
CSC413 Neural Networks and Deep Learning
Lecture 5: Optimization

February 6/8, 2024

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 1 / 71

Table of Contents

1 The Optimization Problem

2 Optimization of Univariate Functions

3 Optimization of Multivariate Functions

4 Features of the Optimization Landscape

5 Stochasticity in Gradients and Stochastic Gradient Descent

6 What to do this week?

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 2 / 71

Lecture Plan

Closer look at the optimization problem
Different landscapes of an optimization problem
Methods to mitigate the challenges of a difficult optimization landscape

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 3 / 71

Section 1

The Optimization Problem

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 4 / 71

The Optimization Problem

So far, we’ve talked a lot about computing gradients and different
neural models.
How do we actually train those models using gradients?
There are various things that can go wrong in gradient descent, we will
learn what to do about them, e.g.

How to tune the learning rates.

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 5 / 71

Optimization Problem

Let’s group all the parameters (weights and biases) of a network into a
single vector θ

We wish to find the minima of a function f (θ) : RD → R.

What property does f need to have for gradient descent to work well?
Are there techniques that can work better than (vanilla) gradient
descent?
Are there cases where gradient descent (and related) optimization
methods fail?
How can deep learning practitioners diagnose and fix optimization
issues?

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 6 / 71

Optimization Landscape
The optimization landscape refers to how the function f (θ) changes as
we vary θ.
The landscape affects the behaviour of the optimization algorithm.

Not all landscapes are equal!
We want to become more familiar with some common ones.

convex functions local minima saddle points

plateaux
narrow ravines

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 7 / 71

Visualizing Optimization Problems

Visualizing optimization problems in high dimensions is challenging.
Intuitions that we get from 1D and 2D optimization problems can be helpful.

In 1D and 2D, we can visualize f by drawing plots, e.g. surface plots and
contour plots

Q: Sketch a contour plot that represents the same function as the figure
above.

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 8 / 71

Review: Contour Plots

Q: Where are the 4 local minima in this contour plot?
February 6/8, 2024 CSC413 Neural Networks and Deep Learning 9 / 71

Section 2

Optimization of Univariate Functions

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 10 / 71

Optimization of Univariate Functions

Suppose we have a function f (θ) : R1 → R that we wish to minimize. How
do we go about doing this?

θnew ← θold − αf ′(θold)

Why is GD a good idea?

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 11 / 71

Optimization of Univariate Functions

The Taylor series expansion of the function can give us some intuition
about why GD is a good idea.

Recall that the Taylor series expansion of a (sufficiently differentiable)
function f (θ) around θ0 is

f (θ) ≈ f (θ0) + f ′(θ0)(θ − θ0) + 1
2 f ′′(θ0)(θ − θ0)2 + 1

3! f ′′′(θ0)(θ − θ0)3 + · · ·

Before talking about GD, let us see what the Taylor series expansion can tell
us about the function.

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 12 / 71

Behaviour of a Function around its Critical Point

How does a function look like around its critical point θ∗?

Recall that the critical point is where its derivative is zero, so f ′(θ∗) = 0. *
A critical point might be minimum or maximum or a saddle point.

We use the Taylor series expansion:

f (θ) ≈ f (θ∗) + f ′(θ∗)(θ − θ∗) + 1
2(θ − θ∗)2f ′′(θ∗)

= f (θ∗) + 1
2(θ − θ∗)2f ′′(θ∗).

This is a quadratic function!

If f ′′(θ∗) > 0, it increases as we get farther from θ∗.
θ∗ is a minimum!

If f ′′(θ∗) < 0, it decreases as we get farther from θ∗.
θ∗ is a maximum!

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 13 / 71

Optimization in 1D – First-Order Method

Consider the first-order Taylor series expansion of f (θ) around point θ0:

f (θ) ≈ f (θ0) + f ′(θ0)(θ − θ0)

Instead of optimizing f (θ), we can try to optimize its approximation
f (θ0) + f ′(θ0)(θ − θ0).

