CSC413 Neural Networks and Deep Learning
Lecture 2: Multi-layer Feedforward NN and Backpropagation
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Lecture Plan

Last week:

@ Review of linear models
e linear regression
o linear classification (logistic regression)

@ Gradient descent to train these models
This week:

@ Why we need nonlinearities and multi-layer feedforward neural networks
(multilayer Perceptron)
@ How to train a multi-layer neural network using backpropagation
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Section 1

Limits of Linear Models for Binary Classification
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XOR example

Recall that a linear classifier has the following form:
Yy = U(WTX + b),

with w being the weights, b being the bias, x being the input, and o(-) is
the activation function (for example, a sigmoid).

@ A linear classifier is very limited in expressive power.
@ XOR is an example of a function that is not linearly separable.

A
Z2

+ -
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Convex Sets

A set S is convex if any line segment connecting points in S lies in S.
X1,X20 €S > A1+ (1= A)xa € Sfor0< A <1

A simple inductive argument shows that for x1,...,xN € S, the weighted
average or convex combination lies in the set:

AMXp+ - F+FAyxyeSfor Ay +---+ Ay =1
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XOR not linearly separable

@ Half-spaces are convex

@ Suppose there were some feasible hypothesis. If the positive examples
are in the positive half-space, because of convexity of a half-space, the
green line segment must be in that half-space as well.

@ Similarly, red line segment must lie within the negative half-space.

kg
1
Vo
@ But the intersection of these two line segments can’t lie in both

positive and negative half-spaces, as a point is either positive or
negative, but not both. This is a contradiction!
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A more troubling example

These images represent 16-dimensional vectors. Want to distinguish
patterns A and B in all possible translations (with wrap-around).

T mm w1110 pattern A s iTmsrr717r) patternB

I mm w10 pattern A OO me T T e

pattern B
T mm Pattern A s wms  pattern B

Q: What is the difference between A and B?

We can show that a linear model cannot classify all translations of patterns
A and B correctly.
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A more troubling example

CCm T ww w177 pattern A s T T pattern B

Orrm e w7 pattern A s Tmm T pattern B
e Tmm Pattern A s wms  pattern B

@ Suppose there's a feasible solution. Focus on Pattern A:

e If x; and x, are two translations of pattern A and they are correctly
classified as pattern A, because of convexity of half-spaces induced by a
linear model, their convex combination is classified as pattern A too.

o We can extend this argument for all possible translations of pattern A.

o The average of all translations of A, which is a convex combination of

them, is the vector (0.25,0.25,---,0.25). This point is also classified as
pattern A.
@ Now focus on Pattern B. With a similar argument, the average of all
translations of B is also (0.25,0.25,---,0.25). This point must also be

classified as pattern B.

@ The same point is classified as pattern A and B. Contradiction!
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(Nonlinear) Feature Maps

Sometimes, we can overcome this limitation with nonlinear feature maps

X1

lU(X) = X2
X1X2

X1 X2 $1(x) $2(x) $3(x) t
0 0 0 0 0 0
0 1 0 1 0 1
1 0 1 0 0 1
1 1 1 1 1 0

This is linearly separable (Try it!)
. but generally, it can be hard to pick good basis functions.

We’'ll use neural nets to learn nonlinear hypotheses directly.
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Section 2

From Brain to Artificial Neural Networks
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Neuron

Our brain has ~ 10! neurons, each of which communicates (is connected)
to ~ 10* other neurons

impulses carried
toward cell body
branches
of axon

axon
terminals

impulses carried
away from cell body
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Neuron Anatomy

@ The dendrites, which are connected to other cells that provide
information.

@ The cell body, which consolidates information from the dendrites.

@ The axon, which is an extension from the cell body that passes
information to other cells.

@ The synapse, which is the area where the axon of one neuron and the
dendrite of another connect.
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Inspiration: The Brain
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Figure 1: Brain mass and total number of neurons for the mammalian species.

Image credit: Suzana Herculano-Houzel, The Human Brain in Numbers: A
Linearly Scaled-up Primate Brain, 2009.
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What does a neuron do?

