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Section 1

Computer Vision Problem
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Computer vision is hard

Object change in pose, size, viewpoint, background, illumination
Some objects are hidden behind others: occlusion
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Computer vision is really hard

How can you “hard code” an algorithm that still recognizes that this is a
cat?
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Convolutional Layer: A New Layer

So far in the course, we have seen two types of layers:

Fully connected layer
Embedding layer (i.e. lookup tables)

Different layers could be stacked together to build powerful models.

Let’s add another layer type: convolution layer

Convolutional layers have inductive biases suitable for computer vision
tasks.
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Working with Small Images

Consider MNIST images, which are 28 × 28 black and white images.
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Logistic Regression Weights

Q: How many parameters do we have here?
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MLP Weights (first layer)
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Working with Large Images

Suppose you have an image that is 200 pixels x 200 pixels
There are 500 units in the first hidden layer

Q: How many parameters will there be in the first layer?

A: 200 × 200 × 500 + 500 = over 20 million!

Q: Why might using a fully connected layer be problematic?

computing predictions (forward pass) will take a long time
large number of weights requires a lot of training data to avoid
overfitting
small shift in image can result in large change in prediction
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Section 2

Convolutional Layers
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Limitation of Fully Connected Layers
Suppose we want to train a network that takes a 200 × 200 RGB image as
input.

Overview

Suppose we want to train a network that takes a 200 ⇥ 200 RGB image as
input.

1000 hidden units

200

200

3

densely connected

What is the problem with having this as the first layer?

Too many parameters! Input size = 200 ⇥ 200 ⇥ 3 = 120K.
Parameters = 120K ⇥ 1000 = 120 million.

What happens if the object in the image shifts a little?
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Figure 1: Fully (or densely) Connect Layer

What is the problem with having this as the first layer?

Too many parameters! Input size = 200 × 200 × 3 = 120K.
Parameters = 120K × 1000 = 120 million.
What happens if the object in the image shifts a little?January 30/ February 1, 2024 CSC413 Neural Networks and Deep Learning 13 / 100



Limitation of Fully Connected Layers

In the fully connected layer, each feature (hidden unit) looks at the entire
image. Since the image is a BIG object, we end up with lots of parameters.Overview

In the fully connected layer, each feature (hidden unit) looks at the entire image.
Since the image is a BIG thing, we end up with lots of parameters.

But, do we really expect to learn a useful feature at the first layer which depends
on pixels that are spatially far away ?
The far away pixels will probably belong to completely di↵erent objects (or object
sub-parts). Very little correlation.
We want the incoming weights to focus on local patterns of the input image.

Jimmy Ba CSC421/2516 Lecture 5: Convolutional Neural Networks & Image Classification 6 / 1

Figure 2: Each neuron connects to all neurons from previous layer

But, do we really expect to learn a useful feature at the first layer which
depends on pixels that are spatially far away?

The far away pixels will probably belong to different objects (or object
sub-parts). Little correlation.

We want the incoming weights to focus on local patterns of the input
image.
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Limitation of Fully Connected Layers

The same sorts of features that are useful in analyzing one part of the
image will probably be useful for analyzing other parts as well.

Examples: edges, corners, contours, object parts

We want a neural net architecture that lets us learn a set of feature
detectors shared at all image locations.
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From Fully Connected to Convolutional Layer

Let’s look at the Fully Connected layer closely:

Convolution Layers

Fully connected layers:

Each hidden unit looks at the entire image.
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Each hidden unit looks at the entire image.
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Locally Connected Layer

Let us limit the number of neurons from previous layer each unit is
connected to. This adds locality.

Convolution Layers

Locally connected layers:

Each column of hidden units looks at a small region of the image.
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Each column of hidden units looks at a small region of the image.
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Locally Connected Layer

Let us see how this actually work. Suppose each neuron has a 3 × 3
connection field.

Q: How many parameters do need to describe the connections of this
neuron?
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Locally Connected Layer

Each neuron has a separate set of weights.

