReLU activation

Rule of thumb: Start with ReLU activation. If necessary, try tanh.

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 33 / 71

Activation Function: Sigmoid

somewhat problematic due to gradient signal
all activations are positive

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 34 / 71

Activation Function: Tanh

scaled version of the sigmoid activation
also somewhat problematic due to gradient signal
activations can be positive or negative

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 35 / 71

Activation Function: ReLU

most often used nowadays
all activations are positive
easy to compute gradients
can be problematic if the bias is too large and negative, so the
activations are always 0

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 36 / 71

Feature Learning

Neural nets can be viewed as a way of learning features:

The goal is for these features to become linearly separable:

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 37 / 71

Expressive Power: Linear Layers (No Activation Function)

We’ve seen that there are some functions that linear classifiers can’t
represent. Are deep networks any better?
Any sequence of linear layers (with no activation function) can be
equivalently represented with a single linear layer.

y = W (3)W (2)W (1)︸ ︷︷ ︸ x

= W ′x

Deep linear networks are no more expressive than linear models.
But the dynamics of training can be different than a single layer linear
model.
We need to have nonlinearities to increase expressivity of NN.

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 38 / 71

Expressive Power: MLP (nonlinear activation)

Multilayer feed-forward neural nets with nonlinear activation functions
are universal approximators: they can approximate any function
arbitrarily well.
This has been shown for various activation functions (thresholds,
logistic, ReLU, etc.)

Even though ReLU is “almost” linear, it’s nonlinear enough!

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 39 / 71

Designing a network to classify XOR

Assume hard threshold activation function

Note that x1 XOR x2 = [x1 OR x2] AND [NOT (x1 AND x2)]

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 40 / 71

Designing a network to classify XOR

h1 computes I[x1 + x2 − 0.5 > 0]
i.e. x1 OR x2

h2 computes I[x1 + x2 − 1.5 > 0]
i.e. x1 AND x2

y computes I[h1 − h2 − 0.5 > 0] ≡ I[h1 + (1 − h2) − 1.5 > 0]
i.e. h1 AND (NOT h2) = x1 XOR x2

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 41 / 71

Expressive Power: Universality for binary inputs and targets

Hard threshold hidden units, linear output
Strategy: 2D hidden units, each of which responds to one particular
input configuration
Only requires one hidden layer, though it needs to be extremely wide.

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 42 / 71

Expressive Power

What about the logistic activation function?
You can approximate a hard threshold by scaling up the weights and
biases:

y = σ(x)

y = σ(5x)

This is good: logistic units are differentiable, so we can train them with
gradient descent.

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 43 / 71

Expressive Power

Let us do some exercises . . .

Q: How can we represent the function that takes value of +1 in
x ∈ [1, 2] and 0 elsewhere using a simple NN with hard threshold
activation function?

<latexit sha1_base64="ULOHsQl9tqBuefql0jDEpZcxjn4=">AAACQHicdVBLS8NAGNz4rPXV6tFLsCj1UhIR9FjsxWMF+4A2lM1m0yzdR9jdiCXkL3jV3+O/8B94E6+e3KY52JYOfDDMfAPD+DElSjvOp7WxubW9s1vaK+8fHB4dV6onXSUSiXAHCSpk34cKU8JxRxNNcT+WGDKf4p4/ac383jOWigj+pKcx9hgccxISBPVMCusvV6NKzWk4OexV4hakBgq0R1XrchgIlDDMNaJQqYHrxNpLodQEUZyVh4nCMUQTOMYDQzlkWHlpXjazL4wS2KGQ5ri2c/V/IoVMqSnzzSeDOlLL3kxc5+mIZYsaHQtJjEzQGmOprQ7vvJTwONGYo3nZMKG2FvZsPTsgEiNNp4ZAZPIE2SiCEiJtNi4P82DaEoxBHqjMLOsu77hKutcN12m4jze15n2xcQmcgXNQBy64BU3wANqgAxCIwCt4A+/Wh/VlfVs/89cNq8icggVYv39Y2rDP</latexit>