A neuron receives input signals from other neurons and accumulate voltage.
If the accumulated voltage passes a threshold, it fires spiking responses
This spreads along the axon to the synapse, then to the next neurons.

Action
potential
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SYNAPSE -
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Right image credit: https://en.wikipedia.org/wiki/Action_potential
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What makes a neuron fire?

Neurons can fire in response to. ..

retinal cells
certain edges, lines, angles, movements
hands and faces (in primates)
specific people (in humans)
o The existence of these “grandmother cells” (or “Jennifer Aniston” cell)
is contested.
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Modeling Individual Neurons

o wo
- .9
axon from a neuron SR
woITo

cell body

Zw,a:i+b

f (Z w;w; + b)

output axon

activation
function

X1, X2, ... = inputs to the neuron

wi, Wa, ... = the neuron’s weights

b = the neuron’s bias

f = an activation function

f(>-; xiwi + b) = the neuron’s activation (output)
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Linear Models as a Single Neuron

o wo
- .9
axon from a neuron SR
woITo

cell body

Zw,a:i+b

f (Z w;w; + b)

output axon

activation
function

X1, X2, ... . inputs

w1, Wo, ... . components of the weight vector w
b : the bias

f . identity function
y=Y,xiw+b=w'x+b
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Logistic Regression Model (for Binary Classification) as a
Single Neuron

Iy wo
— e
axon from a neuron 0 Poe
WoZo

cell body

f (Z w;iT; + b)
Zwlm,— +b :

output axon

activation
function

@ Xx1,Xp,... . inputs

@ wi, wa, ... : components of the weight vector w

@ b : the bias

e f=c¢

o y=0o(X;xw+b)=c(w'x+b)

@ If we use the cross-entropy loss function to train this neuron, this

becomes the same as the logistic regression model.
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Logistic Regression Models (for Multi-Class Classification)
as a Neural Network

We use K neurons (one for each class):

X1, X2, ... : inputs
W11, W12, ... : components of the weight matrix W
b1, by, ... : components of the bias vector b

f = softmax : applied to the entire vector of values
y = softmax(Wx + b) : outputs of K neurons

®© 6 6 6 ¢
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Section 3

Multilayer Perceptrons (Feedforward Fully Connected
Neural Networks)
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Multilayer Perceptrons (Feedforward Fully Connected Neural
Networks)

an output
unit
pl

output layer

second hidden layer

first hidden layer

a hidden
unit
input layer

a connection
depth

an input input layer
unit hidden layer 1 hidden layer 2

@ We can connect lots of units together into a directed acyclic graph.

@ Typically, units are grouped together into layers.
o An input layer: feed in input features (e.g. like retinal cells in your eyes)
e A number of hidden layers
e An output layer: interpret output like a “grandmother cell”

@ This gives a feed-forward neural network.
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Multilayer Perceptrons (Feedforward FC Neural Networks)

@ Each hidden layer i connects N;_; input units to N; output units.

@ In the simplest case, all input units are connected to all output units.
We call this a fully connected layer. We will consider other layer
types later.

e The inputs and outputs for a layer are distinct from the inputs and

qutn q the netwark
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Multilayer Perceptrons (Feedforward FC Neural Networks)

o If we need to compute M[= N;] outputs from N = [N;_1] inputs, we
can do so in parallel using matrix multiplication. This means we will be
using a M x N weight matrix.

@ The output units are a function of the input units:

y = f(x) =o(Wx + b)

@ A multilayer network consisting of fully connected layers is called a
multilayer perceptron. Despite the name, it has nothing to do with
the Perceptron algorithm.
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But what do these neurons mean?

