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Announcement from Accessibility Services

Accessibility Services is seeking volunteer note takers for students in this
class who are registered in Accessibility Services. By volunteering to take
notes for students with disabilities, you are making a positive contribution
to their academic success. By volunteering as a note-taker, you will benefit
as well - It is an excellent way to improve your own note-taking skills and to
maintain consistent class attendance. At the end of term, we would be
happy to provide a Certificate of Appreciation for your hard work. To
request a Certificate of Appreciation please fill out the form at this link:
Certificate of Appreciation or email us at at as.notetaking@utoronto.ca. You
may also qualify for a Co-Curricular Record by registering your volunteer
work on Folio before the end of June. We also have a draw for qualifying
volunteers throughout the academic year.
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https://forms.office.com/r/zAu5tNNDJ5
as.notetaking@utoronto.ca

Announcement from Accessibility Services

Steps to Register as a Volunteer :

@ Register Online as a Volunteer Note-Taker at:
https://clockwork.studentlife.utoronto.ca/custom /misc/home.aspx

@ For a step-to-step guide please follow this link to the Volunteer
Notetaking Portal Guide

©

Click on Volunteer Notetakers, and sign in using your UTORiId

Q Select the course(s) you wish to take notes for. Please note: you do
NOT need to upload sample notes or be selected as a volunteer to
begin uploading your notes.

© Start uploading notes.
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Announcement from Accessibility Services

Email us at as.notetaking@utoronto.ca if you have questions or require any
assistance with uploading notes. If you are no longer able to upload notes
for a course, please also let us know immediately .

For more information about the Accessibility Services Peer Notetaking
program, please visit Student Life Volunteer Note Taking.

Thank you for your support and for making notes more accessible for our
students.

AS Note-taking Team
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as.notetaking@utoronto.ca
https://studentlife.utoronto.ca/program/volunteer-note-taking/
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Generative Models

CSC413 Neural Networks and Deep Learning 4/63



Generating Images

How to generate new data of certain types

@ generate text that looks like our training data
@ generate images that look like our training data

Models:

@ Autoencoder (AE)

e Variational Autoencoder (VAE)

@ Generative Adversarial Networks (GANs)
@ Generative RNNs

e Diffusion Models
e lilianweng.github.io/posts/2021-07-11-diffusion-models/

We'll talk about autoencoders and variational autoencoders today.
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https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

Autoencoders

There are two ways of thinking of an image autoencoder:

@ a model that finds a low-dimensional representation of images
@ a model that will eventually help us generate new images

Both are considered unsupervised learning tasks, since no labels are
involved. However, we do have a dataset of unlabelled images.

We talk about images as the data type, but autoencoders can be applied to
other data types too.
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Image Autoencoder

Idea: In order to learn to generate images, we'll learn to reconstruct
images from a low-dimensional representation.

An image autoencoder has two components:

@ An encoder neural network that takes the image as input, and
produces a low-dimensional embedding.

@ A decoder neural network that takes the low-dimensional embedding
as input, and reconstructs the image.

A good, low-dimensional representation should allow us to reconstruct
everything about the image.
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The components of an autoencoder

Encoder:

@ Input = image
@ Output = low-dimensional embedding

Decoder:

@ Input = low-dimensional embedding
e Output = image

input output

decoder
encoder
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Image Encoder Architecture

What would the architecture of the encoder look like?

@ We can use a FC NN (MLP)

e But MLPs are not the best architecture to deal with images
@ We can also use a convolutional neural network

We can use downsampling to reduce the dimensionality of the data

@ Q: How can we downsample the dimensionality of an image?
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Image Decoder Architecture

What would the architecture of the decoder look like?
We need to be able to increase the image resolution.

We haven't learned how to do this yet. Let us introduce a new NN layer:
Transposed Convolution.
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Section 2

Transposed Convolution
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Transposed Convolution

Let us have a detour and talk about another type of layer: Transposed
Convolution or Deconvolution.

It is used to increase the resolution of a feature map.