(Remove lines for readability)
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Locally Connected Layer

Hidden unit geometry has a 2D geometry consistent with the input
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Locally Connected Layer
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Locally Connected Layer
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Locally Connected Layer
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Locally Connected Layer
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Locally Connected Layer

Q: Which region of the input is this hidden unit connected to?
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Locally Connected Layer
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Convolution Layers

Similar to locally connected layer, but we share the weights between
neurons.

Convolution Layers

Convolution layers:

Tied weights

Each column of hidden units looks at a small region of the image, and the
weights are shared between all image locations.
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Each column of hidden units looks at a small region of the image, and the
weights are shared between all image locations.
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Convolution Computation

300 =100 × 1 + 100 × 2 + 100 × 1+
100 × 0 + 100 × 0 + 100 × 0+
100 × (−1) + 0 × (−2) + 0 × (−1)

The kernel or filter (middle) contains the trainable weights
In our example, the kernel size is 3 × 3
The “convolved features” is another term for the output hidden
activation
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Convolution Computation

300 =100 × 1 + 100 × 2 + 100 × 1+
100 × 0 + 100 × 0 + 100 × 0+
0 × (−1) + 0 × (−2) + 100 × (−1)
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Convolution Computation (Your Turn!)

Q: What is the value of the highlighted hidden activation?
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Convolution Computation

100 =100 × 1 + 100 × 2 + 100 × 1+
100 × 0 + 100 × 0 + 100 × 0+
0 × (−1) + 100 × (−2) + 100 × (−1)
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Convolution Computation
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Convolution as a Feature Detection Filter

Convolution acts like a filter that glides over the image and detects certain
features.

“Feature”: a pattern in a part of the image, like an edge or shape

“Detection”: output (activation) is high if the feature is present

Let us see how this looks like!
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Sobel Filter - Weights to Detect Horizontal Edges
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Sobel Filter - Weights to Detect Vertical Edges
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Weights to Detect Blobs

Q: What is the kernel size of this convolution?
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How to design kernels/filters?

The kernels (filters) in previous examples were all designed manually.

They could find apparently important features of an image, such as
edges or blobs.

But why do we think those are important features for an image?
More importantly, are they the only important features that can be used
by our AI agent to solve a computer vision task?

What if we learn them instead?
We can in fact treat the values of a kernel/filter as parameters and learn
them.

January 30/ February 1, 2024 CSC413 Neural Networks and Deep Learning 37 / 100



Exercise in Parameter Counting
Before moving on, let us do a quick exercise.

Greyscale input image: 7 × 7

Convolution kernel: 3 × 3

Q: How many hidden units are in the output of this convolution?

Q: How many trainable weights are there?January 30/ February 1, 2024 CSC413 Neural Networks and Deep Learning 38 / 100



Convolution Operator
Why do we call this thing convolution after all?

Convolution is a mathematical operator (similar to addition or
multiplication) that is defined between two signals (or vectors or functions –
depending on the context).

Consider two 1-dimensional signals (or arrays) a and b. Their convolution is
defined as a new signal (or array) whose t-th element is

(a ∗ b)t =
∑

τ

aτ bt−τ .

Some basic properties of the convolution operator:

Commutativity: a ∗ b = b ∗ a
Linearity: a ∗ (λ1b + λ2c) = λ1a ∗ b + λ2a ∗ c

It has many useful properties and interpretations that make it a useful
mathematical concept for signal processing, control theory, probability
theory, machine learning, etc.
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Convolutional Networks

Let’s turn to convolutional networks. These have two kinds of layers:
detection layers (or convolution layers), and pooling layers.

The convolution layer has a set of filters. Its output is a set of feature
maps, each one obtained by convolving the image with a filter.

convolution

826 M.D. Zeiler and R. Fergus

(a) (b)

(c) (d)

Fig. 5. (a): 1st layer features without feature scale clipping. Note that one feature dom-
inates. (b): 1st layer features from Krizhevsky et al. [18]. (c): Our 1st layer features. The
smaller stride (2 vs 4) and filter size (7x7 vs 11x11) results in more distinctive features
and fewer “dead” features. (d): Visualizations of 2nd layer features from Krizhevsky
et al. [18]. (e): Visualizations of our 2nd layer features. These are cleaner, with no
aliasing artifacts that are visible in (d).