<latexit sha1_base64="XvoABIzbADcjKGhieJUeaLCwoOg=">AAACPXicdVBLS8NAGNzUV62vVo9eFoviqSQi6LHYi8cW7APaUDabTbt0H2F3I5bQX+BVf4+/wx/gTbx6dZvmYFs68MEw8w0ME8SMauO6n05ha3tnd6+4Xzo4PDo+KVdOO1omCpM2lkyqXoA0YVSQtqGGkV6sCOIBI91g0pj73WeiNJXiyUxj4nM0EjSiGBkrtV6G5apbczPAdeLlpApyNIcV52oQSpxwIgxmSOu+58bGT5EyFDMyKw0STWKEJ2hE+pYKxIn206zpDF5aJYSRVPaEgZn6P5EirvWUB/aTIzPWq95c3OSZMZ8ta2wkFbUyxRuMlbYmuvdTKuLEEIEXZaOEQSPhfDoYUkWwYVNLELZ5iiEeI4WwsQOXBlkwbUjOkQj1zC7rre64Tjo3Nc+tea3bav0h37gIzsEFuAYeuAN18AiaoA0wIOAVvIF358P5cr6dn8VrwckzZ2AJzu8flPKv+g==</latexit>

1 2

<latexit sha1_base64="1ZUorizIGovtt6sZBFz+D+wBfUI=">AAACanicdZHLSgMxGIXT8Vbrra0rcROsSotaZoqgG6HYjUsFq4ItQybNtKG5DElGW4Z5CZ/Grb6F7+BDmE670Ep/CBy+kwN/ToKIUW1c9yvnLC2vrK7l1wsbm1vbO8VS+UHLWGHSxpJJ9RQgTRgVpG2oYeQpUgTxgJHHYNia+I8vRGkqxb0ZR6TLUV/QkGJkLPKLp2F1VINX8NX3YCca0OoInsHA92rwxLLGb9ao+cWKW3ezgf+FNxMVMJtbv5Q77vQkjjkRBjOk9bPnRqabIGUoZiQtdGJNIoSHqE+erRSIE91Nsmel8MiSHgylskcYmNHfiQRxrcc8sDc5MgM9703gIs8MePqXsb5U1GKKFxhz25rwsptQEcWGCDxdNowZNBJOeoY9qgg2bGwFwjZPMcQDpBA29jcKnSyYtCTnSPR0apv15nv8Lx4adc+te3fnleb1rOM82AcHoAo8cAGa4AbcgjbA4A28gw/wmft2ys6esz+96uRmmV3wZ5zDHzCJuVY=</latexit>

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 44 / 71

Expressive Power

Let us do some exercises . . .

Q: How can we approximately represent the function that takes value
of +1 in x ∈ [1, 2] and 0 elsewhere using a simple NN with ReLU
activation function?

<latexit sha1_base64="ULOHsQl9tqBuefql0jDEpZcxjn4=">AAACQHicdVBLS8NAGNz4rPXV6tFLsCj1UhIR9FjsxWMF+4A2lM1m0yzdR9jdiCXkL3jV3+O/8B94E6+e3KY52JYOfDDMfAPD+DElSjvOp7WxubW9s1vaK+8fHB4dV6onXSUSiXAHCSpk34cKU8JxRxNNcT+WGDKf4p4/ac383jOWigj+pKcx9hgccxISBPVMCusvV6NKzWk4OexV4hakBgq0R1XrchgIlDDMNaJQqYHrxNpLodQEUZyVh4nCMUQTOMYDQzlkWHlpXjazL4wS2KGQ5ri2c/V/IoVMqSnzzSeDOlLL3kxc5+mIZYsaHQtJjEzQGmOprQ7vvJTwONGYo3nZMKG2FvZsPTsgEiNNp4ZAZPIE2SiCEiJtNi4P82DaEoxBHqjMLOsu77hKutcN12m4jze15n2xcQmcgXNQBy64BU3wANqgAxCIwCt4A+/Wh/VlfVs/89cNq8icggVYv39Y2rDP</latexit>

<latexit sha1_base64="XvoABIzbADcjKGhieJUeaLCwoOg=">AAACPXicdVBLS8NAGNzUV62vVo9eFoviqSQi6LHYi8cW7APaUDabTbt0H2F3I5bQX+BVf4+/wx/gTbx6dZvmYFs68MEw8w0ME8SMauO6n05ha3tnd6+4Xzo4PDo+KVdOO1omCpM2lkyqXoA0YVSQtqGGkV6sCOIBI91g0pj73WeiNJXiyUxj4nM0EjSiGBkrtV6G5apbczPAdeLlpApyNIcV52oQSpxwIgxmSOu+58bGT5EyFDMyKw0STWKEJ2hE+pYKxIn206zpDF5aJYSRVPaEgZn6P5EirvWUB/aTIzPWq95c3OSZMZ8ta2wkFbUyxRuMlbYmuvdTKuLEEIEXZaOEQSPhfDoYUkWwYVNLELZ5iiEeI4WwsQOXBlkwbUjOkQj1zC7rre64Tjo3Nc+tea3bav0h37gIzsEFuAYeuAN18AiaoA0wIOAVvIF358P5cr6dn8VrwckzZ2AJzu8flPKv+g==</latexit>

