CSC413 Neural Networks and Deep Learning
 Lecture 2: Multi-layer Feedforward NN and Backpropagation

$$
\text { January } 16 \text { / 18, } 2024
$$

Table of Contents

(1) Limits of Linear Models for Binary Classification
(2) From Brain to Artificial Neural Networks
(3) Multilayer Perceptrons (Feedforward Fully Connected Neural Networks)
(4) Backpropagation
(5) What to do this week?

Lecture Plan

Last week:

- Review of linear models
- linear regression
- linear classification (logistic regression)
- Gradient descent to train these models

This week:

- Why we need nonlinearities and multi-layer feedforward neural networks (multilayer Perceptron)
- How to train a multi-layer neural network using backpropagation

Section 1

Limits of Linear Models for Binary Classification

XOR example

Recall that a linear classifier has the following form:

$$
y=\sigma\left(w^{\top} x+b\right)
$$

with w being the weights, b being the bias, x being the input, and $\sigma(\cdot)$ is the activation function (for example, a sigmoid).

- A linear classifier is very limited in expressive power.
- XOR is an example of a function that is not linearly separable.

Convex Sets

A set S is convex if any line segment connecting points in S lies in S.
$\mathbf{x}_{1}, \mathbf{x}_{\mathbf{2}} \in S \rightarrow \lambda \mathbf{x}_{1}+(1-\lambda) \mathbf{x}_{2} \in S$ for $0 \leq \lambda \leq 1$
A simple inductive argument shows that for $\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathbf{N}} \in S$, the weighted average or convex combination lies in the set:
$\lambda_{1} \mathbf{x}_{1}+\cdots+\lambda_{N} \mathbf{x}_{\mathbf{N}} \in S$ for $\lambda_{1}+\cdots+\lambda_{N}=1$

XOR not linearly separable

- Half-spaces are convex
- Suppose there were some feasible hypothesis. If the positive examples are in the positive half-space, because of convexity of a half-space, the green line segment must be in that half-space as well.
- Similarly, red line segment must lie within the negative half-space.

- But the intersection of these two line segments can't lie in both positive and negative half-spaces, as a point is either positive or negative, but not both. This is a contradiction!

A more troubling example

These images represent 16 -dimensional vectors. Want to distinguish patterns A and B in all possible translations (with wrap-around).

Q : What is the difference between A and B ?
We can show that a linear model cannot classify all translations of patterns A and B correctly.

A more troubling example

- Suppose there's a feasible solution. Focus on Pattern A:
- If \mathbf{x}_{1} and \mathbf{x}_{2} are two translations of pattern A and they are correctly classified as pattern A, because of convexity of half-spaces induced by a linear model, their convex combination is classified as pattern A too.
- We can extend this argument for all possible translations of pattern A.
- The average of all translations of A, which is a convex combination of them, is the vector $(0.25,0.25, \cdots, 0.25)$. This point is also classified as pattern A.
- Now focus on Pattern B. With a similar argument, the average of all translations of B is also $(0.25,0.25, \cdots, 0.25)$. This point must also be classified as pattern B.
- The same point is classified as pattern A and B. Contradiction!

(Nonlinear) Feature Maps

Sometimes, we can overcome this limitation with nonlinear feature maps

$$
\Psi(\mathbf{x})=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{1} x_{2}
\end{array}\right)
$$

x_{1}	x_{2}	$\phi_{1}(\mathbf{x})$	$\phi_{2}(\mathbf{x})$	$\phi_{3}(\mathbf{x})$	t
0	0	0	0	0	0
0	1	0	1	0	1
1	0	1	0	0	1
1	1	1	1	1	0

This is linearly separable (Try it!)
... but generally, it can be hard to pick good basis functions.
We'll use neural nets to learn nonlinear hypotheses directly.

Section 2

From Brain to Artificial Neural Networks

Neuron

Our brain has $\sim 10^{11}$ neurons, each of which communicates (is connected) to $\sim 10^{4}$ other neurons
impulses carried
toward cell body

Neuron Anatomy

- The dendrites, which are connected to other cells that provide information.
- The cell body, which consolidates information from the dendrites.
- The axon, which is an extension from the cell body that passes information to other cells.
- The synapse, which is the area where the axon of one neuron and the dendrite of another connect.

Inspiration: The Brain

Figure 1: Brain mass and total number of neurons for the mammalian species.