So we solve
θ ← arg min

θ
f (θ0) + f ′(θ0)⊤(θ − θ0)

This is a linear function of θ, so the minimizer of it pushes θ to either
+∞ or −∞ (unless f ′(θ0) is exactly zero).

This is not a good solution because this approximation is only valid in
a neighbourhood of θ0.

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 14 / 71

Optimization in 1D – First-Order Method

Let us penalize solutions that get far from θ0 by adding a λ
2 |θ − θ0|2 term.

We solve

θ ← arg min
θ

{
f (θ0) + f ′(θ0)(θ − θ0) + λ

2 |θ − θ0|2
}

.

Larger λ indicates that we do not want to deviate far from θ0.

If we solve this, we get that

θ ← θ0 −
1
λ

f ′(θ0).

This is GD with the learning rate α = 1
λ .

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 15 / 71

Optimization in 1D – Second-Order Method

What if we started from the second-order Taylor series approximation of
f (θ) instead?

f (θ) ≈ f (θ0) + f ′(θ0)(θ − θ0) + 1
2(θ − θ0)2f ′′(θ0)

and then solved

θ ← arg min
θ

{
f (θ0) + f ′(θ0)(θ − θ0) + 1

2(θ − θ0)2f ′′(θ0)
}

.

Let us take the derivative w.r.t. θ and make it equal to zero:

f ′(θ0) + (θ − θ0)f ′′(θ0) = 0⇒ θ = θ0 −
1

f ′′(θ0) f ′(θ0).

This is the Newton method! It uses both first and second derivatives of a
function. It is an example of a second-order optimization method.

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 16 / 71

The Dynamics of Optimizers

How can we compare GD vs. Newton method?

Let us look at the sequence of (approximate) solutions they find. To
simplify our exposition, suppose that the function we want to minimize is
f (θ) = c

2θ2 for some curvature parameter c . Its minimum is at θ∗ = 0. Our
initial point is θ0.

For GD with learning rate α, as f ′(θ) = cθ, we have

θk+1 ← θk − αf ′(θk) = θk − αcθk = (1− cα)θk .

By induction, we get that θk = (1− cα)kθ0.

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 17 / 71

The Dynamics of Optimizers

θk = (1− cα)kθ0.

When does this sequence converge to θ∗ = 0?
If −1 < 1− cα < 1, at every step, θk becomes smaller (closer to
θ∗ = 0). This is equivalent of having

0 < α <
2
c .

So if the curvature parameter c is large, we need to choose a smaller step
size to ensure convergence.

If we knew the curvature, we could choose our step size to be α = 1
c and

solve the problem in one step.

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 18 / 71

The Dynamics of Optimizers

For the Newton method, notice that f ′′(θ) = c (for any θ), so we have

θ1 = θ0 −
1

f ′′(θ0) f ′(θ0) = θ0 −
1
c cθ0 = θ0 − θ0 = 0.

This means that the Newton method can find the solution in one step,
without any need to tune the learning rate.

The situation is a bit more complicated for multivariate functions. Let’s
look at it!

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 19 / 71

Section 3

Optimization of Multivariate Functions

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 20 / 71

Taylor Series Expansion of Multivariate Functions

Suppose we have a function f (θ) : RD → R that we wish to minimize.

Again, we can explore approximating f with its Taylor series expansion:

f (θ) ≈ f (θ0) +∇f (θ0)⊤(θ − θ0) + 1
2(θ − θ0)T H(θ0)(θ − θ0) + · · ·

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 21 / 71

Recap: Gradient

The gradient of a function f (θ) : RD → R is the vector of partial
derivatives:

∇θf = ∂f
∂θ

=

∂f
∂θ1
∂f
∂θ2...
∂f

∂θD

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 22 / 71

Recap: Hessian

The Hessian Matrix, denoted H or ∇2f is the matrix of second derivatives

H = ∇2f =

∂2f
∂θ2

1

∂2f
∂θ1∂θ2

. . . ∂2f
∂θ1∂θD

∂2f
∂θ1∂θ2

∂2f
∂θ2

2
. . . ∂2f

∂θ2∂θD
... ∂2f
∂θn∂θ2

∂2f
∂θn∂θ2

. . . ∂2f
∂θ2

D

The Hessian is symmetric because ∂2f
∂θi ∂θj

= ∂2f
∂θj ∂θi

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 23 / 71

Multivariate Taylor Series

Recall the second-order Taylor series expansion of f :

f (θ) ≈ f (θ0) +∇f (θ0)T (θ − θ0) + 1
2(θ − θ0)T H(θ0)(θ − θ0)

A critical point of f is a point where the gradient is zero, so that

f (θ) ≈ f (θ0) + 1
2(θ − θ0)T H(θ0)(θ − θ0)

How do we know if the critical point is a maximum, minimum, or something
else?

Minimum: The Hessian is positive definite.
Maximum: The Hessian is negative definite.
February 6/8, 2024 CSC413 Neural Networks and Deep Learning 24 / 71

Spectral Decomposition of H

f (θ) ≈ f (θ0) + f ′(θ0)T (θ − θ0) + 1
2(θ − θ0)2f ′′(θ0) + . . .

We won’t go into details in this course, but. . .

A lot of important features of the optimization landscape can be
characterized by the eigenvalues of the Hessian H.
Recall that a symmetric matrix (such as H) has only real eigenvalues,
and there is an orthogonal basis of eigenvectors.
This can be expressed in terms of the spectral decomposition:
H = QΛQT , where Q is an orthogonal matrix (whose columns are the
eigenvectors) and Λ is a diagonal matrix (whose diagonal entries are
the eigenvalues).

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 25 / 71

First-Order vs Second-Order Information and Optimizer

First-order methods use information about the gradient.
Gradient Descent: θk+1 ← θk − α∇f (θk).

The second-order methods use information about the Hessian.
Newton: θk+1 ← θk − H(θk)−1∇f (θk).
These methods require the information about Hessian and need to
(approximately) compute its inverse. This may not be scalable for large
neural networks.

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 26 / 71

Section 4

Features of the Optimization Landscape

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 27 / 71

Features of the Optimization Landscape

convex functions local minima saddle points

plateaux
narrow ravines

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 28 / 71

Feature 1: Convexity of Linear Models
Linear regression and logistic regressions are convex problems—i.e. its loss
function is convex.

A function f is convex if for any a ∈ (0, 1)

f (ax + (1− a)y) ≤ af (x) + (1− a)f (y)

The cost function only has one minima.
There are no local minima that is not global minima.
Intuitively: the cost function is “bowl-shaped”.

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 29 / 71

Q: Are these loss surfaces convex?

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 30 / 71

Convexity in 1D

How do we know if a function f : R→ R is convex?

When f ′′(x) is positive everywhere!

Likewise, analyzing the Hessian matrix H tells us whether a function
f : RD → R is convex. (Hint: H needs to have only positive eigenvalues)

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 31 / 71

Convexity in 1D

How do we know if a function f : R→ R is convex?

When f ′′(x) is positive everywhere!

Likewise, analyzing the Hessian matrix H tells us whether a function
f : RD → R is convex. (Hint: H needs to have only positive eigenvalues)

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 31 / 71

Neural Networks are Not Convex

In general, neural networks are not convex.

One way to see this is that neural networks have weight space symmetry:

Suppose you are at a local minima θ.
You can swap two hidden units, and therefore swap the corresponding
weights/biases, and get θ′,
then θ′ must also be a local minima!

Video: https:
//play.library.utoronto.ca/watch/78367fbca4c4a42a30ec5862cdd0c756

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 32 / 71

https://play.library.utoronto.ca/watch/78367fbca4c4a42a30ec5862cdd0c756
https://play.library.utoronto.ca/watch/78367fbca4c4a42a30ec5862cdd0c756

Feature 2: Local Minima in Neural Networks

Even though any multilayer neural net can have local optima, we usually
don’t worry too much about them.

