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Section 1

CNN Review
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Example CNN: AlexNet

import torchvision.models
alexNet = torchvision.models.alexnet(pretrained=False)
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Convolutional Features
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Receptive Fields

Because of downsampling (pooling and use of strides), higher-layer filters
“cover” a larger region of the input than equal-sized filters in the lower
layers.
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Transfer Learning

Transfer Learning is the idea of using weights/features trained on one task,
and using it on another task.

Example:

Train a model to predict the next word given the previous three
Use the weights to determine word similarities
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Transfer learning with CNN

Practitioners rarely train a CNN “from scratch”. Instead we could:
1 Take a pre-trained CNN model (e.g. AlexNet), and use its features

network to compute image features, which we then use to classify our
own images

2 Initialize our weights using the weights of a pre-trained CNN model
(e.g. AlexNet)
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AlexNet (2012)

import torchvision.models
alexNet = torchvision.models.alexnet(pretrained=False)
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VGG (2014)

# There are many VGG versions
vgg16 = torchvision.models.vgg.vgg16(pretrained=False)
vgg19 = torchvision.models.vgg.vgg19(pretrained=False)
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What is new in VGG (compared to AlexNet)?

VGG uses very small receptive fields (3 × 3 instead of 11 × 11)
VGG incorporates 1 × 1 convolutional layers (why?)
FC layers can be expressed as CONV layers and vice versa

FC layer with 4096 output units looking at an input volume of 7 x 7 x
512 is equivalent to a CONV layer with kernel size 7, stride 1, and 4096
filters.
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One more idea. . .

Most of these networks have fully connected layers at the very end.

Pro: Fully connected layers computes features on the entire image
Con: what if we wanted to work with images of various sizes?

Idea: instead of fully connected layers, we could. . .

Use a convolution layer with the same kernel size as hidden unit size
and no padding
Use global average-pooling

This is more frequently done on pixel-wise prediction problems, which we’ll
see later in this course.
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Section 2

Interpreting CNNs
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How do CNNs work?

Convolutional neural networks are successful, but how do we know that the
network has learned useful patterns from the training set?

Interpretation of deep learning models is a challenge, but there are some
tricks we can use to interpret CNN models
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Weight Visualization

Recall: we can understand what first-layer features in a MLP are doing by
visualizing the weight matrices (left)

826 M.D. Zeiler and R. Fergus

(a) (b)

(c) (d)

Fig. 5. (a): 1st layer features without feature scale clipping. Note that one feature dom-
inates. (b): 1st layer features from Krizhevsky et al. [18]. (c): Our 1st layer features. The
smaller stride (2 vs 4) and filter size (7x7 vs 11x11) results in more distinctive features
and fewer “dead” features. (d): Visualizations of 2nd layer features from Krizhevsky
et al. [18]. (e): Visualizations of our 2nd layer features. These are cleaner, with no
aliasing artifacts that are visible in (d).

1 & 2). This model, shown in Fig. 3, significantly outperforms the architecture
of Krizhevsky et al. [18], beating their single model result by 1.7% (test top-5).
When we combine multiple models, we obtain a test error of 14.8%, an improve-
ment of 1.6%. This result is close to that produced by the data-augmentation
approaches of Howard [15], which could easily be combined with our architec-
ture. However, our model is some way short of the winner of the 2013 Imagenet
classification competition [28].

Table 1. ImageNet 2012/2013 classification error rates. The ∗ indicates models that
were trained on both ImageNet 2011 and 2012 training sets.

Val Val Test
Error % Top-1 Top-5 Top-5

Gunji et al. [12] - - 26.2

DeCAF [7] - - 19.2

Krizhevsky et al. [18], 1 convnet 40.7 18.2 −−
Krizhevsky et al. [18], 5 convnets 38.1 16.4 16.4
Krizhevsky et al. ∗[18], 1 convnets 39.0 16.6 −−
Krizhevsky et al. ∗[18], 7 convnets 36.7 15.4 15.3

Our replication of
Krizhevsky et al. , 1 convnet 40.5 18.1 −−
1 convnet as per Fig. 3 38.4 16.5 −−
5 convnets as per Fig. 3 – (a) 36.7 15.3 15.3

1 convnet as per Fig. 3 but with
layers 3,4,5: 512,1024,512 maps – (b) 37.5 16.0 16.1

6 convnets, (a) & (b) combined 36.0 14.7 14.8

Howard [15] - - 13.5
Clarifai [28] - - 11.7

Varying ImageNet Model Sizes: In Table 2, we first explore the architecture
of Krizhevsky et al. [18] by adjusting the size of layers, or removing them entirely.
In each case, the model is trained from scratch with the revised architecture.
Removing the fully connected layers (6,7) only gives a slight increase in error (in

We can do the same thing with convolutional networks (right)

But what about higher-level features?
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Feature Visualization

One approach: pick the images in the training set which activate a unit
most strongly.