Image credit: Suzana Herculano-Houzel, The Human Brain in Numbers: A Linearly Scaled-up Primate Brain, 2009.

What does a neuron do?

A neuron receives input signals from other neurons and accumulate voltage. If the accumulated voltage passes a threshold, it fires spiking responses. This spreads along the axon to the synapse, then to the next neurons.

Right image credit: https://en.wikipedia.org/wiki/Action_potential

What makes a neuron fire?

Neurons can fire in response to...

- retinal cells
- certain edges, lines, angles, movements
- hands and faces (in primates)
- specific people (in humans)
- The existence of these "grandmother cells" (or "Jennifer Aniston" cell) is contested.

Modeling Individual Neurons

- $x_{1}, x_{2}, \ldots=$ inputs to the neuron
- $w_{1}, w_{2}, \ldots=$ the neuron's weights
- $b=$ the neuron's bias
- $f=$ an activation function
- $f\left(\sum_{i} x_{i} w_{i}+b\right)=$ the neuron's activation (output)

Linear Models as a Single Neuron

- x_{1}, x_{2}, \ldots : inputs
- w_{1}, w_{2}, \ldots : components of the weight vector \mathbf{w}
- b : the bias
- f : identity function
- $y=\sum_{i} x_{i} w_{i}+b=\mathbf{w}^{T} \mathbf{x}+b$

Logistic Regression Model (for Binary Classification) as a
 Single Neuron

- x_{1}, x_{2}, \ldots : inputs
- w_{1}, w_{2}, \ldots : components of the weight vector \mathbf{w}
- b : the bias
- $f=\sigma$
- $y=\sigma\left(\sum_{i} x_{i} w_{i}+b\right)=\sigma\left(\mathbf{w}^{T} \mathbf{x}+b\right)$
- If we use the cross-entropy loss function to train this neuron, this becomes the same as the logistic regression model.

Logistic Regression Models (for Multi-Class Classification) as a Neural Network

We use K neurons (one for each class):

- x_{1}, x_{2}, \ldots : inputs
- $w_{1,1}, w_{1,2}, \ldots$: components of the weight matrix W
- b_{1}, b_{2}, \ldots : components of the bias vector \mathbf{b}
- $f=$ softmax : applied to the entire vector of values
- $\mathbf{y}=\operatorname{softmax}(W \mathbf{x}+\mathbf{b})$: outputs of K neurons

Section 3

Multilayer Perceptrons (Feedforward Fully Connected Neural Networks)

Multilayer Perceptrons (Feedforward Fully Connected Neural Networks)

- We can connect lots of units together into a directed acyclic graph.
- Typically, units are grouped together into layers.
- An input layer: feed in input features (e.g. like retinal cells in your eyes)
- A number of hidden layers
- An output layer: interpret output like a "grandmother cell"
- This gives a feed-forward neural network.

Multilayer Perceptrons (Feedforward FC Neural Networks)

- Each hidden layer i connects N_{i-1} input units to N_{i} output units.
- In the simplest case, all input units are connected to all output units. We call this a fully connected layer. We will consider other layer types later.
- The inputs and outputs for a layer are distinct from the inputs and Outnuts to the notwork

Multilayer Perceptrons (Feedforward FC Neural Networks)

- If we need to compute $M\left[=N_{i}\right]$ outputs from $N=\left[N_{i-1}\right]$ inputs, we can do so in parallel using matrix multiplication. This means we will be using a $M \times N$ weight matrix.
- The output units are a function of the input units:

$$
y=f(x)=\sigma(W x+b)
$$

- A multilayer network consisting of fully connected layers is called a multilayer perceptron. Despite the name, it has nothing to do with the Perceptron algorithm.

But what do these neurons mean?

- Use x_{i} to encode the input
- e.g. pixels in an image
- like the neurons that are connected to the receptors in the eye
- Use y to encode the output (of a binary classification problem)
- e.g. cancer vs. not cancer
- like a "grandmother cell"
- Use $h_{i}^{(k)}$ to denote a unit in the hidden layer
- difficult to interpret

MNIST Digit Recognition

With a logistic regression model, we would have:

- Input: An 28×28 pixel image
- \mathbf{x} is a vector of length 784
- Target: The digit represented in the image - \mathbf{t} is a one-hot vector of length 10
- Model
- $\mathbf{y}=\operatorname{softmax}(W \mathbf{x}+\mathbf{b})$

Adding a Hidden Layer

Two layer neural network

- Input size: 784 (number of features)
- Hidden size: 50 (we choose this number)
- Output size: 10 (number of classes)