1 & 2). This model, shown in Fig. 3, significantly outperforms the architecture
of Krizhevsky et al. [18], beating their single model result by 1.7% (test top-5).
When we combine multiple models, we obtain a test error of 14.8%, an improve-
ment of 1.6%. This result is close to that produced by the data-augmentation
approaches of Howard [15], which could easily be combined with our architec-
ture. However, our model is some way short of the winner of the 2013 Imagenet
classification competition [28].

Table 1. ImageNet 2012/2013 classification error rates. The ∗ indicates models that
were trained on both ImageNet 2011 and 2012 training sets.

Val Val Test
Error % Top-1 Top-5 Top-5

Gunji et al. [12] - - 26.2

DeCAF [7] - - 19.2

Krizhevsky et al. [18], 1 convnet 40.7 18.2 −−
Krizhevsky et al. [18], 5 convnets 38.1 16.4 16.4
Krizhevsky et al. ∗[18], 1 convnets 39.0 16.6 −−
Krizhevsky et al. ∗[18], 7 convnets 36.7 15.4 15.3

Our replication of
Krizhevsky et al. , 1 convnet 40.5 18.1 −−
1 convnet as per Fig. 3 38.4 16.5 −−
5 convnets as per Fig. 3 – (a) 36.7 15.3 15.3

1 convnet as per Fig. 3 but with
layers 3,4,5: 512,1024,512 maps – (b) 37.5 16.0 16.1

6 convnets, (a) & (b) combined 36.0 14.7 14.8

Howard [15] - - 13.5
Clarifai [28] - - 11.7

Varying ImageNet Model Sizes: In Table 2, we first explore the architecture
of Krizhevsky et al. [18] by adjusting the size of layers, or removing them entirely.
In each case, the model is trained from scratch with the revised architecture.
Removing the fully connected layers (6,7) only gives a slight increase in error (in

Image (right) Credit: Zeiler and Fergus, 2013, Visualizing and
understanding convolutional networks
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Convolutional Networks

It is common to apply a linear rectification nonlinearity: yi = max(zi , 0)

convolution linear
rectification

convolution layer

Figure 3: Network Rectify

Why might we do this?

Convolution is a linear operation. Therefore, we need a nonlinearity,
otherwise 2 convolution layers would be no more powerful than 1.
Two edges in opposite directions shouldn’t cancel.
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Other Considerations in using Convolution Layers

What if we have a coloured image? How should we define a
convolutional layer?

What if we want to compute multiple features, instead of just one?

January 30/ February 1, 2024 CSC413 Neural Networks and Deep Learning 42 / 100



Convolution Layer with Coloured Image (RGB)

The kernel becomes a 3-dimensional tensor!

In this example, the kernel has size 3 ×3 × 3
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Convolution Layer with Coloured Image (RGB)

Colour input image: 3 ×7 × 7

Convolution kernel: 3 ×3 × 3

Questions:

How many units are in the output of this convolution?
How many trainable weights are there?
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Terminology

Input image: 3 × 32 × 32

Convolution kernel: 3 ×3 × 3

The number 3 is the number of input channels or input feature
maps
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Detecting Multiple Features

Q: What if we want to detect many features of the input? (i.e. both
horizontal edges and vertical edges, and maybe even other features?)