(Compute forward pass for each image in the training set, track when a
feature was most active, and look for the portion of the image that lead to
that activation)

Here is the visualization for layer 1:
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Feature Visualization: Layer 2
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Feature Visualization: Layer 3
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Feature Visualization: Layer 4
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The issue with feature visualizations

Higher layer seems to pick up more abstract, high-level information.

Problem: Can’t tell what unit is actually responding in the image!

Maybe we can use input gradients?
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Input Gradients

Recall this computation graph:

From this graph, we could compute ∂L
∂x – the model’s sensitivity with

respect to the input.

(We’ve never done this because there hasn’t been a need to—until now!)
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The problem with input gradients

Input gradients can be noisy and hard to interpret

Take a good object recognition conv net and compute the gradient of
log p(y = ”deer”|x)
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Smoothing the input gradients

Several methods modify these gradients:

Guided Backprop: accumulate only positive gradients when doing
back propagation
SmoothGrad: do the backward pass on a few noisy version of the input
image, then average their input gradients
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Cautionary Tale of Image Gradients

From: https://proceedings.neurips.cc/paper/2018/file/294a8ed24b1ad22e
c2e7efea049b8737-Paper.pdf
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Optimizing an Image to Maximize Activations

Can we use gradient ascent on an image to maximize the activation of a
given neuron?

Requires a few tricks to make this work; see
https://distill.pub/2017/feature-visualization/

Lecture 7 CSC413 Neural Networks and Deep Learning February 27/29, 2024 26 / 36

https://distill.pub/2017/feature-visualization/


Lecture 7 CSC413 Neural Networks and Deep Learning February 27/29, 2024 27 / 36



Deep Dream

Similar idea:

Start with an image, and run a conv net on it.
Pick a layer in the network.
Change the image such that units which were already highly activated
get activated even more strongly. “Rich get richer.”
Repeat.

This will accentuate whatever features of an image already kind of resemble
the object.

https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-
neural.html
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Section 3

Adversarial Examples
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What are these images of?

Producing adversarial images: Given an image for one category
(e.g. panda), compute the image gradient to maximize the network’s output
unit for a different category (e.g. gibbon)
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Non-targetted Adversarial Attack

Goal: Choose a small perturbation ϵ on an image x so that a neural
network f misclassifies x + ϵ.

Approach:

Use the same optimization process to choose ϵ to minimize the probability
that

f (x + ϵ) = correct class
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Targeted Adversarial Attack

Targeted attack

Maximize the probability that f (x + ϵ) = target incorrect class

Non-targeted attack

Minimize the probability that f (x + ϵ) = correct class
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Adversarial Attack

2013: ha ha, how cute!
The paper which introduced adversarial examples was titled “Intriguing
Properties of Neural Networks.”

2018+: serious security threat
7 of 8 proposed defences accepted to ICLR 2018 were cracked within
days.

New methods for attacks and defence are regularly developed!
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White-box vs Black-box Adversarial Attacks

Adversarial examples transfer to different networks trained on a totally
separate training set!

White-box Adversarial Attack: Model architecture and weights are
known, so we can compute gradients.

Black-box Adversarial Attack: Model architecture and weights are
unknown.

You don’t need access to the original network!
You can train up a new network to match its predictions, and then
construct adversarial examples for that.

Attack carried out against proprietary classification networks accessed using
prediction APIs (MetaMind, Amazon, Google)
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Adversarial Examples in 3D

It is possible to have a 3D object that gets misclassified by a neural network
from all angles.

https://www.youtube.com/watch?v=piYnd_wYlT8
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Printed Adversarial Examples

It is possible for a printed image to cause object detection to fail.

https://www.youtube.com/watch?v=MIbFvK2S9g8
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