Side note about machine learning models

When discussing machine learning and deep learning models, we usually

- first talk about how to make predictions assume the weights are trained
- then talk about how to train the weights

Often the second step requires gradient descent or some other optimization method

Making Predictions: computing the hidden layer

$$
\begin{aligned}
& h_{1}=f\left(\sum_{i=1}^{784} w_{1, i}^{(1)} x_{i}+b_{1}^{(1)}\right) \\
& h_{2}=f\left(\sum_{i=1}^{784} w_{2, i}^{(1)} x_{i}+b_{2}^{(1)}\right)
\end{aligned}
$$

Making Predictions: computing the output (pre-activation)

$$
\begin{aligned}
& z_{1}=\sum_{j=1}^{50} w_{1, j}^{(2)} h_{j}+b_{1}^{(2)} \\
& z_{2}=\sum_{j=1}^{50} w_{2, j}^{(2)} h_{j}+b_{2}^{(2)}
\end{aligned}
$$

Making Predictions: applying the output activation

$$
\begin{aligned}
& \mathbf{z}=\left[\begin{array}{l}
z_{1} \\
z_{2} \\
\cdots \\
z_{10}
\end{array}\right] \\
& \mathbf{y}=\operatorname{softmax}(\mathbf{z})
\end{aligned}
$$

Making Predictions: Vectorized

$$
\begin{aligned}
& \mathbf{h}=f\left(W^{(1)} \mathbf{x}+\mathbf{b}^{(1)}\right) \\
& \mathbf{z}=W^{(2)} \mathbf{h}+\mathbf{b}^{(2)} \\
& \mathbf{y}=\operatorname{softmax}(\mathbf{z})
\end{aligned}
$$

Activation Functions: common choices

Common Choices:

- Sigmoid activation
- Tanh activation
- ReLU activation

Rule of thumb: Start with ReLU activation. If necessary, try tanh.

Activation Function: Sigmoid

- somewhat problematic due to gradient signal
- all activations are positive

Activation Function: Tanh

- scaled version of the sigmoid activation
- also somewhat problematic due to gradient signal
- activations can be positive or negative

Activation Function: ReLU

- most often used nowadays
- all activations are positive
- easy to compute gradients
- can be problematic if the bias is too large and negative, so the activations are always 0

Feature Learning

Neural nets can be viewed as a way of learning features:

The goal is for these features to become linearly separable:

Expressive Power: Linear Layers (No Activation Function)

- We've seen that there are some functions that linear classifiers can't represent. Are deep networks any better?
- Any sequence of linear layers (with no activation function) can be equivalently represented with a single linear layer.

$$
\begin{aligned}
\mathbf{y} & =\underbrace{W^{(3)} W^{(2)} W^{(1)}} \mathbf{x} \\
& =W^{\prime} \mathbf{x}
\end{aligned}
$$

- Deep linear networks are no more expressive than linear models.
- But the dynamics of training can be different than a single layer linear model.
- We need to have nonlinearities to increase expressivity of NN.

Expressive Power: MLP (nonlinear activation)

- Multilayer feed-forward neural nets with nonlinear activation functions are universal approximators: they can approximate any function arbitrarily well.
- This has been shown for various activation functions (thresholds, logistic, ReLU, etc.)
- Even though ReLU is "almost" linear, it's nonlinear enough!

Designing a network to classify XOR

Assume hard threshold activation function

Note that x_{1} XOR $x_{2}=\left[\begin{array}{lll}x_{1} & \text { OR } x_{2}\end{array}\right]$ AND [NOT $\left(x_{1}\right.$ AND $\left.\left.x_{2}\right)\right]$

Designing a network to classify XOR

- h_{1} computes $\mathbb{I}\left[x_{1}+x_{2}-0.5>0\right]$
- i.e. x_{1} OR x_{2}
- h_{2} computes $\mathbb{I}\left[x_{1}+x_{2}-1.5>0\right]$
- i.e. x_{1} AND x_{2}
- y computes $\mathbb{I}\left[h_{1}-h_{2}-0.5>0\right] \equiv \mathbb{I}\left[h_{1}+\left(1-h_{2}\right)-1.5>0\right]$
- i.e. h_{1} AND $\left(\right.$ NOT $\left.h_{2}\right)=x_{1}$ XOR x_{2}

Expressive Power: Universality for binary inputs and targets

- Hard threshold hidden units, linear output
- Strategy: 2^{D} hidden units, each of which responds to one particular input configuration
- Only requires one hidden layer, though it needs to be extremely wide.

