
CSC413 Neural Networks and Deep Learning
Lecture 6: Generalization

February 13/15, 2024

February 13/15, 2024 CSC413 Neural Networks and Deep Learning 1 / 42

Table of Contents

1 From Optimization to Generalization

2 Training Expressive Models yet Avoiding Overfitting

3 Bias-Variance Tradeoff

February 13/15, 2024 CSC413 Neural Networks and Deep Learning 2 / 42

Lecture Plan

Generalization
Strategies to mitigate overfitting
Reminder on bias/variance decomposition

February 13/15, 2024 CSC413 Neural Networks and Deep Learning 3 / 42

Section 1

From Optimization to Generalization

February 13/15, 2024 CSC413 Neural Networks and Deep Learning 4 / 42

From Optimization to Generalization
Recall that in ML, the average cost function that we minimize is
defined over the training data.

E(w) = 1
N

∑
i∈training

L(fw (x (i)), t(i))

From optimization perspective, having a good optimizer means that
the result is close to the minimum of the average loss function w.r.t.
the training data.

min
w
E(w)

The ultimate goal in ML, however, is different: we want to generalize
well on data that we have not seen before.

Memorization is not enough!

Merely optimizing the training loss is not all that we care about.
February 13/15, 2024 CSC413 Neural Networks and Deep Learning 5 / 42

Some Important Questions

How do we know how well a model will perform on new data?
How do we choose between different neural network models?

Different number of hidden units, number of layers, etc.
How can we make sure our optimizer finds a solution that performs
well on new data?

February 13/15, 2024 CSC413 Neural Networks and Deep Learning 6 / 42

Generalization – Overfitting and Underfitting

We’d like to minimize the generalization error, that is, the error on novel
(new) examples.

February 13/15, 2024 CSC413 Neural Networks and Deep Learning 7 / 42

Overfitting and Underfitting

Underfitting:

The model is simple and doesn’t fit the data
The model does not capture discriminative features of the data

Overfitting:

The model is too complex and does not generalize
The model captures information about patterns in training set that
happened by chance

e.g. Ringo happens to be always wearing a red shirt in the training set
Model learns: high red pixel content => predict Ringo

February 13/15, 2024 CSC413 Neural Networks and Deep Learning 8 / 42

The Training Set

The training set is used

to determine the value of the parameters

The model’s prediction accuracy over the training set is called the training
accuracy.

Q: Can we use the training accuracy to estimate how well a model will
perform on new data?

No! It is possible for a model to fit well to the training set, but fail to
generalize
We want to know how well the model performs on new data that we
didn’t already use to optimize the model

February 13/15, 2024 CSC413 Neural Networks and Deep Learning 9 / 42

The Training Set

The training set is used

to determine the value of the parameters

The model’s prediction accuracy over the training set is called the training
accuracy.

Q: Can we use the training accuracy to estimate how well a model will
perform on new data?

No! It is possible for a model to fit well to the training set, but fail to
generalize
We want to know how well the model performs on new data that we
didn’t already use to optimize the model

February 13/15, 2024 CSC413 Neural Networks and Deep Learning 9 / 42

The Test Set

We set aside a test set of labelled examples.

The model’s prediction accuracy over the test set is called the test
accuracy.

The purpose of the test set is to give us a good estimate of how well a
model will perform on new data.

Q: In general, will the test accuracy be higher or lower than the training
accuracy?

February 13/15, 2024 CSC413 Neural Networks and Deep Learning 10 / 42

Model Selection

How to make decisions such as

the number of layers?
the number of units in each layer?
the type of non-linear activation?

Q: Why can’t we use the test set to determine which model we should
deploy?

If we use the test set to make modeling decisions, then we will
overestimate how well our model will perform on new data!
We are “cheating” by “looking at the test”

February 13/15, 2024 CSC413 Neural Networks and Deep Learning 11 / 42

Model Selection

How to make decisions such as

the number of layers?
the number of units in each layer?
the type of non-linear activation?

Q: Why can’t we use the test set to determine which model we should
deploy?

If we use the test set to make modeling decisions, then we will
overestimate how well our model will perform on new data!
We are “cheating” by “looking at the test”

February 13/15, 2024 CSC413 Neural Networks and Deep Learning 11 / 42

The Validation set

We need a third set of labeled data called the validation set.

The model’s prediction accuracy over the validation set is called the
validation accuracy.