A: Have many convolutional filters!
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Many Convolutional Filters

Input image: 3 × 7 × 7

Convolution kernel: 3 × 3 × 3× 5

Questions:

How many units are in the output of this convolution?
How many trainable weights are there?
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More Terminology

Input image of size 3 × 32 × 32

Convolution kernel of 3 ×3 × 3× 5

The number 3 is the number of input channels or input feature
maps
The number 5 is the number of output channels or output feature
maps
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Example

Input features: 5 × 32 × 32

Convolution kernel: 5 × 3 × 3 × 10

Questions:

How many input channels are there?
How many output channels are there?
How many units are in the higher layer?
How many trainable weights are there?
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Computing Convolution – A Closer Look

Method 1: translate-and-scale

Figure 4: Conv Impulse
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Computing Convolution – A Closer Look
Method 2: flip-and-filter

Figure 5: Conv Filter
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Computing Convolution – A Closer Look

Convolution can also be viewed as matrix multiplication:

(2, −1, 1) ∗ (1, 1, 2) =


1
1 1
2 1 1

2 1
2


 2

−1
1



Naive method to compute the convolution of two N-dimensional array
has the computational cost of O(N2).
We can use techniques based on Fast Fourier Transform (FFT) to
compute it in O(N log N).
Because of parallelism of modern GPUs, the matrix multiplication
approach is a common and beneficial way to compute the convolution.
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2D Convolution

2D convolution is defined analogously to 1D convolution.

If A and B are two 2-D arrays (or signals), then:

(A ∗ B)ij =
∑

s

∑
t

AstBi−s,j−t .
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Computing 2D Convolution – A Closer Look
Method 1: Translate-and-Scale

Figure 6: 2D Convolution ImpulseJanuary 30/ February 1, 2024 CSC413 Neural Networks and Deep Learning 54 / 100



Computing 2D Convolution – A Closer Look

Method 2: Flip-and-Filter

Figure 7: 2D Convolution Filter
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Section 3

Pooling Layers

January 30/ February 1, 2024 CSC413 Neural Networks and Deep Learning 56 / 100



Consolidating Information

In a neural network with fully-connected layers, we reduced the number of
units in each hidden layer

Q: Why?

To be able to consolidate information, and remove out information not
useful for the current task

Q: How can we consolidate information in a neural network with
convolutional layers?

max pooling, average pooling, strided convolutions
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Max-Pooling

Idea: take the maximum value in each 2 × 2 grid.
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Max-Pooling Example
We can add a max-pooling layer after each convolutional layer
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Average Pooling

Average pooling (compute the average activation of a region)
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Strided Convolution
Instead of pooling, we can use strided convolutions too:

Shift the kernel by 2 (stride=2) when computing the next output feature.

There are many variations. Take a look:

https://arxiv.org/pdf/1603.07285.pdf
https://github.com/vdumoulin/conv_arithmetic
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Equivariance and Invariance

A network’s responses should be robust to translations of the input. But
this can mean two different things.

Convolution layers are equivariant: if you translate the inputs, the
outputs are translated by the same amount.
We’d like the network’s predictions to be invariant: if you translate the
inputs, the prediction should not change.
Pooling layers provide invariance to small translations.

Figure 8: Pooling Invariance
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Early Convolutional Architecture: LeNet Architecture

Input: 32x32 pixel, greyscale image
First convolution has 6 output features (5x5 convolution?)
First subsampling is probably a max-pooling operation
Second convolution has 16 output features (5x5 convolution?)
. . .
Some number of fully-connected layers at the end
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What features do CNN’s detect?
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Section 4

Training a Convolutional Network
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Training a Convolutional Network

Q: How do we train a convolutional net?

A: With backpropagation, of course!

Recall what we need to do: Backprop is a message passing procedure,
where each layer knows how to pass messages backwards through the
computation graph. Let’s determine the updates for convolution layers.

We assume we are given the loss derivatives ȳi ,t with respect to the
output units.
We need to compute the cost derivatives with respect to the input
units and with respect to the weights.

The only novel aspect is how we perform backpropagation with tied weights.

Let us take a close look . . . !
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Convolution Layers

Each layer consists of several feature maps, or channels each of which is
an array.

If the input layer represents a grayscale image, it consists of one
channel. If it represents a color image, it consists of three channels.

Each unit is connected to each unit within its receptive field in the previous
layer. This includes all of the previous layer’s feature maps.