Expressive Power

- What about the logistic activation function?
- You can approximate a hard threshold by scaling up the weights and biases:

$$
y=\sigma(x)
$$

$$
y=\sigma(5 x)
$$

- This is good: logistic units are differentiable, so we can train them with gradient descent.

Expressive Power

Let us do some exercises ...

- Q: How can we represent the function that takes value of +1 in $x \in[1,2]$ and 0 elsewhere using a simple NN with hard threshold activation function?

Expressive Power

Let us do some exercises ...

- Q: How can we approximately represent the function that takes value of +1 in $x \in[1,2]$ and 0 elsewhere using a simple NN with ReLU activation function?

Limits of universality results

- You may need to represent an exponentially large network.
- How can you find the appropriate weights to represent a given function?
- If you can learn any function, you might just overfit.
- We desire a compact representation.

Computing XOR Demo

Demo: https://playground.tensorflow.org/

Section 4

Backpropagation

Training Neural Networks

- How do we find good weights for the neural network?
- We can continue to use the loss functions:
- cross-entropy loss for classification
- square loss for regression
- The neural network operations we used (weights, etc) are continuous

We can use gradient descent!

Gradient Descent Recap

- Start with a set of parameters (initialize to some value)
- Compute the gradient $\frac{\partial \mathcal{E}}{\partial w}$ for each parameter (also $\frac{\partial \mathcal{E}}{\partial b}$)
- This computation can often vectorized
- Update the parameters towards the negative direction of the gradient

Gradient Descent for Neural Networks

- Conceptually, the exact same idea!
- However, we have more parameters than before
- Higher dimensional
- Harder to visualize
- More "steps"

Since $\frac{\partial \mathcal{E}}{\partial w}$, is the average of $\frac{\partial \mathcal{L}}{\partial w}$ across training examples, we'll focus on computing $\frac{\partial \mathcal{L}}{\partial w}$

Univariate Chain Rule

Recall: if $f(x)$ and $x(t)$ are univariate functions, then

$$
\frac{d}{d t} f(x(t))=\frac{d f}{d x} \frac{d x}{d t}
$$

Univariate Chain Rule for Least Squares with a Logistic Model

Recall: Univariate logistic least squares model

$$
\begin{aligned}
z & =w x+b \\
y & =\sigma(z) \\
\mathcal{L} & =\frac{1}{2}(y-t)^{2}
\end{aligned}
$$

Let's compute the loss derivative

Univariate Chain Rule Computation (1)

How you would have done it in calculus class

$$
\begin{aligned}
\mathcal{L} & =\frac{1}{2}(\sigma(w x+b)-t)^{2} \\
\frac{\partial \mathcal{L}}{\partial w} & =\frac{\partial}{\partial w}\left[\frac{1}{2}(\sigma(w x+b)-t)^{2}\right] \\
& =\frac{1}{2} \frac{\partial}{\partial w}(\sigma(w x+b)-t)^{2} \\
& =(\sigma(w x+b)-t) \frac{\partial}{\partial w}(\sigma(w x+b)-t) \\
& =(\sigma(w x+b)-t) \sigma^{\prime}(w x+b) \frac{\partial}{\partial w}(w x+b) \\
& =(\sigma(w x+b)-t) \sigma^{\prime}(w x+b) x
\end{aligned}
$$

Univariate Chain Rule Computation (2)

Similarly for $\frac{\partial \mathcal{L}}{\partial b}$

$$
\begin{aligned}
\mathcal{L} & =\frac{1}{2}(\sigma(w x+b)-t)^{2} \\
\frac{\partial \mathcal{L}}{\partial b} & =\frac{\partial}{\partial b}\left[\frac{1}{2}(\sigma(w x+b)-t)^{2}\right] \\
& =\frac{1}{2} \frac{\partial}{\partial b}(\sigma(w x+b)-t)^{2} \\
& =(\sigma(w x+b)-t) \frac{\partial}{\partial b}(\sigma(w x+b)-t) \\
& =(\sigma(w x+b)-t) \sigma^{\prime}(w x+b) \frac{\partial}{\partial b}(w x+b) \\
& =(\sigma(w x+b)-t) \sigma^{\prime}(w x+b)
\end{aligned}
$$

Univariate Chain Rule Computation (2)

