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Lecture Plan

Last week:

From linear models to multilayer perceptrons
Backpropagation to compute gradients efficiently

This week:

Automatic differentiation
Distributed representations
GloVe embeddings
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Section 1

Automatic Differentiation (Autodiff)
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Derivatives in Machine Learning

The machine learning approach requires the minimization of some cost/loss
function, which is often done using some variation of gradient descent.

θ ← θ − α
∂E
∂θ

Approaches to computing derivatives:
1 Manually working out derivatives
2 Numeric differentiation (using finite difference approximations)
3 Symbolic differentiation (using expression manipulation)
4 Automatic differentiation or algorithmic differentiation
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Terminology

Automatic differentiation (Autodiff): refers to a general way of
taking a program, which computes a value, and automatically
constructing a procedure for computing the derivatives of that value.

Convert the program into a sequence of primitive operations, which have
specified routines for computing derivatives, and then computing
gradients in a mechanical way via the chain rule.
Also used in computational fluid dynamics, atmospheric sciences, etc.

Backpropagation: special case of autodiff where the program is a
neural network forward pass.

Autograd, JAX, PyTorch, TensorFlow are examples of particular
implementations of autodiff, i.e., different libraries.
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Backpropagation

Steps:

Convert the computation into a sequence of primitive operations
Primitive operations have easily computed derivatives

Build the computation graph
Perform a forward pass: compute the values of each node
Perform the backward pass: compute the derivative of the loss with
respect to each node
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Autodiff, more generally

We discuss how an automatic differentiation library could be implemented
at the high level.

build the computation graph
vector-Jacobian products (VJP) for primitive ops
perform the backward pass

You will probably never have to implement autodiff yourself but it is good
to know its inner workings!

Key Insight: For any new deep learning model that we can come up with,
if each step of our computation is differentiable, then we can train that
model using gradient descent.
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Scalar Example

def f(x):
h = 1.5
for i in range(3):

h = x * 1.5 + h
return x * h

Notation: x is the input, y = f (x) is the output, we want to compute dy
dx

Automatic Differentiation Steps:

convert the computation into a sequence of primitive operations
we need to be able to compute derivatives for these primitive operations

build the computation graph
perform forward pass
perform backward pass
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Scalar Example: Primitive Ops

def f(x):
h = 1.5
for i in range(3):

h = x * 1.5 + h
return x * h

Operations:

h0 = 1.5
z1 = x * 1.5
h1 = z1 + h0
z2 = x * 1.5
h2 = z2 + h1
z3 = x * 1.5
h3 = z3 + h2
y = x * h3
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Scalar Example: Computation Graph

Exercise: Draw the computation graph:

h0 = 1.5
z1 = x * 1.5
h1 = z1 + h0
z2 = x * 1.5
h2 = z2 + h1
z3 = x * 1.5
h3 = z3 + h2
y = x * h3

Based on the computation graph, we can compute dy
dx via a forward and a

backward pass.
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Vector Inputs and Outputs

More generally, input/output to a computation may be vectors

def f(a, w): # a and w are both vectors with size 10
h = a
for i in range(3):

h = np.dot(w, h) + h
z = w * h # element wise multiplication
return z

So we have y = f(x) (in this example, x consists of values in both a and w)

Q: In our running example, what are the dimensions of x and y?
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The Jacobian Matrix

We wish to compute the partial derivative ∂yk
∂xi

for each k and i , at some x.

If we consider all k and i , these partial derivatives form the Jacobian
matrix of y w.r.t. x:

Jf (x) =


∂y1
∂x1

(x) . . . ∂y1
∂xn

(x)
... . . . ...

∂ym
∂x1

(x) . . . ∂ym
∂xn

(x)


Note that we usually want to avoid explicitly constructing the entries of this
Jacobian one by one.