January 30/ February 1, 2024 CSC413 Neural Networks and Deep Learning 67 / 100



Convolution Layers

For simplicity, focus on 1-D signals (e.g. audio waveforms). Suppose the
convolution layer’s input has J feature maps and its output has I feature
maps. Let t index the locations. Suppose the convolution kernels have
radius R, i.e. dimension K = 2R + 1.

Each unit in a convolution layer receives inputs from all the units in its
receptive field in the previous layer:

yi ,t =
J∑

j=1

R∑
τ=−R

wi ,j,τ xj,t+τ .

In terms of convolution,

yi =
∑

j
xj ∗ flip(wi ,j).
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Backpropagation for Convolutional Layer w.r.t. Weights

Consider the computation graph for the weights:
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Backpropagation for Convolutional Layer w.r.t. Weights
Each of the weights affects all the output units for the corresponding input
and output feature maps.

yi ,t =
J∑

j=1

R∑
τ=−R

wi ,j,τ xj,t+τ .

We compute the partial derivatives, which requires summing over all spatial
locations:

w̄i ,j,τ =
∑

t
ȳi ,t

∂yi ,t
∂wi ,j,τ

=
∑

t
ȳi ,txj,t+τ .

To decipher this, note that

yi ,t is the output at unit t of channel i .
xj,t+τ is the input t + τ of channel j .
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Backpropagation for Convolutional Layer w.r.t. Input

Consider the computation graph for the inputs:

Each input unit influences all the output units that have it within their
receptive fields. Using the multivariate Chain Rule, we need to sum together
the derivative terms for all these edges.
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Backpropagation for Convolutional Layer w.r.t. Input
Recall the formula for the convolution layer:

yi ,t =
J∑

j=1

R∑
τ=−R

wi ,j,τ xj,t+τ .

We compute the derivatives, which requires summing over all the outputs
units which have the input unit in their receptive field:

x̄j,t =
∑

τ

ȳi ,t−τ
∂yi ,t−τ

∂xj,t
=

∑
τ

ȳi ,t−τ wi ,j,τ .

Written in terms of convolution,

x̄j = ȳj ∗ wi ,j .

Q: Why should we care about the derivative w.r.t. the input after all?
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Section 5

Of Datasets and Architectures
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Object Recognition

Object recognition is the task of identifying which object category is
present in an image.
It is challenging because objects can differ widely in position, size,
shape, appearance, etc., and we have to deal with occlusions, lighting
changes, etc.
Why we care about it

Direct applications to image search
Closely related to object detection, the task of locating all instances of
an object in an image

Example: a self-driving car detecting pedestrians or stop signs
Convolutional Networks have been behind many of the objective
recognizers in the past 10-15 years.

More recently, Transformers are changing this!
Let us look at some of the datasets and architectures behind various
object recognition tasks.
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Datasets

In order to train and evaluate a machine learning system, we need to
collect a dataset. The design of the dataset can have major
implications.
Some questions to consider:

Which categories to include?
Where should the images come from?
How many images to collect?
How to normalize (preprocess) the images?
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Image Classification

Conv nets are just one of many possible approaches to image
classification. But they have been behind many successes in the past
10-15 years.
Biggest image classification “advances” of the last two decades

Datasets have gotten much larger (because of digital cameras and the
Internet)
Computers got much faster

Graphics processing units (GPUs) turned out to be really good at
training big neural nets; they’re generally about 30 times faster than
CPUs.

As a result, we could fit bigger and bigger neural nets.
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MNIST Dataset

MNIST dataset of handwritten digits
Categories: 10 digit classes
Source: Scans of handwritten zip codes from envelopes
Size: 60,000 training images and 10,000 test images, grayscale, of size
28 × 28
Normalization: centered within in the image, scaled to a consistent size

The assumption is that the digit recognizer would be part of a larger
pipeline that segments and normalizes images.

In 1998, Yann LeCun and colleagues built a conv net called LeNet
which was able to classify digits with 98.9% test accuracy.