Similarly for $\frac{\partial \mathcal{L}}{\partial b}$

$$
\begin{aligned}
\mathcal{L} & =\frac{1}{2}(\sigma(w x+b)-t)^{2} \\
\frac{\partial \mathcal{L}}{\partial b} & =\frac{\partial}{\partial b}\left[\frac{1}{2}(\sigma(w x+b)-t)^{2}\right] \\
& =\frac{1}{2} \frac{\partial}{\partial b}(\sigma(w x+b)-t)^{2} \\
& =(\sigma(w x+b)-t) \frac{\partial}{\partial b}(\sigma(w x+b)-t) \\
& =(\sigma(w x+b)-t) \sigma^{\prime}(w x+b) \frac{\partial}{\partial b}(w x+b) \\
& =(\sigma(w x+b)-t) \sigma^{\prime}(w x+b)
\end{aligned}
$$

Q: What are the disadvantages of this approach?

A More Structured Way to Compute the Derivatives

$$
\begin{array}{ll}
z=w x+b & \frac{d \mathcal{L}}{d y}=y-t \\
y=\sigma(z) & \frac{d \mathcal{L}}{d z}=\frac{d \mathcal{L}}{d y} \sigma^{\prime}(z) \\
\mathcal{L}=\frac{1}{2}(y-t)^{2} & \frac{\partial \mathcal{L}}{\partial w}=\frac{d \mathcal{L}}{d z} x \\
& \frac{\partial \mathcal{L}}{\partial b}=\frac{d \mathcal{L}}{d z}
\end{array}
$$

Less repeated work; easier to write a program to efficiently compute derivatives

Computation Graph

We can diagram out the computations using a computation graph.
Compute Loss

Compute Derivatives

The nodes represent all the inputs and computed quantities
The edges represent which nodes are computed directly as a function of which other nodes.

Chain Rule (Error Signal) Notation

- Use \bar{y} to denote the derivative $\frac{d \mathcal{L}}{d y}$
- sometimes called the error signal
- This notation emphasizes that the error signals are just values our program is computing (rather than a mathematical operation).
- This is notation introduced by Prof. Roger Grosse, and not standard notation

$$
\begin{array}{ll}
z=w x+b & \bar{y}
\end{array}=\frac{\partial \mathcal{L}}{\partial y}=y-t, ~\left(\bar{z}=\frac{\partial \mathcal{L}}{\partial z}=\bar{y} \sigma^{\prime}(z)\right.
$$

Multiclass Logistic Regression Computation Graph

In general, the computation graph fans out:

$$
\begin{aligned}
z_{l} & =\sum_{j} w_{l j} x_{j}+b_{l} \\
y_{k} & =\frac{e^{z_{k}}}{\sum_{l} e^{z_{l}}} \\
\mathcal{L} & =-\sum_{k} t_{k} \log y_{k}
\end{aligned}
$$

There are multiple paths for which a weight like w_{11} affects the loss L.

Multivariate Chain Rule

Suppose we have a function $f(x, y)$ and functions $x(t)$ and $y(t)$. (All the variables here are scalar-valued.) Then

$$
\frac{d}{d t} f(x(t), y(t))=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}
$$

Multivariate Chain Rule Example

If $f(x, y)=y+e^{x y}, x(t)=\cos t$ and $y(t)=t^{2} \ldots$

$$
\begin{aligned}
\frac{d}{d t} f(x(t), y(t)) & =\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t} \\
& =\left(y e^{x y}\right) \cdot(-\sin t)+\left(1+x e^{x y}\right) \cdot 2 t
\end{aligned}
$$

Multivariate Chain Rule Notation

In our notation

$$
\bar{t}=\bar{x} \frac{d x}{d t}+\bar{y} \frac{d y}{d t}
$$

The Backpropagation Algorithm

- Backpropagation is an algorithm to compute gradients efficiency
- Forward Pass: Compute predictions (and save intermediate values)
- Backwards Pass: Compute gradients
- The idea behind backpropagation is very similar to dynamic programming
- Use chain rule, and be careful about the order in which we compute the derivatives

Backpropagation Example (on the board)

Backpropagation for a MLP

Forward pass:

$$
\begin{aligned}
z_{i} & =\sum_{j} w_{i j}^{(1)} x_{j}+b_{i}^{(1)} \\
h_{i} & =\sigma\left(z_{i}\right) \\
y_{k} & =\sum_{i} w_{k i}^{(2)} h_{i}+b_{k}^{(2)} \\
\mathcal{L} & =\frac{1}{2} \sum_{k}\left(y_{k}-t_{k}\right)^{2}
\end{aligned}
$$

