
CSC413 Neural Networks and Deep Learning
Lecture 8: Recurrent Neural Networks

March 5/7, 2024

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 1 / 61

Table of Contents

1 Recurrent Neural Networks

2 Sentiment Analysis with Recurrent Neural Networks

3 Gradient Explosion and Vanishing

4 Text Generation with RNN

5 Sequence-to-Sequence Architecture

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 2 / 61

Lecture Plan

This week, we’ll switch gears and talk about working with sequences via
Recurrent Neural Networks

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 3 / 61

Section 1

Recurrent Neural Networks

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 4 / 61

Goal and Overview

Sometimes we’re interested in making predictions about data in the form of
sequences.

Examples:

Given the price of a stock in the last week, predict whether stock price
will go up
Given a sentence (sequence of chars/words) predict its sentiment
Given a sentence in English, translate it to French

This last example is a sequence-to-sequence prediction task, because
both inputs and outputs are sequences.

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 5 / 61

Language Model

We have already seen neural language models that make the Markov
Assumption

p(wi |w1, . . . , wi−1) = p(wi |wi−3, wi−2, wi−1)

This means the model is memoryless, so they can only use information
from their immediate context (in this figure, context length = 1):

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 6 / 61

Recurrent Neural Network

But sometimes long-distance context can be important.

If we add connections between the hidden units, it becomes a recurrent
neural network (RNN). Having a memory lets an RNN use longer-term
dependencies:

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 7 / 61

RNN Diagram
We can think of an RNN as a dynamical system with one set of hidden units
which feed into themselves. The network’s graph would then have self-loops.

We can unroll the RNN’s graph by explicitly representing the units at all
time steps. The weights and biases are shared between all time steps

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 8 / 61

Simple RNNs

Let’s go through a few examples of very simple RNNs to understand how
RNNs compute predictions.

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 9 / 61

Simple RNN Example: Sum

This simple RNN takes a sequence of numbers as input (scalars), and sums
its inputs.

2

2

2

w=1

w=1

-0.5

1.5

1.5

w=1

w=1

1

2.5

2.5

w=1

w=1

1

3.5

3.5

w=1

w=1

T=1 T=2 T=3 T=4

w=1 w=1 w=1

input
unit

linear
hidden

unit

linear
output

unit

w=1

w=1

w=1

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 10 / 61

Simple RNN Example 2: Comparison

This RNN takes a sequence of pairs of numbers as input, and determines
if the total values of the first or second input are larger:

input
unit
1

linear
hidden

unit

logistic
output

unit

w=5

w=1

w=1

input
unit
2

w= -1

2

4

1.00

-2

T=1

0

0.5

0.92

3.5

T=2

1

-0.7

0.03

2.2

T=3

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 11 / 61

Simple RNN Example 3: Parity

Assume we have a sequence of binary inputs. We’ll consider how to
determine the parity, i.e. whether the number of 1’s is even or odd.

We can compute parity incrementally by keeping track of the parity of the
input so far:

Parity bits: 0 1 1 0 1 1 −→
Input: 0 1 0 1 1 0 1 0 1 1

Each parity bit is the XOR of the input and the previous parity bit.

Parity is a classic example of a problem that’s hard to solve with a shallow
feed-forward net, but easy to solve with an RNN.

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 12 / 61

Parity: RNN Approach

Let’s find weights and biases for the RNN, so that it computes the parity.
All hidden and output units are binary threshold units (h(x) = 1 if x > 0
and h(x) = 0 otherise).

Strategy

The output unit tracks the current parity, which is the XOR of the
current input and previous output.
The hidden units help us compute the XOR.

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 13 / 61

Unrolling Parity RNN

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 14 / 61

Parity Computation

The output unit should compute the XOR of the current input and previous
output:

y (t−1) x (t) y (t)

0 0 0
0 1 1
1 0 1
1 1 0

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 15 / 61

Computing Parity

Let’s use hidden units to help us compute XOR.