It’s possible to construct arbitrarily bad local minima even for ordinary
classification MLPs.

Over the decade, theoreticians have made lots of progress proving gradient
descent converges to global minima for some non-convex problems,
including some specific neural net architectures.

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 33 / 71

Feature 3: Saddle Points

A saddle point has ∇θE = 0, even though we are not at a minimum.

Minima with respect to some directions, maxima with respect to others. In
other words, H has some positive and some negative eigenvalues.

When would saddle points be a problem?

If we’re exactly on the saddle point, then we’re stuck.
If we’re slightly to the side, then we can get unstuck.

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 34 / 71

Initialization

If we initialize all weights/biases to the same value, (e.g. 0)
. . . then all the hidden states in the same layer will have the same
value, (e.g. h will be a vector containing the same value repeated)
. . . then all of the error signals for weights in the same layer are the
same. (e.g. each row of W (2) will be identical)

y = L(y− t)

W (2) = yhT

h = W (2)T y
z = h ◦ σ′(z)

W (1) = zxT

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 35 / 71

Random Initialization

Solution: don’t initialize all your weights to zero!

Instead, break the symmetry by using small random values.

For example, we can initialize the weights by sampling from a random
normal distribution with:

Mean = 0
Variance = 2

fan_in where fan_in is the number of input neurons that
feed into this feature. (He et al. 2015)

openaccess.thecvf.com/content_iccv_2015/html/He_Delving_Deep_into_ICCV_2015_paper.html

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 36 / 71

https://openaccess.thecvf.com/content_iccv_2015/html/He_Delving_Deep_into_ICCV_2015_paper.html

Feature 4: Plateaux

A flat region in the cost is called a plateau. (Plural: plateaux)

Can you think of examples?

logistic activation with least squares
0-1 loss
ReLU activation (potentially)
February 6/8, 2024 CSC413 Neural Networks and Deep Learning 37 / 71

Plateaux and Saturated Units
An important example of a plateau is a saturated unit. This is when activations
always end up in the flat region of its activation function. Recall the backprop
equation for the weight derivative:

zi = hi ϕ′(z), wij = zi xj

If ϕ′(z) is always close to zero, then the weights will get stuck.
If there is a ReLU unit whose input zi is always negative, the weight
derivatives will be exactly 0. We call this neuron a dead unit.
February 6/8, 2024 CSC413 Neural Networks and Deep Learning 38 / 71

Ravines

Lots of sloshing around the walls, only a small derivative along the slope of
the ravine’s floor.

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 39 / 71

Ravines (2D Intuition)

Gradient component ∂E
∂w1

is large
Gradient component ∂E

∂w2
is small

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 40 / 71

Gradient Descent Dynamics at an Ill-Conditioned Curvature

To understand why ill-conditioned curvature is a problem, consider a
convex quadratic objective

E(θ) = 1
2θ⊤Aθ,

where A is PSD.
Gradient descent update:

θk+1 ← θk − α∇E(θk)
= θk − αAθk

= (I− αA)θk

Solving the recurrence,

θk = (I− αA)kθ0

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 41 / 71

Gradient Descent Dynamics at an Ill-Conditioned Curvature

We can analyze matrix powers such as (I− αA)kθ0 using the spectral
decomposition.
Let A = QΛQ⊤ be the spectral decomposition of A.

(I− αA)kθ0 = (I− αQΛQ⊤)kθ0

= [Q(I− αΛ)Q⊤]kθ0

= Q(I− αΛ)kQ⊤θ0

Hence, in the Q basis, each coordinate gets multiplied by (1− αλi)k ,
where the λi are the eigenvalues of A.
Cases:

0 < αλi ≤ 1: decays to 0 at a rate that depends on αλi
1 < αλi ≤ 2: oscillates
αλi > 2: unstable (diverges)

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 42 / 71

Tuning Learning Rate

How can spectral decomposition help?
The learning rate α is a hyperparameter we need to tune. Here are the
things that can go wrong:

α too small: slow
progress

α too large: oscillations α much too large:
instability (diverges)

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 43 / 71

Gradient Descent Dynamics at an Ill-Conditioned Curvature

Just showed
0 < αλi ≤ 1: decays to 0 at a rate that depends on αλi
1 < αλi ≤ 2: oscillates
αλi > 2: unstable (diverges)

Ill-conditioned curvature bounds the maximum learning rate
choice. Need to set the learning rate α < 2/λmax to prevent instability,
where λmax is the largest eigenvalue, i.e.~maximum curvature.
This bounds the rate of progress in another direction:

αλi <
2λi

λmax
.

The quantity λmax/λmin is known as the condition number of A.
Larger condition numbers imply slower convergence of gradient descent.

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 44 / 71

Gradient Descent Dynamics at an Ill-Conditioned Curvature

The analysis we just did was for a quadratic toy problem

E(θ) = 1
2θ⊤Aθ.

It can be easily generalized to a quadratic not centered at zero, since
the gradient descent dynamics are invariant to translation.

E(θ) = 1
2θ⊤Aθ + b⊤θ + c

Since a smooth cost function is well approximated by a convex
quadratic (i.e.~second-order Taylor approximation) in the vicinity of a
(local) optimum, this analysis is a good description of the behavior of
gradient descent near a (local) optimum.
If the Hessian is ill-conditioned, then gradient descent makes slow
progress towards the optimum.

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 45 / 71

Ravines: Example
Suppose we have the following dataset for linear regression.

x1 x2 t

114.8 0.00323 5.1
338.1 0.00183 3.2
98.8 0.00279 4.1
...

...
...

\vskip -.5cm

wi = y xi

Which weight, w1 or w2, will receive a larger gradient descent update?
Which one do you want to receive a larger update?
Note: the figure vastly understates the narrowness of the ravine!

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 46 / 71

Ravines: Another Example

x1 x2 t

1003.2 1005.1 3.3
1001.1 1008.2 4.8
998.3 1003.4 2.9
...

...
...

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 47 / 71

Avoiding Ravines

To help avoid these problems, it’s a good idea to centre or normalize your
inputs to zero mean and unit variance, especially when they’re in arbitrary
units (feet, seconds, etc.).

Hidden units may have non-centred activations, and this is harder to deal
with.

A method called batch normalization explicitly centres each hidden
activation. It often speeds up training by 1.5-2x.

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 48 / 71

Method: Batch Normalization

Idea: Normalize the activations per batch during training, so that the
activations have zero mean and unit variance.

What about during test time (i.e. during model evaluation)?

Keep track of the activation mean µ and variance σ during training.
Use that µ and σ at test time: z ′ = z−µ

σ .

Batch Normalization Video: https:
//play.library.utoronto.ca/watch/3e2b87ac8e5730f404893ce9270b4b75

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 49 / 71

https://play.library.utoronto.ca/watch/3e2b87ac8e5730f404893ce9270b4b75
https://play.library.utoronto.ca/watch/3e2b87ac8e5730f404893ce9270b4b75

Method: Momentum

Momentum is a simple and highly effective method to deal with narrow
ravines. Imagine a hockey puck on a frictionless surface (representing the
cost function). It will accumulate momentum in the downhill direction:

mk+1 ← β1mk + α
∂E(θk)

∂θ
θ ← θ −mk+1

α is the learning rate, just like in gradient descent.
β1 is a damping parameter. It should be slightly less than 1 (e.g. 0.9 or
0.99).

If β1 = 1, conservation of energy implies it will never settle down.
m is a (weighted) average of the recent gradients.

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 50 / 71

Why Momentum Works

In the high curvature directions, the gradients cancel each other out, so
momentum dampens the oscillations.

In the low curvature directions, the gradients point in the same
direction, allowing the parameters to pick up speed.

If the gradient is constant (i.e. the cost surface is a plane), the
parameters will reach a terminal velocity of − α

1−β1
· ∂E

∂θ This suggests if
you increase β1, you should lower α to compensate.