@ Use x; to encode the input
e e.g. pixels in an image
o like the neurons that are connected to the receptors in the eye
@ Use y to encode the output (of a binary classification problem)
@ e.g. cancer vs. not cancer
o like a “grandmother cell”
@ Use h,(k) to denote a unit in the hidden layer
o difficult to interpret
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MNIST Digit Recognition
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With a logistic regression model, we would have:

@ Input: An 28x28 pixel image
e X is a vector of length 784

@ Target: The digit represented in the image
e tis a one-hot vector of length 10

o Model
o y = softmax(Wx + b)

January 16 / 18, 2024 CSC413 Neural Networks and Deep Learning 26 /71



Adding a Hidden Layer

Two layer neural network

output layer
input layer
hidden layer

@ Input size: 784 (number of features)
@ Hidden size: 50 (we choose this number)
@ Output size: 10 (number of classes)
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Side note about machine learning models

When discussing machine learning and deep learning models, we usually

o first talk about how to make predictions assume the weights are
trained

o then talk about how to train the weights

Often the second step requires gradient descent or some other optimization
method
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Making Predictions: computing the hidden layer

output layer
input layer
hidden layer

Z M + b

Z M + b5Y)
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Making Predictions: computing the output (pre-activation)

output layer
input layer
hidden layer

50
71 = Z W1(72J-) hj + bgz)
j=1

50
z = Z Wz(?j)hj + béz)
j=1
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Making Predictions: applying the output activation

output layer

input layer
hidden layer
Z1
z2
Z =
Z10

y = softmax(z)
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Making Predictions: Vectorized

output layer
input layer
hidden layer

h = f(WMx 4+ b))
z=W®h 4+ p®

y = softmax(z)
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Activation Functions: common choices

Common Choices:

@ Sigmoid activation
@ Tanh activation
@ RelLU activation

Rule of thumb: Start with RelLU activation. If necessary, try tanh.
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Activation Function: Sigmoid

1of i

[oF:1

o6

3 .
=10 -8 ]

@ somewhat problematic due to gradient signal

@ all activations are positive
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Activation Function

1o
/,-—

05F)
|

- Tanh

10

@ scaled version of the sigmoid activation
@ also somewhat problematic due to gradient signal

@ activations can be positive or negative
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Activation Function: ReLU

10 F

—10 -5 5 10

most often used nowadays

all activations are positive

easy to compute gradients

can be problematic if the bias is too large and negative, so the
activations are always 0
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Feature Learning

Neural nets can be viewed as a way of learning features:

linear regressor,
/ clasifier

The goal is for these features to become linearly separable:
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Expressive Power: Linear Layers (No Activation Function)

@ We've seen that there are some functions that linear classifiers can’t
represent. Are deep networks any better?

@ Any sequence of linear layers (with no activation function) can be
equivalently represented with a single linear layer.

y = W W@ w) x
—_——

= W'x

@ Deep linear networks are no more expressive than linear models.

@ But the dynamics of training can be different than a single layer linear
model.

@ We need to have nonlinearities to increase expressivity of NN.
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Expressive Power: MLP (nonlinear activation)

o Multilayer feed-forward neural nets with nonlinear activation functions
are universal approximators: they can approximate any function

arbitrarily well.
@ This has been shown for various activation functions (thresholds,

logistic, ReLU, etc.)
o Even though RelLU is “almost” linear, it's nonlinear enough!
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Designing a network to classify XOR

Assume hard threshold activation function

1 " |
Note that x; XOR x = [X1 OR X2] AND [NOT (X1 AND Xz)]
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Designing a network to classify XOR

@ hy computes I[x; + xo — 0.5 > 0]
° ie. X1 OR X2

@ hy computes I[x; + xo — 1.5 > 0]
e i.e. x;1 AND xo

e y computes I[h; — hp — 0.5 > 0] = I[h; + (1 — ho) — 1.5 > 0]
e ie. hl AND (NOT h2) = X1 XOR X2
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Expressive Power: Universality for binary inputs and targets

@ Hard threshold hidden units, linear output

o Strategy: 2P hidden units, each of which responds to one particular
input configuration

@ Only requires one hidden layer, though it needs to be extremely wide.
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Expressive Power

@ What about the logistic activation function?
@ You can approximate a hard threshold by scaling up the weights and

biases:
y=o(x) "
y=o0(5x) "o

@ This is good: logistic units are differentiable, so we can train them with
gradient descent.
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Expressive Power

Let us do some exercises . ..