Have one unit compute AND, and the other one compute OR.
Then we can pick weights and biases.
Note that a XOR b = (a OR b) - (a AND b)

y (t−1) x (t) h(t)
1 h(t)

2 y (t)

0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 16 / 61

Back Propagation Through Time

As you can guess, we don’t usually set RNN weights by hand. Instead, we
learn them using backprop.

In particular, we do backprop on the unrolled network. This is known as
backprop through time.

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 17 / 61

Unrolled BPTT

Here’s the unrolled computation graph. Notice the weight sharing.

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 18 / 61

What can RNNs compute?

In 2014, Google researchers built an encoder-decoder RNN that learns to
execute simple Python programs, one character at a time!
https://arxiv.org/abs/1410.4615

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 19 / 61

https://arxiv.org/abs/1410.4615

What can RNNs compute?
RNNs are good at learning complex syntactic structures: generate Algebraic
Geometry LaTex source files that almost compiles:

http://karpathy.github.io/2015/05/21/rnn-effectiveness/March 5/7, 2024 CSC413 Neural Networks and Deep Learning 20 / 61

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Section 2

Sentiment Analysis with Recurrent Neural Networks

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 21 / 61

RNN for language modelling

Usually, the sequence of inputs xt will be vectors. The hidden states ht are
also vectors.

For example, we might use a sequence of one-hot vectors xt of words (or
characters) to represent a sentence. (What else can we use?)

How would we use a RNN to determine (say) the sentiment conveyed by the
sentence?

As usual, start with the forward pass. . .

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 22 / 61

RNN: Initial Hidden State

Start with an initial hidden state with a blank slate (can be a vector of all
zeros, or a parameter that we train)

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 23 / 61

RNN: Update Hidden State

Compute the first hidden state (context vector) based on the initial hidden
state, and the input (the one-hot vector x1 of the first word).

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 24 / 61

RNN: Continue Updating Hidden State

Update the hidden state based on the subsequent inputs. Note that we are
using the same weights to perform the update each time.

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 25 / 61

RNN: Last Hidden State

Continue updating the hidden state until we run out of words in our
sentence.

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 26 / 61

RNN: Compute Prediction

Use the last hidden state as input to a prediction network, usually a MLP.

Alternative: take the max-pool and average-pool over all computed hidden
states. (Why?)

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 27 / 61

Sequence Classification

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 28 / 61

Sentiment140 Data

Dataset of tweets with either a positive or negative emoticon, but with the
emoticon removed.

Input: Tweet (sequence of words/characters)

Target: Positive or negative emoticon?

Example:

Negative: “Just going to cry myself to sleep after watching Marley and
Me”
Positive: “WOOOOO! Xbox is back”

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 29 / 61

Approach

Use GloVe embeddings to represent words as input x(t) (note: we
could have chosen to work at the character level)
Use a recurrent neural network to get a combined embedding of the
entire tweet
Use a fully-connected layer to make predictions (happy vs sad)

Video Demo
March 5/7, 2024 CSC413 Neural Networks and Deep Learning 30 / 61

https://play.library.utoronto.ca/watch/a1d297375e8bfe173b48325c37828a75

Key Takeaways

You should be able to understand. . .

why we want to use RNNs rather than CNN/MLP
why/how GloVe embeddings are used in RNNs
what the hidden state computations depend on (not the exact
computation, but the dependencies)
which weights are shared and which weights are not
why batching is trickier when training an RNN (compared to training a
CNN/MLP)

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 31 / 61

Section 3

Gradient Explosion and Vanishing

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 32 / 61

RNN Gradients

Recall the unrolled computation graph for a small RNN:

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 33 / 61

Backprop Through Time
Activations:

L = 1

y (t) = L ∂L
∂y (t)

r (t) = y (t) ϕ′(r (t))

h(t) = r (t) v + z (t+1) w

z (t) = h(t) ϕ′(z (t))

Parameters:

u =
∑

t

z (t) x (t)

v =
∑

t

r (t) h(t)

w =
∑

t

z (t+1) h(t)

Key idea: multivariate chain rule!