Momentum sometimes helps a lot, and almost never hurts.

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 51 / 71

Gradient Descent with Momentum

Q: Which trajectory has the highest/lowest momentum setting?

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 52 / 71

Second-Order Information

Recall that the GD update for the quadratic function E(θ) = 1
2θ⊤Aθ is

θk+1 ← θk − α∇E(θk)
= θk − αAθk

= (I− αA)θk .

The speed of convergence is greatly affected by A being ill-conditioned
because we have to choose the learning rate α very small.

What if we used the second-order information?

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 53 / 71

Second-Order Information

The Newton method is

θk+1 ← θk − H(θk)−1∇f (θk)
= θk − A−1Aθk = 0.

Intuition: The multiplication by the inverse of Hessian (A−1 here) rescales
all dimensions. Even if A is “stretched” in some direction, hence has a
ravine, its effect is removed after multiplication by the inverse.

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 54 / 71

Second-Order Information

Newton method is an example of a second-order optimization, which are
methods that explicitly use curvature information (the Hessian H).

These method are computationally expensive and difficult to scale to large
neural nets and large datasets.

Q: What is the size of a Hessian for a fully connected neural network
with input size 1000, the first hidden layer with size 500, the second
hidden layer with size 500, and the output with the size of 10?

Can we use just a bit of second-order information?

Let us consider a few examples: RMSProp and Adam

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 55 / 71

Method: RMSProp

SGD takes too large of a step in directions of high curvature and too small
of a step in directions of low curvature.

RMSprop is a variant of SGD which rescales each coordinate of the
gradient to have norm 1 on average. It does this by keeping an exponential
moving average s of the squared gradients.

arxiv.org/abs/1308.0850

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 56 / 71

https://arxiv.org/abs/1308.0850

Method: RMSProp
RMSProp is the following update

sk+1 ← β2sk + (1− β2)
[

∂E(θk)
∂θ

]2

θk+1 ← θk −
α

√sk+1 + ϵ

∂E(θk)
∂θ

where the operations are performed component-wise:

(∂E(θk)
∂θ)2 is a vector with its j-th dimension being (∂E(θk)

∂θj
)2,

and likewise for the division.

Here s is the weighted average of the squared size of the gradient along
each dimension. The hyperparameer β2 ∈ (0, 1) determines how the recency
of the weighting.

If the eigenvectors of the Hessian are axis-aligned (dubious assumption),
RMSprop can correct for the curvature. In practice, it typically works
slightly better than SGD.

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 57 / 71

Method: Adam

Adam = RMSprop + Momentum

Adam is the very commonly used optimizer for neural network. Adam’s update rule
(simplified) is:

mk+1 ← β1mk + (1− β1)∂E(θk)
∂θ

,

sk+1 ← β2sk + (1− β2)
[

∂E(θk)
∂θ

]2
,

θk+1 ← θk −
α ·mk+1√sk+1 + ϵ

.

Adam uses both the momentum term (m) and the squared gradient term (s) in
order to update the parameters. The algorithm itself is slightly different than what
we have presented here. It has a bias-correction term.

arxiv.org/abs/1412.6980

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 58 / 71

https://arxiv.org/abs/1412.6980

Section 5

Stochasticity in Gradients and Stochastic Gradient
Descent

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 59 / 71

From Gradient Descent to Stochastic Gradient Descent

So far, the cost function E has been the average loss over the training
examples:

E(θ) = 1
N

N∑
i=1
L(i) = 1

N

N∑
i=1
L(y(x(i), θ), t(i)).

By linearity,
∂E
∂θ

= 1
N

N∑
i=1

∂L(i)

∂θ
.

Computing the gradient requires summing over all of the training
examples. This is known as batch training.
Batch training is impractical if you have a large dataset N ≫ 1 (think
about millions of training examples)!