1 2

<latexit sha1_base64="LRcRtOICa6SS6p/yt8/9PBnqoBo=">AAAChHicdZHLSgMxFIbT8V5vVZdugkWpqMNMVXQlYkFcVrAqOKVk0kwbmhtJRluGvpFP4070YUzbEbTiCYGf/8sPJ+fEilFjg+C94M3Mzs0vLC4Vl1dW19ZLG5v3RqYakwaWTOrHGBnCqCANSy0jj0oTxGNGHuJebcQfnok2VIo7O1CkyVFH0IRiZJ3VKl0nlf4+jJBSWvbhSyuEkerSyrMTlT48grET++4cOFb9ZtUcVSfE9/1WqRz4wbjgXxHmogzyqrc2CntRW+KUE2ExQ8Y8hYGyzQxpSzEjw2KUGqIQ7qEOeXJSIE5MMxt/eAh3ndOGidTuCgvH7s9EhrgxAx67lxzZrplmI/M/Zrt8+NtjHampsyn+B0x1a5PzZkaFSi0ReNJskjJoJRxtALapJtiygRMIuzzFEHeRRti6PRWjcTCrSc6RaJuhm2w4Pce/4r7qh4Ef3p6UL6/yGS+CbbADKiAEZ+AS3IA6aAAMXsEb+ACf3rx36B17p5OnXiHPbIFf5V18AVHcwDg=</latexit>

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 45 / 71

Limits of universality results

You may need to represent an exponentially large network.
How can you find the appropriate weights to represent a given function?
If you can learn any function, you might just overfit.
We desire a compact representation.

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 46 / 71

Computing XOR Demo

Demo: https://playground.tensorflow.org/

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 47 / 71

https://playground.tensorflow.org/

Section 4

Backpropagation

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 48 / 71

Training Neural Networks

How do we find good weights for the neural network?
We can continue to use the loss functions:

cross-entropy loss for classification
square loss for regression

The neural network operations we used (weights, etc) are continuous

We can use gradient descent!

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 49 / 71

Gradient Descent Recap

Start with a set of parameters (initialize to some value)
Compute the gradient ∂E

∂w for each parameter (also ∂E
∂b)

This computation can often vectorized
Update the parameters towards the negative direction of the gradient

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 50 / 71

Gradient Descent for Neural Networks

Conceptually, the exact same idea!
However, we have more parameters than before

Higher dimensional
Harder to visualize
More “steps”

Since ∂E
∂w , is the average of ∂L

∂w across training examples, we’ll focus on
computing ∂L

∂w

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 51 / 71

Univariate Chain Rule

Recall: if f (x) and x(t) are univariate functions, then

d
dt f (x(t)) = df

dx
dx
dt

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 52 / 71

Univariate Chain Rule for Least Squares with a Logistic
Model

Recall: Univariate logistic least squares model

z = wx + b
y = σ(z)

L = 1
2(y − t)2

Let’s compute the loss derivative

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 53 / 71

Univariate Chain Rule Computation (1)

How you would have done it in calculus class

L = 1
2(σ(wx + b) − t)2

∂L
∂w = ∂

∂w

[1
2(σ(wx + b) − t)2

]
= 1

2
∂

∂w (σ(wx + b) − t)2

= (σ(wx + b) − t) ∂

∂w (σ(wx + b) − t)

= (σ(wx + b) − t)σ′(wx + b) ∂

∂w (wx + b)

= (σ(wx + b) − t)σ′(wx + b)x

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 54 / 71

Univariate Chain Rule Computation (2)

Similarly for ∂L
∂b

L = 1
2(σ(wx + b) − t)2

∂L
∂b = ∂

∂b

[1
2(σ(wx + b) − t)2

]
= 1

2
∂

∂b (σ(wx + b) − t)2

= (σ(wx + b) − t) ∂

∂b (σ(wx + b) − t)

= (σ(wx + b) − t)σ′(wx + b) ∂

∂b (wx + b)

= (σ(wx + b) − t)σ′(wx + b)

Q: What are the disadvantages of this approach?

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 55 / 71

Univariate Chain Rule Computation (2)

Similarly for ∂L
∂b

L = 1
2(σ(wx + b) − t)2

∂L
∂b = ∂

∂b

[1
2(σ(wx + b) − t)2

]
= 1

2
∂

∂b (σ(wx + b) − t)2

= (σ(wx + b) − t) ∂

∂b (σ(wx + b) − t)

= (σ(wx + b) − t)σ′(wx + b) ∂

∂b (wx + b)

= (σ(wx + b) − t)σ′(wx + b)

Q: What are the disadvantages of this approach?
January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 55 / 71

A More Structured Way to Compute the Derivatives

z = wx + b
y = σ(z)

L = 1
2(y − t)2

dL
dy = y − t

dL
dz = dL

dy σ′(z)

∂L
∂w = dL

dz x

∂L
∂b = dL

dz
Less repeated work; easier to write a program to efficiently compute
derivatives

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 56 / 71

Computation Graph

We can diagram out the computations using a computation graph.