This dataset is used to:

Make decisions about the aspects of the model that are not
differentiable and cannot easily be optimized via gradient descent
Example: choose the number of layers, units in each layer, learning
rate, etc.

These model settings are called hyperparameters
The validation set is used to optimize hyperparameters

February 13/15, 2024 CSC413 Neural Networks and Deep Learning 12 / 42

Splitting the data set

Example split:

60% Training
20% Validation
20% Test

The actual split depends on the amount of data that you have.

If you have more data, you can get a way with a smaller percentage of data
dedicated to the validation set.

Why?

February 13/15, 2024 CSC413 Neural Networks and Deep Learning 13 / 42

Detecting Overfitting

Learning curve:

x-axis: epochs or iterations
y-axis: cost, error, or accuracy

Q: In which epochs is the model overfitting? Underfitting?

Q: Why don’t we plot the test accuracy plot?

February 13/15, 2024 CSC413 Neural Networks and Deep Learning 14 / 42

Effect of Training Data Size and Model Complexity

Recall from the Intro to ML course that the effect of # training examples
and # parameters on Training and Test errors look like this:

The second figure may not be completely accurate for a large NN.
Even though larger NN have more parameters, they may have “nicer”
optimization landscape that leads to solutions that generalize better.
Understanding this is an active area of research.

February 13/15, 2024 CSC413 Neural Networks and Deep Learning 15 / 42

Section 2

Training Expressive Models yet Avoiding Overfitting

February 13/15, 2024 CSC413 Neural Networks and Deep Learning 16 / 42

Training Expressive Models yet Avoiding Overfitting

Two forces in action:

We would like our models to be expressive enough that they can
capture the structure in data

Higher-order polynomial features for a linear model, larger decision trees,
etc.
Deeper and wider NNs

We would like our models to avoid overfitting
We only want to capture the “structure” while avoiding learning the
“noise”.

Q: How did we achieve this in our Intro to ML course?

February 13/15, 2024 CSC413 Neural Networks and Deep Learning 17 / 42

Strategies to Prevent Overfitting

Data Augmentation
Reducing the number of parameters
Weight decay (or regularization/penalization)
Early stopping
Ensembles
Stochastic regularization (e.g. dropout)

The best-performing models on most benchmarks use some or all of these
tricks.

Let us take a look at them closely!

February 13/15, 2024 CSC413 Neural Networks and Deep Learning 18 / 42

Strategy #1: Data Augmentation

The best way to improve generalization is to collect more data!

But if we have already collected all the data that we could, we can augment
the training data by transforming the examples. This is called data
augmentation.

Some examples of data augmentation for images:

translation
horizontal or vertical flip
rotation
smooth warping
noise (e.g. flip random pixels)
February 13/15, 2024 CSC413 Neural Networks and Deep Learning 19 / 42

Data Augmentation

We should only warp the training examples, not the validation or test
examples. (why?)

The choice of transformations depends on the task.
Horizontal flip for object recognition, but not handwritten digit
recognition. (why?)

Q: Can you think of data augmentation for audio? for text?

February 13/15, 2024 CSC413 Neural Networks and Deep Learning 20 / 42

Strategy #2: Reducing the Number of Parameters

Networks with fewer trainable parameters may be less likely to overfit.

But recall the comment earlier about the optimization landscape!

We can reduce the number of layers, or the number of parameters per layer.

Adding a bottleneck layer is another way to reduce the number of
parameters

The first network is strictly more expressive than the second (i.e., it can
represent a strictly larger class of functions). (Why?)

Remember how linear layers don’t make a network more expressive? They
might still improve generalization.

February 13/15, 2024 CSC413 Neural Networks and Deep Learning 21 / 42

Strategy #3: Weight Decay (or Regularization)
Idea: Regularize/penalize large weights by adding a term (e.g.

∑
k w2

k) to
the cost function.

This encourages the weights to be small in magnitude:

Jreg = J + λR = J + λ

2
∑

j
w2

j

The gradient descent update can be interpreted as weight decay:

w ← w − α

(
∂J
∂w + λ

∂R
∂w

)

= w − α

(
∂J
∂w + λw

)
= (1− αλ)w − α

∂J
∂w

February 13/15, 2024 CSC413 Neural Networks and Deep Learning 22 / 42

Weight Decay

Why is it not desirable to have very large weights?