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 60 / 71

Stochastic Gradient Descent

Stochastic gradient descent (SGD): update the parameters based
on the gradient for a single training example,

1 Choose i uniformly at random
2 θ ← θ − α ∂Li

∂θ

Cost of each SGD update is independent of N.
SGD can make significant progress before even seeing all the data!

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 61 / 71

Stochastic Gradient Descent is Unbiased

Mathematical justification: if you sample a training example uniformly
at random, the stochastic gradient is an unbiased estimate of the
batch gradient:

E
[

∂Li

∂θ

]
= 1

N

N∑
i=1

∂Li

∂θ
= ∂E

∂θ
.

Problems:
Variance in this estimate may be high
If we only look at one training example at a time, we can’t exploit
efficient vectorized operations.

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 62 / 71

Stochastic Gradient Descent and Its Variance

Compromise approach: compute the gradients on a randomly chosen
medium-sized set of training examples M⊂ {1, . . . , N}, called a
mini-batch.
Stochastic gradients computed on larger mini-batches have smaller
variance.

Var
[

1
|M|

∑
i∈M

∂L(i)

∂θj

]
= 1
|M|2

∑
i∈M

Var
[

∂L(i)

∂θj

]
= 1
|M|

Var
[

∂L(i)

∂θj

]

Here we used the independence of data points in the first equality, and
their having identical distribution in the second equality.

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 63 / 71

Stochastic Gradient Descent and Its Variance

The mini-batch size |M| is a hyperparameter that needs to be set.
Too large: takes more computation, i.e. takes more memory to store the
activations, and longer to compute each gradient update
Too small: can’t exploit vectorization; has high variance
A reasonable value might be |M| = 100.

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 64 / 71

Stochastic Gradient Descent
Batch gradient descent moves directly downhill. SGD takes steps in a
noisy direction, but moves downhill on average.

batch gradient descent stochastic gradient descent
February 6/8, 2024 CSC413 Neural Networks and Deep Learning 65 / 71

SGD Learning Rate

In stochastic training, the learning rate also influences the fluctuations
due to the stochasticity of the gradients.
Typical strategy:

Use a large learning rate early in training so you can get close to the
optimum
Gradually decay the learning rate to reduce the fluctuations.

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 66 / 71

SGD Learning Rate

Warning: by reducing the learning rate, you reduce the fluctuations,
which can appear to make the loss drop suddenly. But this can come
at the expense of long-run performance.

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 67 / 71

SGD and Non-convex optimization
Stochastic methods have a chance of escaping from bad minima.
Gradient descent with small step-size converges to first minimum it
finds.

Local minimum

Global minimum

�3
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

�4
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Stochastic Gradient descent
updates

Figure 1: Non-convex OptimizationFebruary 6/8, 2024 CSC413 Neural Networks and Deep Learning 68 / 71

Training Curve (or Learning Curve)

To diagnose optimization problems, it’s useful to look at learning curves:
plot the training cost (or other metrics) as a function of iteration.

Note: use a fixed subset of the training data to monitor the training
error. Evaluating on a different batch (e.g. the current one) in each
iteration adds a lot of noise to the curve!
Note: it’s very hard to tell from the training curves whether an
optimizer has converged. They can reveal major problems, but they
can’t guarantee convergence.
February 6/8, 2024 CSC413 Neural Networks and Deep Learning 69 / 71

Visualizing Optimization Algorithms

You might want to check out these links

An overview of gradient descent algorithms
https://ruder.io/optimizing-gradient-descent

CS231n https://cs231n.github.io/neural-networks-3/

Why momentum really works https://distill.pub/2017/momentum/

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 70 / 71

https://ruder.io/optimizing-gradient-descent
https://cs231n.github.io/neural-networks-3/
https://distill.pub/2017/momentum/

Section 6

What to do this week?

February 6/8, 2024 CSC413 Neural Networks and Deep Learning 71 / 71

	The Optimization Problem
	Optimization of Univariate Functions
	Optimization of Multivariate Functions
	Features of the Optimization Landscape
	Stochasticity in Gradients and Stochastic Gradient Descent
	What to do this week?