It was good enough to be used in a system for automatically reading
numbers on checks.
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ImageNet

ImageNet is the modern object recognition benchmark dataset. It was
introduced in 2009 and has led to amazing progress in object
recognition since then.

Figure 9: ImageNet
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ImageNet

Used for the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC), an annual benchmark competition for object recognition
algorithms.
Design decisions:

Categories: Taken from a lexical database called WordNet
WordNet consists of “synsets”, or sets of synonymous words
They tried to use as many of these as possible; almost 22,000 as of 2010
Of these, they chose the 1000 most common for the ILSVRC
The categories are really specific, e.g., hundreds of kinds of dogs

Size: 1.2 million full-sized images for the ILSVRC
Source: Results from image search engines, hand-labeled by Mechanical
Turkers

Labeling such specific categories was challenging; annotators had to be
given the WordNet hierarchy, Wikipedia, etc.

Normalization: none, although the contestants are free to do
preprocessing
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ImageNet
Images and object categories vary on a lot of dimensions

Figure 10: ImageNet

Russakovsky et al.
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ImageNet

MNIST: 60MB
ImageNet: 50GB
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LeNet

Here’s the LeNet architecture, which was applied to handwritten digit
recognition on MNIST in 1998.

Figure 11: LeNet Architecture
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Size of a Convolutional Network

Ways to measure the size of a network:
Number of units: This is important because the activations need to be
stored in memory during training (i.e.~backprop).
Number of weights: This is important because the weights need to be
stored in memory, and because the number of parameters determines the
amount of overfitting.
Number of connections: This is important because there are
approximately 3 add-multiply operations per connection (1 for the
forward pass, 2 for the backward pass).

We saw that a fully connected layer with M input units and N output
units has MN connections and MN weights.
The story for Convolutional Networks is more complicated.
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Size of a Convolutional Network

Figure 12: Convolution Layer Size

Fully Connected Layer
# Output Units: WHI
# Weights: W 2H2IJ
# Connections: W 2H2IJ

Convolution Layer
# Output Units: WHI
# Weights: K 2IJ
# Connections: WHK 2IJ
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Sizes of Layers in LeNet:

Layer Type # Units # Connections # Weights

C1 Convolution 4704 117,600 150
S2 Pooling 1176 4704 0
C3 Convolution 1600 240,000 2400
S4 Pooling 400 1600 0
F5 Fully Connected 120 48,000 48,000
F6 Fully Connected 84 10,080 10,080
Output Fully Connected 10 840 840

Conclusions?

Rule of thumb
Most units and connections are in the convolution layers.
Most weights are in the fully connected layers.

Larger layers face resource limitations (computation time, memory).
Convolutional networks have grown significantly larger since 1998.
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Size Comparison:

LeNet (1989) LeNet (1998) AlexNet (2012)

Classification Task Digits Digits Objects
Categories 10 10 1,000
Image Size 16 × 16 28 × 28 256 × 256 × 3
Training Examples 7,291 60,000 1.2 million
Units 1,256 8,084 658,000
Parameters 9,760 60,000 60 million
Connections 65,000 344,000 652 million
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AlexNet

AlexNet, 2012. 8 weight layers. 16.4% top-5 error (i.e. the network
gets 5 tries to guess the right category).

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5 ⇥ 5 ⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3 ⇥ 3 ⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224 ⇥ 224 ⇥ 3-dimensional.

5

Figure 13: AlexNet Architecture

Image credit: Krizhevsky et al., 2012

They used lots of tricks we’ve covered in this course (ReLU units,
weight decay, data augmentation, SGD with momentum, dropout).
AlexNet’s stunning performance on the ILSVRC is what set off the
deep learning boom of 2010s.
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GoogLeNet

Figure 14: GoogLeNet

GoogLeNet, 2014. 22 weight layers.
Fully convolutional (no fully connected layers).
Convolutions are broken down into a bunch of smaller convolutions.
6.6% test error on ImageNet.
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GoogLeNet

They were really aggressive about cutting the number of parameters.
Motivation: train the network on a large cluster, run it on a cell phone

Memory at test time is the big constraint.
Having lots of units is OK, since the activations only need to be stored
at training time (for backpropagation).
Parameters need to be stored both at training and test time, so these
are the memory bottleneck.