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 34 / 61

Gradient Explosion and Vanishing

The longer your sequence, the longer gap the time step between when we
see potentially important information and when we need it:

The derivatives need to travel this entire pathway.

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 35 / 61

Why Gradients Explode or Vanish

Consider a univariate version of the RNN:

Backprop updates:

h(t) = z (t+1) w

z (t) = h(t) ϕ′(z (t))

Applying this recursively:

h(1) = wT−1ϕ′(z (2)) · · ·ϕ′(z (T))h(T)

With some simplifying assumptions:

∂h(T)

∂h(1) = wT−1

Exploding:

w = 1.1, T = 50 ⇒ ∂h(T)

∂h(1) = 117.4

Vanishing:

w = 0.9, T = 50 ⇒ ∂h(T)

∂h(1) = 0.00515

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 36 / 61

Multivariate Hidden States

More generally, in the multivariate case, the Jacobians multiply:
∂h(T)

∂h(1) = ∂h(T)

∂h(T−1) · · · ∂h(2)

∂h(1)

Matrices can “explode” or “vanish” just like scalar values, though it’s
slightly harder to make precise.

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 37 / 61

Repeated Application of Functions

Another way to look at why gradients explode or vanish is that we are
applying a function over and over again.

Each hidden layer computes some function of previous hidden layer and the
current input: h(t) = f (h(t−1), x(t))

This function gets repeatedly applied:

h(4) = f (h(3), x(4))
= f (f (h(2), x(3)), x(4))
= f (f (f (h(1), x(2)), x(3)), x(4))

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 38 / 61

Iterated Functions

We get complicated behaviour from iterated functions. Consider
f (x) = 3.5x(1− x)

Note that the function values gravitate towards fixed points, and that the
derivatives becomes either very large or very small.

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 39 / 61

RNN with tanh activation

More concretely, consider an RNN with a tanh activation function:

The function computed by the network:

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 40 / 61

Cliffs

Repeatedly applying a function creates a new possibility for loss landscape:
cliffs, where the gradient of the loss with respect to a parameter is either
close to 0, or very large.

Generally, the gradient will explode on some inputs and vanish on others. In
expectation, the cost may be fairly smooth.

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 41 / 61

Gradient Clipping

One solution is to “clip” the gradient so that it has a norm of at most η.
Otherwise, update the gradient g with g← η g

||g||

The gradients are biased, but at least they don’t blow up:

Gradient clipping solves the exploding gradient problem, but not the
vanishing gradient problem.

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 42 / 61

Learning Long-Term Dependencies

Idea: Initialization

Hidden units are a kind of memory. Their default behaviour should be to
keep their previous value.

If the function h(t) = f (h(t−1), x(t)) is close to the identity, then the
gradient computations ∂h(t)

∂h(t−1) are stable.

This initialization allows learning much longer-term dependencies than
“vanilla” RNNs

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 43 / 61

Long-Term Short Term Memory

Change the architecture of the recurrent neural network by replacing each
single unit in an RNN by a “memory block”:

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 44 / 61

LSTM

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 45 / 61

LSTM Math

In each step, we have a vector of memory cells c, a vector of hidden units h
and a vector of input, output, and forget gates i, o and f.