Why? Computing all the partial derivatives one by one is expensive, even
with backprop.
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Decomposing Into Primitive Operations

Suppose f = f2 ◦ f1, so we have the computations y = f2 ◦ f1(x), or in other
words:

z = f1(x)
y = f2(z)

If f1 and f2 are primitive operations with simple Jacobians, we can apply the
Jacobian chain rule:

Jf2◦f1(x) = Jf2(z)Jf1(x)
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Avoiding Jacobian Products

In practice, computing entries of Jacobians one by one is expensive and we
try to avoid it:

If the dimension of y = f (x) is small, use reverse-mode automatic
differentiation
If the dimension of x is small, use forward-mode automatic
differentiation

Q: Which of these two cases apply to deep learning most often?
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Reverse-Mode Automatic Differentiation

Suppose y is a scalar, and represents the loss L that we wish to minimize.

z = f1(x)
L = f2(z) = y ∈ R

Then we have:

z̄ = ∂L
∂z = Jf2(z)T

Since x̄j =
∑

i z̄i
∂zi
∂xj

. . . we have x̄T = z̄T Jf1(x)

. . . which is a vector-Jacobian product

Summary: For each primitive operation, we don’t need to be able to
compute entire Jacobian matrix. We need to be able to compute the
vector-Jacobian product.
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Vector Jacobian Products

For each primitive operation, we must specify the VJPs for each of its
arguments

The VJP function should take in the output gradient (i.e. ȳ), the answer
(y), and the arguments (x), and returns the input gradient (x̄)

Here are some examples from https://github.com/mattjj/autodidact/blob/
master/autograd/numpy/numpy_vjps.py

defvjp(anp.negative, lambda g, ans, x: -g)
defvjp(anp.exp, lambda g, ans, x: ans * g)
defvjp(anp.log, lambda g, ans, x: g / x)

defvjp(anp.add, lambda g, ans, x, y : unbroadcast(x, g),
lambda g, ans, x, y : unbroadcast(y, g))

defvjp(anp.multiply, lambda g, ans, x, y : unbroadcast(x, y * g),
lambda g, ans, x, y : unbroadcast(y, x * g))

defvjp(anp.subtract, lambda g, ans, x, y : unbroadcast(x, g),
lambda g, ans, x, y : unbroadcast(y, -g))
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Backprop as Message Passing

Each node in the computation graph receives messages from its
children, which it aggregates to compute its error signal
Messages then get passed to its parents
Each message is a VJP

This design provides modularity! Each node needs to know how to
compute its outgoing messages, i.e. the VJPs corresponding to each of its
parents (arguments to the function).
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Differentiable Programming

Recall the key insight from earlier: For any new deep learning model that
we can come up with, if each step of our computation is differentiable, then
we can train that model using gradient descent.

Example: Learning to learning by gradient descent by gradient descent
https://arxiv.org/abs/1606.04474

With AD, any program that has differentiable components can be optimized
via gradient descent
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Autodiff, more generally

This video explains the different ways to automatically compute derivatives:

https://www.youtube.com/watch?v=wG_nF1awSSY

manual
finite differences
symbolic differentiation
autodiff (forward-mode and reverse-mode differentiation)

how to avoid computing Jacobians one by one
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Section 2

Distributed Representations
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Feature Mapping

Learning good representations is an important goal in machine learning
These representations are also called feature mappings, or embeddings
The representations we learn are often reusable for other tasks
We can find good representations through an unsupervised learning
formulation
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Language Modeling

A language model. . .

Models the probability distribution of natural language text.
Determine the probability p(s) that a sequence of words (or a
sentence) s occurs in text.

A language model gives us a way to compute p(s)
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Why language models p(s)?
Determine authorship:

build a language model p(s) of Shakespeare
determine whether a script is written by Shakespeare

Generate a machine learning paper (given a corpus of machine learning
papers)

Use as a prior for a speech recognition system p(s|a), where a
represents the observed speech signal.

An observation model, or likelihood, represented as p(a|s), which tells
us how likely the sentence s is to lead to the acoustic signal a.
A prior, represented as p(s) which tells us how likely a given sentence s
is. For example, “recognize speech” is more likely than “wreck a nice
beach”
Use Bayes rule to infer a posterior distribution over sentences given the
speech signal:

p(s|a) = p(s)p(a|s)∑
s′ p(s ′)p(a|s′)
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Training a Language Model

Assume we have a corpus of sentences s(1), . . . , s(N).

The maximum likelihood criterion says we want our model to maximize
the probability that our model assigns to the observed sentences. We
assume the sentences are independent, so that their probabilities multiply.