How they did it
No fully connected layers (remember, these have most of the weights)
Break down convolutions into multiple smaller convolutions (since this
requires fewer parameters total)

GoogLeNet has “only” 2 million parameters, compared with 60 million
for AlexNet
This turned out to improve generalization as well. (Overfitting can still
be a problem, even with over a million images!)
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Residual Networks (ResNet) Architecture

Suppose we add another layer. How can we ensure that the new set of
represented functions contains the old set, before the layer was added?
Why do we need this? We’d like to get larger (nested) sets of functions
as we add more layers and not just different (non-nested) sets.
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ResNet Blocks

Side effect of adding identity f (x) = x + g(x): better gradient
propagation
See https://d2l.ai/chapter_convolutional-modern/resnet.html

January 30/ February 1, 2024 CSC413 Neural Networks and Deep Learning 91 / 100

https://d2l.ai/chapter_convolutional-modern/resnet.html


Residual Networks (ResNet) Architecture
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DenseNet Blocks

Same idea as ResNet blocks, but instead of addition f (x) = x + g(x) they
use concatenation f (x) = [x , g(x)].
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DenseNet Architecture

See https://d2l.ai/chapter_convolutional-modern/densenet.html
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Classification

ImageNet results over the years. Note that errors are top-5 errors (the
network gets to make 5 guesses).

Year Model Top-5 error
2010 Hand-designed descriptors + SVM 28.2%
2011 Compressed Fisher Vectors + SVM 25.8%
2012 AlexNet 16.4%
2013 a variant of AlexNet 11.7%
2014 GoogLeNet 6.6%
2015 deep residual nets 4.5%

Human-performance is around 5.1%.
They stopped running the object recognition competition because the
performance is already so good.
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Beyond Classification
The classification nets map the entire input image to a pre-defined
class categories.
But there are more than just class labels in an image.

where is the foreground object? how many? what is in the background?

Figure 15: Segmentation
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Semantic Segmentation

Semantic segmentation, a natural extension of classification, focuses on
making dense classification of class labels for every pixel.
It is an important step towards complete scene understanding in
computer vision.

Semantic segmentation is a stepping stone for many of the high-level
vision tasks, such as object detection, Visual Question Answering (VQA).

A naive approach is to adapt the existing object classification conv nets
for each pixel. This works surprisingly well.

Figure 16: Fully Convolutional Networks

(Fully Convolutional Networks, 2015)
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Semantic Segmentation

After the success of CNN classifiers, segmentation models quickly
moved away from hand-crafted features and pipelines but instead use
CNN as the main structure.
Pre-trained ImageNet classification network serves as a building block
for all the state-of-the-art CNN-based segmentation models.

Figure 17: Segmentation Progress

(from left to right: Li, et. al., (CSI), CVPR, 2013; Long, et. al., (FCN),
CVPR 2015; Chen et. al., (DeepLab), PAMI 2018)
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Supervised Pre-training and Transfer Learning

In practice, we will rarely train an image classifier from scratch.
It is unlikely we will have millions of cleanly labeled images for our
specific datasets.

If the dataset is a computer vision task, it is common to fine-tune a
pre-trained conv net on ImageNet or OpenImage.
Just like semantic segmentation tasks, we will fix most of the weights
in the pre-trained network. Only the weights in the last layer will be
randomly initialized and learnt on the current dataset/task.
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Supervised Pre-training and Transfer Learning

When to fine-tune?
How many training examples we have in the new dataset/task?

Fewer new examples: more weights from the pre-trained networks are
fixed.

How similar is the new dataset to our pre-training dataset? Microscopy
images v.s. natural images:

More fine-tuning is needed for dissimilar datasets.
Learning rate for the fine-tuning stage is often much lower than the
learning rate used for training from scratch.
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