@ Q: How can we represent the function that takes value of +1 in
x € [1,2] and 0 elsewhere using a simple NN with hard threshold
activation function?

f(@)

1 2 T
£(a) = w6 = b)) + g — bo)

J —
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Expressive Power

Let us do some exercises . ..

@ Q: How can we approximately represent the function that takes value
of +1 in x € [1,2] and 0 elsewhere using a simple NN with ReLU
activation function?

@

1 2 x

flz) =~ ﬂ'1®k(l‘1(t = b1)) + wad(va(x — ba)) + ...

7

/
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Limits of universality results

@ You may need to represent an exponentially large network.

@ How can you find the appropriate weights to represent a given function?
@ If you can learn any function, you might just overfit.

@ We desire a compact representation.
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Computing XOR Demo

Demo: https://playground.tensorflow.org/
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Section 4

Backpropagation
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Training Neural Networks

@ How do we find good weights for the neural network?

@ We can continue to use the loss functions:
e cross-entropy loss for classification
e square loss for regression
@ The neural network operations we used (weights, etc) are continuous

We can use gradient descent!
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Gradient Descent Recap

e Start with a set of parameters (initialize to some value)

@ Compute the gradient 65 for each parameter (also ag)
e This computation can often vectorized

@ Update the parameters towards the negative direction of the gradient
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Gradient Descent for Neural Networks

@ Conceptually, the exact same idea!

@ However, we have more parameters than before
e Higher dimensional
e Harder to visualize
e More “steps”

L OE oL . ,
Since 5~ , is the average of 5> across training examples, we'll focus on

computing g—fv
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Univariate Chain Rule

Recall: if f(x) and x(t) are univariate functions, then

d df dx
Ef(x(t)) = o di
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Univariate Chain Rule for Least Squares with a Logistic
Model

Recall: Univariate logistic least squares model

z=wx+b

y =o0(z)

P
2

Let's compute the loss derivative
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Univariate Chain Rule Computation (1)

How you would have done it in calculus class

L= %(O‘(WX + b) — t)?
oL 0 1 2
3w = Bw E(J(WX +b) —t)
— 19 2

= (O'(WX + b) - t)o-’(wx + b)agw(wx + b)

= (o(wx + b) — t)o'(wx + b)x

54 /71
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Univariate Chain Rule Computation (2)

Similarly for 2 ab

L= %(U(WX +b)— )
o o1

3 = 3b ((WX-i—b)—t)
10
28b( (WX—|—b)—t)

= (o(wx +b) — t) o (o{wx + b) — 1

= (o(wx + b) — t)o’ (wx + b)g wx + b)

3b(
= (o(wx + b) — t)o’(wx + b)
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Univariate Chain Rule Computation (2)

Similarly for 2 ab

1
L= E(U(WX + b) — t)?

oL 0 1
3 = 3b ( (wx + b) — t)?
10
28b( o(wx + b) — t)
= (o(wx +b) — t) o (o{wx + b) — 1
= (o(wx + b) — t)o’ (wx + b)%(wx + b)

= (o(wx + b) — t)o’(wx + b)

Q: What are the disadvantages of this approach?
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A More Structured Way to Compute the Derivatives

Z=wx-+b
y=o0(z)
L=2(y—ty

Less repeated work; easier to write a program to efficiently compute

derivatives
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Computation Graph

We can diagram out the computations using a computation graph.

Compute Loss
B —

T t

>~

W—>2z—>Y——>

b

Compute Derivatives
-—

The nodes represent all the inputs and computed quantities

The edges represent which nodes are computed directly as a function of
which other nodes.
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Chain Rule (Error Signal) Notation

@ Use y to denote the derivative %
e sometimes called the error signal
@ This notation emphasizes that the error signals are just values our
program is computing (rather than a mathematical operation).