In maximum likelihood training, we want to maximize
∏N

i=1 p(s(i)).

This is equivalent to maximizing
∑N

i=1 log p(s(i)), or minimizing

−
N∑

i=1
log p(s(i)).

Since p(s) is usually small, − log p(s) is reasonably sized, positive numbers.
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Probability of a sentence

A sentence is a sequence of words w1, w2, . . . , wT , so

p(s) = p(w1, w2, . . . , wT )
= p(w1)p(w2|w1)p(w3|w1, w2) . . . p(wT |w1, w2, . . . , wT−1).

We can make a simplifying Markov assumption that the distribution over
the next word depends on the preceding few words. For example, a context
length of 3 means that we approximate

p(wt |w1, w2, . . . , wt−1) ≈ p(wt |wt−3, wt−2, wt−1)
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N-Gram Language Model
A simple way of modeling p(wt |wt−2, wt−1) is by constructing a table of
conditional probabilities:

cat and city · · ·
the fat 0.21 0.003 0.01

four score 0.0001 0.55 0.0001 · · ·
New York 0.002 0.0001 0.48

...
...

Where the probabilities come from the empirical distribution:

p(w3 = cat|w1 = the, w2 = fat) = p(w1 = the, w2 = fat, w3 = cat)
p(w1 = the, w2 = fat)

≈ count(the fat cat)
count(the fat) .

The phrases we’re counting are called n-grams (where n is the length), so
this is an n-gram language model. (Note: the above example is
considered a 3-gram model, not a 2-gram model!)
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Example: Shakespeare N-Gram Language Model

Sentences randomly generated from several n-grams computed from
Shakespeare’s works.
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Problems with N-Gram Language Model

The number of entries in the conditional probability table is
exponential in the context length.
Data sparsity: most n-grams never appear in the corpus, even if they
are possible.

Ways to deal with data sparsity:

Use a short context (but this means the model is less powerful).
Smooth the probabilities, e.g. by adding imaginary counts.
Make predictions using an ensemble of n-gram models with different ns.
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Localist vs Distributed Representations

Conditional probability tables are a kind of localist representation: all the
information about a particular word is stored in one place: a column of the
table.

But different words are related, so we ought to be able to share information
between them.
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Distributed Representations: Word Attributes

academic politics plural person building
students 1 0 1 1 0
colleges 1 0 1 0 1

legislators 0 1 1 1 0
schoolhouse 1 0 0 0 1

Idea:
1 use the word attributes to predict the next word.
2 learn the word attributes using an MLP with backpropagation
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Sharing Information

Distributed representations allows us to share information between related
words. E.g., suppose we’ve seen the sentence

The cat got squashed in the garden on Friday.

This should help us predict the words in the sentence
The dog got flattened in the yard on (???)

An n-gram model can’t generalize this way, but a distributed representation
might let us do so.
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Neural Language Model (Assignment 1)
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Word Representations

Since we are using one-hot encodings for the words, the weight matrix of
the word embedding layer acts like a lookup table.

Terminology:

Embedding emphasizes that it’s a location in a high-dimensional
space; words that are closer together are more semantically similar.
Feature vector emphasizes that it’s a vector that can be used for
making predictions, just like other feature mappings we’ve looked at
(e.g. polynomials).
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What do word embeddings look like?

It’s hard to visualize an n-dimensional space, but there are algorithms for
mapping the embeddings to two dimensions.

In assignment 1, we use algorithm called tSNE, which tries to make
distances in the 2-D embedding match the original high-dimensional
distances as closely as possible.
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A note about these visualizations

Thinking about high-dimensional embeddings
Most vectors are nearly orthogonal (i.e. dot product is close to 0)
Most points are far away from each other
“In a 30-dimensional grocery store, anchovies can be next to fish and
next to pizza toppings” - Geoff Hinton

The 2D embeddings might be fairly misleading, since they can’t
preserve the distance relationship from a higher-dimensional embedding.
(Unrelated words might be close together in 2D but far apart in 3D)
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Section 3

GloVe Embeddings
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GloVe

Fitting language models is really hard
It’s really important to make good predictions about relative
probabilities of rare words
Computing the predictive distribution requires a large softmax