The nodes represent all the inputs and computed quantities

The edges represent which nodes are computed directly as a function of
which other nodes.

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 57 / 71

Chain Rule (Error Signal) Notation

Use y to denote the derivative dL
dy

sometimes called the error signal
This notation emphasizes that the error signals are just values our
program is computing (rather than a mathematical operation).
This is notation introduced by Prof. Roger Grosse, and not standard
notation

z = wx + b
y = σ(z)

L = 1
2(y − t)2

y = ∂L
∂y = y − t

z = ∂L
∂z = yσ′(z)

w = ∂L
∂w = z x

b = ∂L
∂b = z

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 58 / 71

Multiclass Logistic Regression Computation Graph

In general, the computation graph fans out:

zl =
∑

j
wljxj + bl

yk = ezk∑
l ezl

L = −
∑

k
tk log yk

There are multiple paths for which a weight like w11 affects the loss L.

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 59 / 71

Multivariate Chain Rule

Suppose we have a function f (x , y) and functions x(t) and y(t). (All the
variables here are scalar-valued.) Then

d
dt f (x(t), y(t)) = ∂f

∂x
dx
dt + ∂f

∂y
dy
dt

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 60 / 71

Multivariate Chain Rule Example

If f (x , y) = y + exy , x(t) = cos t and y(t) = t2. . .

d
dt f (x(t), y(t)) = ∂f

∂x
dx
dt + ∂f

∂y
dy
dt

= (yexy) · (− sin t) + (1 + xexy) · 2t

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 61 / 71

Multivariate Chain Rule Notation

In our notation

t = x dx
dt + y dy

dt

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 62 / 71

The Backpropagation Algorithm

Backpropagation is an algorithm to compute gradients efficiency
Forward Pass: Compute predictions (and save intermediate values)
Backwards Pass: Compute gradients

The idea behind backpropagation is very similar to dynamic
programming

Use chain rule, and be careful about the order in which we compute the
derivatives

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 63 / 71

Backpropagation Example (on the board)

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 64 / 71

Backpropagation for a MLP

Forward pass:
zi =

∑
j

w (1)
ij xj + b(1)

i

hi = σ(zi)

yk =
∑

i
w (2)

ki hi + b(2)
k

L = 1
2

∑
k

(yk − tk)2

Backward pass:
L = 1
yk = L(yk − tk)

w (2)
ki = ykhi

b(2)
k = yk

hi =
∑

k
ykw (2)

ki

zi = hiσ
′(zi)

w (1)
ij = zixj

b(1)
i = zi

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 65 / 71

Backpropagation for a MLP (Vectorized)

Forward pass:
z = W (1)x + b(1)

h = σ(z)
y = W (2)h + b(2)

L = 1
2 ||y − t||2

Backward pass:
L = 1
y = L(y − t)

W (2) = yhT

b(2) = y

h = W (2)T y
z = h ◦ σ′(z)

W (1) = zxT

b(1) = z

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 66 / 71

Implementing Backpropagation

Forward pass: Each node...
receives messages (inputs)
from its parents
uses these messages to
compute its own values

Backward pass: Each node...
receives messages (error
signals) from its children
uses these messages to
compute its own error signal
passes message to its parents

This algorithm provides modularity!

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 67 / 71

Backpropagation in Vectorized Form

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 68 / 71

Backpropagation in practice

Backprop is used to train the overwhelming majority of neural nets
today.

Even optimization algorithms much fancier than gradient descent
(e.g. second-order methods) use backprop to compute the gradients.

Despite its practical success, backprop is believed to be neurally
(biologically) implausible.

No evidence for biological signals analogous to error derivatives.
All the biologically plausible alternatives we know about learn much
more slowly (on computers).
So how on earth does the brain learn?

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 69 / 71

Section 5

What to do this week?

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 70 / 71

What to do this week?

Programming HW 1 is out.
Math HW 1 is out too.
Attend your tutorial session after the lecture!
The HWs are due next Friday.

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 71 / 71

	Limits of Linear Models for Binary Classification
	From Brain to Artificial Neural Networks
	Multilayer Perceptrons (Feedforward Fully Connected Neural Networks)
	Backpropagation
	What to do this week?