@ This is notation introduced by Prof. Roger Grosse, and not standard

notation
o_or
z=wx+b __ oL _
y =o0(z) 2= 9z 7 (2)
1 2 W—a—ﬁ—?x
£:§(y—t) ow
-2 _3
=35 =
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Multiclass Logistic Regression Computation Graph

In general, the computation graph fans out:

W11 W19
b1
t z] = wiix; + b
TS —e Y1\ / ;'“ ’
L, e
To——s2——Ys~ [ TN
/T () ,C:—Ztklogyk
b K
W21
W22

There are multiple paths for which a weight like wy1 affects the loss L.
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Multivariate Chain Rule

Suppose we have a function f(x,y) and functions x(t) and y(t). (All the
variables here are scalar-valued.) Then

d _Ofdx Of dy
dtf( x(t),y(t)) = aixd7t+@d7t

<N
N,
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Multivariate Chain Rule Example

If f(x,y) =y + &Y, x(t) = cost and y(t) = t2...

d _ Of dx Of dy
5 (x(1),y(t)) = oxar + By dt
=(ye?¥) - (—sint) + (1 +xe¥) -2t
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Multivariate Chain Rule Notation

Mathematical expressions
to be evaluated

df _ ofde  0fdy

N\
dt_axdt+8ydt A
A >< - 3

Values already computed
by our program

In our notation
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The Backpropagation Algorithm

@ Backpropagation is an algorithm to compute gradients efficiency
e Forward Pass: Compute predictions (and save intermediate values)
e Backwards Pass: Compute gradients
@ The idea behind backpropagation is very similar to dynamic
programming
e Use chain rule, and be careful about the order in which we compute the
derivatives
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Backpropagation Example (on the board)
1) (2)
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Backpropagation for a MLP

(2)
Ilgll) (1) Wy (2)

(1 p /)(12) P
i &\ &\ ti Backward pass:

T1l—>2 1—>h 14>y1

~ L=1
$2—>Z2—>h2—>y2/f W == Z(yk — tk)
t R
// (1) I'FZZ)//T(») ’ Wkl2) = Th’
1) Wa e Wy 5 o
Forward ) b =%
orward pass: - — (@
w l)XJ bt hi = ; kWi
hi = o(z;) (Z)' = hio'(@)
) _
Z W(2)h + b(2) Wij - = ZiXj
! b =7
‘C = 2 Z(yk - tk)z
k
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Backpropagation for a MLP (Vectorized)

AT e
8 W[ b

Wb =y
Forward pass: h=w® TY
2= W+ b z=hod(2)
h=o0(z) W@ —zxT
y=W®h +bp® b0 5

1
L=|ly—t]?
Slly —tli
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Implementing Backpropagation

Incoming messages
sum to

z

Backward pass: Each node...
@ receives messages (error
signals) from its children
@ uses these messages to
compute its own error signal
@ passes message to its parents

Forward pass: Each node...
@ receives messages (inputs)
from its parents
@ uses these messages to
compute its own values

This algorithm provides modularity!
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Backpropagation in Vectorized Form

e Consider this computation graph:

z 11
z Y2 Z—y
Z3—>Ys
@ Backprop rules:
Ayk ay "
ze RV, ye rRM 7= Vi Z=— ¥y,
y S ZJ/k (92j az y

k
where dy/0z is the Jacobian matrix (note: check the matrix shapes):

. Az dz,
(Q)M N= ‘1 :
9z""* : ' :

Wm ., m

0z; dzp
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Backpropagation in practice

@ Backprop is used to train the overwhelming majority of neural nets
today.
e Even optimization algorithms much fancier than gradient descent
(e.g. second-order methods) use backprop to compute the gradients.
@ Despite its practical success, backprop is believed to be neurally
(biologically) implausible.
e No evidence for biological signals analogous to error derivatives.
o All the biologically plausible alternatives we know about learn much
more slowly (on computers).
e So how on earth does the brain learn?
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Section 5

What to do this week?
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What to do this week?

@ Programming HW 1 is out.

e Math HW 1 is out too.

@ Attend your tutorial session after the lecture!
@ The HWs are due next Friday.
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