Maybe this is overkill if all you want is word representations
Global Vector (GloVe) embeddings are a simpler and faster approach
based on a matrix factorization similar to principal component analysis
(PCA)

Idea: First fit the distributed word representations using GloVe, then plug
these embeddings into a neural net that does some other task
(e.g. translation)
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Co-occurrence matrix
Consider these sentences: “The cat got squashed in the garden on Friday.
The dog got flattened in the yard on Thursday.”

the cat dog got squashed

the 0 1 1 2 0
cat 1 0 0 1 1
dog
got
squashed

Consider a vocabulary size of V . The co-occurrence matrix X is a V × V matrix
that counts the number of times the words appear nearby. Its Xij entry is the
number of times word i occurs in the context of word j . The context of a word in
a sentence is the window of nearby words.

Example: a context of size 5 are two words before and two words after a word. The
context of “squashed” is “cat got squashed in the”. Exercise: Fill the
co-occurrence matrix with a context size of 5.
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GloVe Embedding Training

Key insight: The co-occurrence matrix of words within the same context
(nearby) contain information about the semantic information (meaning) of
words

For example, words “ice” and “water” are more likely to appear closer
to each than “ice” and “fashion”.

In particular, the ratio of co-occurrences encodes semantic information!
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Language Model as Matrix Factorization

Suppose we fit a rank-K approximation

X ≈ RR̂T

Where R and R̂ are V × K matrices

Each row ri of R is the K-dimensional representation of a word.
Each entry of X is approximated as xij ≈ r⊤

i r̂j
Minimizing the squared Frobenius norm of the ||X− RR̂T ||2F is
basically PCA
There are some other tricks to make the optimization work
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Global Vector (GloVe) Embedding

GloVe is based on this matrix factorization idea, but with some twists. For
example:

Problem: Word counts are heavy-tail distributed (some words very
frequently used, lots of infrequent words). The most common words will
dominate the cost function.

Solution: Approximate log xij instead of xij

Problem: X is extremely large, so fitting the above factorization using least
squares is infeasible.

Solution: Reweight the entries so that only nonzero counts matter
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GloVe embedding cost function

J (R) =
∑
i ,j

f (xij)(rT
i r̂j + bi + b̂j − log xij)2

f (xij) = ( xij
100) 3

4 if xij < 100 and 1 otherwise.
bi and b̃j are bias parameters.
We can avoid computing log 0 since f (0) = 0.
We only need to consider the nonzero entries of X. This gives a big
computational savings since X is extremely sparse!

January 23/25, 2024 CSC413 Neural Networks and Deep Learning 43 / 47



GloVe Embeddings

Pre-trained models are available for download:

https://nlp.stanford.edu/projects/glove/

Practitioners often use these embeddings to do other language modeling
tasks.
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GloVe Embedding Demo

Demo on Google Colab

https://colab.research.google.com/drive/1aNbE6HcawVF67RV0hWi4qK3
3Um7cKykr?usp=sharing
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Key idea from the Demo

Distances are somewhat meaningful, and are based on word
co-occurrences

the words “black” and “white” will have similar embeddings because
they co-occur with similar other words.
“cat” and “dog” is more similar to each other than “cat” and “kitten”
because the latter two words occur in different contexts!

Word Analogies: Directions in the embedding space can be meaningful
“king” - “man” + “woman” ≈ “queen”

Bias in Word Embeddings (and Neural Networks in General)
neural networks pick up pattern in the data
these patterns can be biased and discriminatory
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Bias and Fairness

Word embeddings are inherently biased because there is bias in the training
data.

Neural networks learn patterns in the training data, so if the training data
contains human biases, then so will the trained model! This effect was seen
in:

criminal sentencing: https://www.propublica.org/article/machine-bias-
risk-assessments-in-criminal-sentencing
predictive policing:
https://www.technologyreview.com/2020/07/17/1005396/predictive-
policing-algorithms-racist-dismantled-machine-learning-bias-criminal-
justice/
resume filtering: https://www.reuters.com/article/us-amazon-com-
jobs-automation-insight-idUSKCN1MK08G
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