Because large weights mean that the prediction relies a lot on the content
of one feature (e.g. one pixel)

February 13/15, 2024 CSC413 Neural Networks and Deep Learning 23 / 42

Small vs. Large Weights: Example 1

The red polynomial overfits. Notice it has really large coefficients

February 13/15, 2024 CSC413 Neural Networks and Deep Learning 24 / 42

Small vs. Large Weights: Example 2

Suppose inputs x1 and x2 are nearly identical. The following two
networks make nearly the same predictions:

Figure 1: Output sensitivity to large weights

But the second network might make weird predictions if the test
distribution is slightly different (e.g., x1 and x2 match less closely).

February 13/15, 2024 CSC413 Neural Networks and Deep Learning 25 / 42

Many Choices of Regularizers

L1 regularization: add a term
∑D

j=1 |wj | to the cost function
Mathematically, this term encourages weights to be exactly 0

L2 regularization: add a term
∑D

j=1 w2
j to the cost function

Mathematically, in each iteration the weight is pushed towards 0
Combination of L1 and L2 regularization: add a term

∑D
j=1[|wj |+ w2

j]
to the cost function

February 13/15, 2024 CSC413 Neural Networks and Deep Learning 26 / 42

Strategy #4: Early Stopping

Idea: Stop training when the validation error starts going up.

In practice, this is implemented by checkpointing (saving) the neural
network weights every few iterations/epochs during training.

We choose the checkpoint with the best validation error to actually use.
(And if there is a tie, use the earlier checkpoint)

February 13/15, 2024 CSC413 Neural Networks and Deep Learning 27 / 42

Why does early stopping work?

Weights start off small, so it takes time for them to grow large.

Therefore, stopping early has a similar effect to weight decay.

If you’re using sigmoid units, and the weights start out small, then the
inputs to the activation functions take only a small range of values.

The neural network starts out approximately linear, and gradually
becomes non-linear (and thus more powerful)

February 13/15, 2024 CSC413 Neural Networks and Deep Learning 28 / 42

Strategy #5: Ensembles

If a loss function is convex (with respect to the predictions), you have a
bunch of predictions for an input, and you don’t know which one is best,
you are always better off averaging them!

L(λ1y1 + . . . λNyN , t) ≤ λ1L(y1, t) + . . . λNL(yN , t)

for λi ≥ 0 and
∑

i λi = 1

Idea: Build multiple candidate models, and average the predictions on the
test data.

This set of models is called an ensemble.

February 13/15, 2024 CSC413 Neural Networks and Deep Learning 29 / 42

Examples of Ensembles

Train neural networks starting from different random initialization
(might not give enough diversity)
Train different network on different subset of the training data (called
bagging)
Train networks with different architectures, hyperparameters, or use
other machine learning models

Ensembles can improve generalization substantially.

However, ensembles are expensive.

February 13/15, 2024 CSC413 Neural Networks and Deep Learning 30 / 42

Strategy #6: Stochastic Regularization

For a network to overfit, its computations need to be really precise. This
suggests regularizing them by injecting noise into the computations, a
strategy known as stochastic regularization.

One example is dropout: in each training iteration, randomly choose a
portion of activations to set to 0.

The probability p that an activation is set to 0 is a hyperparameter.

February 13/15, 2024 CSC413 Neural Networks and Deep Learning 31 / 42

Stochastic Regularization

More mathematically:

hj =
{

ϕ(zj) with probability 1− ρ
0 with probability ρ,

or equivalently,
hj = mjϕ(zj)

with mj being a Bernoulli random variable, independent for each unit.

Backpropagation:
z̄j = h̄jmjϕ

′(zj)

February 13/15, 2024 CSC413 Neural Networks and Deep Learning 32 / 42

Dropout

Dropout can be seen as training an ensemble of 2D different architectures
with shared weights (where D is the number of units)

February 13/15, 2024 CSC413 Neural Networks and Deep Learning 33 / 42

Dropout at Test Time

Most principled thing to do: run the network lots of times
independently with different dropout masks, and average the
predictions.

Individual predictions are stochastic and may have high variance, but the
averaging fixes this.

In practice: don’t do dropout at test time, but multiply the weights by
1− ρ

Since the weights are ON for (1− ρ)-fraction of the time, this matches
their expected value of their activation value.