There’s a full set of connections from all the inputs and hiddens to the
inputs and all of the gates:

it
ft
ot
gt

 =

σ
σ
σ

tanh

W
(

xt
ht−1

)

ct = ft ◦ ct−1 + it ◦ gt

ht = ot ◦ tanh(ct)

Exercise: show that if ft+1 = 1, it+1 = 0, and ot = 0, the gradient of the
memory cell gets passed through unmodified, i.e. c̄t = ¯ct+1

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 46 / 61

Key Takeaways

You should be able to understand. . .

why learning long-term dependencies is hard in a vanilla RNN
why gradients vanish/explode in a vanilla RNN
what cliffs are and how repeated application of a function generates
cliffs
what gradient clipping is and when it is useful
the mathematics behind why gating works

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 47 / 61

Section 4

Text Generation with RNN

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 48 / 61

RNN Hidden States

RNN For Prediction:

Process tokens one at a time
Hidden state is a representation of all the tokens read thus far

RNN For Generation:

Generate tokens one at a time
Hidden state is a representation of all the tokens to be generated

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 49 / 61

RNN Hidden States

RNN For Prediction:

Process tokens one at a time
Hidden state is a representation of all the tokens read thus far

RNN For Generation:

Generate tokens one at a time
Hidden state is a representation of all the tokens to be generated

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 49 / 61

RNN hidden state updates

RNN For Prediction:

Update hidden state with new input (token)
Get prediction (e.g. distribution over possible labels)

RNN For Generation:

Get prediction distribution of next token
Generate a token from the distribution
Update the hidden state with new token

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 50 / 61

RNN hidden state updates

RNN For Prediction:

Update hidden state with new input (token)
Get prediction (e.g. distribution over possible labels)

RNN For Generation:

Get prediction distribution of next token
Generate a token from the distribution
Update the hidden state with new token

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 50 / 61

Text Generation Diagram

Get prediction distribution of next token
Generate a token from the distribution
Update the hidden state with new token:

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 51 / 61

Test Time Behaviour of Generative RNN

Unlike other models we discussed so far, the training time behaviour of
Generative RNNs will be different from the test time behaviour

Test time behaviour:

At each time step:
Obtain a distribution over possible next tokens
Sample a token from that distribution
Update the hidden state based on the sample token

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 52 / 61

Training Time Behaviour of Generative RNN

During training, we try to get the RNN to generate one particular sequence
in the training set:

At each time step:
Obtain a distribution over possible next tokens
Compare this with the actual next token

Q1: What kind of a problem is this? (regression or classification?)

Q2: What loss function should we use during training?

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 53 / 61

Text Generation: Step 1

First classification problem:

Start with an initial hidden state
Update the hidden state with a “<BOS>” (beginning of string) token,
so that the hidden state becomes meaningful (not just zeros)
Get the distribution over the first character
Compute the cross-entropy loss against the ground truth (R)

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 54 / 61

Text Generation with Teaching Forcing

Second classification problem:

Update the hidden state with the ground truth token (R) regardless of
the prediction from the previous step

This technique is called teaching forcing
Get the distribution over the second character
Compute the cross-entropy loss against the ground truth (I)

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 55 / 61

Text Generation: Later Steps

Continue until we get to the “<EOS>” (end of string) token

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 56 / 61

Some Remaining Challenges

Vocabularies can be very large once you include people, places, etc.
It’s computationally difficult to predict distributions over millions of
words.
How do we deal with words we haven’t seen before?
In some languages (e.g. German), it’s hard to define what should be
considered a word.

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 57 / 61

Character vs word-level

Another approach is to model text one character at a time

This solves the problem of what to do about previously unseen words.

Note that long-term memory is essential at the character level!

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 58 / 61

Section 5

Sequence-to-Sequence Architecture

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 59 / 61

Neural Machine Translation

Say we want to translate, e.g. English to French sentences.

We have pairs of translated sentences to train on.

Here, both the inputs and outputs are sequences!

What can we do?

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 60 / 61

Sequence-to-sequence architecture

The network first reads and memorizes the sentences.

When it sees the “end token”, it starts outputting the translation.

The “encoder” and “decoder” are two different networks with different
weights.

March 5/7, 2024 CSC413 Neural Networks and Deep Learning 61 / 61

	Recurrent Neural Networks
	Sentiment Analysis with Recurrent Neural Networks
	Gradient Explosion and Vanishing
	Text Generation with RNN
	Sequence-to-Sequence Architecture