Backward pass:

$$
\begin{aligned}
\overline{\mathcal{L}} & =1 \\
\overline{y_{k}} & =\overline{\mathcal{L}}\left(y_{k}-t_{k}\right) \\
\overline{w_{k i}^{(2)}} & =\overline{y_{k}} h_{i} \\
\overline{b_{k}^{(2)}} & =\overline{y_{k}}
\end{aligned}
$$

$$
\overline{h_{i}}=\sum_{k} \overline{y_{k}} w_{k i}^{(2)}
$$

$$
\overline{z_{i}}=\overline{h_{i}} \sigma^{\prime}\left(z_{i}\right)
$$

$$
\begin{aligned}
\overline{w_{i j}^{(1)}} & =\overline{z_{i}} x_{j} \\
\overline{b_{i}^{(1)}} & =\overline{z_{i}}
\end{aligned}
$$

Backpropagation for a MLP (Vectorized)

Forward pass:

$$
\begin{aligned}
& \mathbf{z}=W^{(1)} \mathbf{x}+\mathbf{b}^{(1)} \\
& \mathbf{h}=\sigma(\mathbf{z}) \\
& \mathbf{y}=W^{(2)} \mathbf{h}+\mathbf{b}^{(2)} \\
& \mathcal{L}=\frac{1}{2}\|\mathbf{y}-\mathbf{t}\|^{2}
\end{aligned}
$$

Backward pass:

$$
\begin{aligned}
\overline{\mathcal{L}} & =1 \\
\overline{\mathbf{y}} & =\overline{\mathcal{L}}(\mathbf{y}-\mathbf{t}) \\
\overline{W^{(2)}} & =\overline{\mathbf{y}}{ }^{T} \\
\overline{\mathbf{b}^{(2)}} & =\overline{\mathbf{y}} \\
\overline{\mathbf{h}} & =W^{(2)^{T}} \bar{y} \\
\overline{\mathbf{z}} & =\overline{\mathbf{h}} \circ \sigma^{\prime}(\mathbf{z}) \\
\overline{W^{(1)}} & =\overline{\mathbf{z}} \mathbf{x}^{T} \\
\overline{\mathbf{b}^{(1)}} & =\overline{\mathbf{z}}
\end{aligned}
$$

Implementing Backpropagation

Forward pass: Each node...

- receives messages (inputs) from its parents
- uses these messages to compute its own values

Backward pass: Each node...

- receives messages (error signals) from its children
- uses these messages to compute its own error signal
- passes message to its parents

This algorithm provides modularity!

Backpropagation in Vectorized Form

- Consider this computation graph:

- Backprop rules:

$$
\mathbf{z} \in \mathcal{R}^{N}, \mathbf{y} \in \mathcal{R}^{M} \quad \overline{z_{j}}=\sum_{k} \overline{y_{k}} \frac{\partial y_{k}}{\partial z_{j}} \quad \overline{\mathbf{z}}=\frac{\partial \mathbf{y}}{\partial \mathbf{z}}^{\top} \overline{\mathbf{y}}
$$

where $\partial \mathbf{y} / \partial \mathbf{z}$ is the Jacobian matrix (note: check the matrix shapes):

$$
\left(\frac{\partial \mathbf{y}}{\partial \mathbf{z}}\right)_{M \times N}=\left(\begin{array}{ccc}
\frac{\partial y_{1}}{\partial z_{1}} & \cdots & \frac{\partial y_{1}}{\partial z_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial y_{m}}{\partial z_{1}} & \cdots & \frac{\partial y_{m}}{\partial z_{n}}
\end{array}\right)
$$

Backpropagation in practice

- Backprop is used to train the overwhelming majority of neural nets today.
- Even optimization algorithms much fancier than gradient descent (e.g. second-order methods) use backprop to compute the gradients.
- Despite its practical success, backprop is believed to be neurally (biologically) implausible.
- No evidence for biological signals analogous to error derivatives.
- All the biologically plausible alternatives we know about learn much more slowly (on computers).
- So how on earth does the brain learn?

Section 5

What to do this week?

What to do this week?

- Programming HW 1 is out.
- Math HW 1 is out too.
- Attend your tutorial session after the lecture!
- The HWs are due next Friday.