February 13/15, 2024 CSC413 Neural Networks and Deep Learning 34 / 42

Stochastic Regularization

Dropout can help performance quite a bit, even if you are already using
weight decay.
Other stochastic regularizers have been proposed:

The stochasticity in SGD updates has been observed to act as a
regularizer, helping generalization.

Increasing the mini-batch size may improve training error at the expense
of test error!

Batch normalization (mentioned last week for its optimization benefits)
also introduces stochasticity, thereby acting as a stochastic regularizer.

February 13/15, 2024 CSC413 Neural Networks and Deep Learning 35 / 42

Section 3

Bias-Variance Tradeoff

February 13/15, 2024 CSC413 Neural Networks and Deep Learning 36 / 42

Bias-Variance Tradeoff

We can understanding ML algorithms better in terms of their bias and
variance (also closely related to approximation and estimation errors).
Our discussion here is brief and is only a reminder.
Consult your Intro to ML course for more detail.

Example: Bias and Variance lecture, CSC2515 – Fall 2022

February 13/15, 2024 CSC413 Neural Networks and Deep Learning 37 / 42

https://amfarahmand.github.io/IntroML-Fall2022/lectures/lec04.pdf

Expected Test Error for Regression
Training set D = {(x1, y1), ..., (xn, yn)} drawn i.i.d. from distribution
P(X , Y). Let’s write this as D ∼ Pn.

Assume for simplicity this is a regression problem with y ∈ R and L2
loss.

What is the expected test error for a function hD(x) = y trained on
the training set D ∼ Pn, assuming a learning algorithm A? It is:

ED∼Pn,(x ,y)∼P
[
(hD(x)− y)2

]
The expectation is taken with respect to possible training sets D ∼ Pn

and the test distribution P. Let’s write the expectation as ED,x ,y for
notational simplicity.

Note that this is the expected test error not the empirical test error
that we report after training. How are they different?
February 13/15, 2024 CSC413 Neural Networks and Deep Learning 38 / 42

Decomposing the Expected Test Error

Let’s start by adding and subtracting the same quantity

ED,x ,y
[
(hD(x)− y)2

]
= ED,x ,y

[
(hD(x)− ĥ(x) + ĥ(x)− y)2

]
Denote

ĥ(x) = ED∼Pn [hD(x)] is the expected regressor over possible training
sets, given the learning algorithm A.

ŷ(x) = Ey |x [y] is the expected label given x . Labels might not be
deterministic given x.

February 13/15, 2024 CSC413 Neural Networks and Deep Learning 39 / 42

Decomposing the Expected Test Error

After some algebra*, we can show that:

ED,x ,y
[
(hD(x)− y)2

]
︸ ︷︷ ︸

Expected test error

= ED,x
[
(hD(x)− ĥ(x))2

]
︸ ︷︷ ︸

Variance

+

Ex ,y
[
(ŷ(x)− y)2

]
︸ ︷︷ ︸

Noise

+

Ex
[
(ĥ(x)− ŷ(x))2

]
︸ ︷︷ ︸

Bias

You can find the proof in this URL (*)

February 13/15, 2024 CSC413 Neural Networks and Deep Learning 40 / 42

https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote12.html

Bias, Variance, and Noise

Variance: Captures how much your regressor hD changes if you train
on a different training set. How “over-specialized” is your regressor hD
to a particular training set D? I.e. how much does it overfit? If we
have the best possible model for our training data, how far off are we
from the average regressor ĥ?

Bias: What is the inherent error that you obtain from your regressor
hD even with infinite training data? This is due to your model being
“biased” to a particular kind of solution (e.g. linear model). In other
words, bias is inherent to your model/architecture.

Noise: How big is the data-intrinsic noise? This error measures
ambiguity due to your data distribution and feature representation.
You can never beat this, it is an aspect of the physical data generation
process, over which you have no control. You cannot improve this with
more training data. It is sometimes called “aleatoric uncertainty”.

February 13/15, 2024 CSC413 Neural Networks and Deep Learning 41 / 42

The Bias-Variance Tradeoff

If you use a high-capacity model, you will get low bias, but the
variance over different training sets will be high.

If you use a low-capacity model, you will get high bias, but the
variance over different training sets will be low.

There is a sweet spot that trades off between the two.

February 13/15, 2024 CSC413 Neural Networks and Deep Learning 42 / 42

	From Optimization to Generalization
	Training Expressive Models yet Avoiding Overfitting
	Bias-Variance Tradeoff