This is useful for:

@ image generation problems (as we use in the decoder part of the

autoencoders)
@ pixel-wise prediction problems
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Pixel-wise prediction

A prediction problem where we label the content of each pixel is known as a
pixel-wise prediction problem

tforward /inference

- ]
backward/learning

Figure 1: http://deeplearning.net/tutorial /fcn_2D_segm.html

Q: How do we generate pixel-wise predictions?
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http://deeplearning.net/tutorial/fcn_2D_segm.html

What we need:

We need to be able to up-sample features, i.e. to obtain high-resolution
features from low-resolution features

@ Opposite of max-pooling
@ Opposite of a strided convolution

We need an inverse convolution, i.e., transposed convolution (or
commonly used, but incorrect term: deconvolution).
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Architectures with Transposed Convolution
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Transposed Convolution Layer

With stride =1
Input Kernel
01 Transposed 0]1
213 Conv 2|3
Output
0fo0 of1 ofo|1
=|0]0 + 213]|+|0]f2 + 0]3|=[0|4]|6
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Figure 2: Image credit:
https://d2l.ai/chapter_computer-vision /transposed-conv.html
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Transposed Convolution Layer

With stride = 2
Input Kernel
0l1 Transposed o1
Conv
2|3 (stride 2) 213
0|0 o1
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Figure 3: Image credit:
https://d2l.ai/chapter_computer-vision /transposed-conv.html

More at https://github.com/vdumoulin/conv_arithmetic
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Section 3

Autoencoder
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Let's get back to the autoencoder

Recall that we want a model that generates images that looks like our
training data

Idea:

@ In order to learn to generate images, we'll learn to reconstruct images
from a low-dimensional representation.

@ A good, low-dimensional representation should allow us to reconstruct
“important” aspects of the image.
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The components of an autoencoder
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Encoder:

@ Input = image
@ Output = low-dimensional embedding

Decoder:

@ Input = low-dimensional embedding
e Output = image
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Why autoencoders?

@ Dimension reduction:

e find a low dimensional representation of the image
@ Image Generation:

e generate new images not in the training set

Autoencoders are not used for supervised learning. The task is not to
predict something about the image!

Autoencoders are considered a generative model.
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How to train autoencoders?

@ Loss function: How close were the reconstructed image from the
original? Here are some ideas. ..

o Mean Square Error (MSE): look at the mean square error across all
pixels.

e Mean Square-Gradient Error (MSGE): take the average of the
differences of squared gradients (computed with something like the
Sobel filter) across all pixels.

e Corner Detection: use computer vision to identify corners. Then across
the image (or patches in a partition of the image), compare corner
counts, corresponding positions, and/or nearest distances.

e Optimizer:
o Just like before: use SGD or other optimizers.
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Section 4

An autoencoder for MNIST
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Structure in the Embedding Space

The dimensionality reduction means that there will be structure in the
embedding space.

If the dimensionality of the embedding space is not too large, similar images
should map to similar locations.
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Interpolating in the Embedding Space

o
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Generating New Images

Q: Can we pick a random point in the embedding space, and decode it to
get an image of a digit?

A: Unfortunately not necessarily. Can we figure out why not?
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Autoencoder Overfitting

Overfitting can occur if the size of the embedding space is too large.

If the dimensionality of the embedding space is small, then the neural
network needs to map similar images to similar locations.

If the dimensionality of the embedding space is too large, then the neural
network can simply memorize the images!
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Blurry reconstructions

Q: Why do autoencoders produce blurry images?
Hint: it has to do with the use of the MSELoss.

Read more: ieeexplore.ieee.org/document/8461664
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Section 5

Variational Autoencoders

CSC413 Neural Networks and Deep Learning 29/63



Generative Model

In Intro to ML course (CSC311), we learned about generative models that
describe the distribution that the data comes from.

@ Describe the distribution x ~ p(x), where x is a single data point

For example, in the Naive Bayes model for data x (e.g. bag-of-word
encoding of an email, which could be spam or not spam) with x ~ p(x), we
assumed that p(x) = >". p(x|c)p(c), where c is either spam or not spam.
We made further assumptions about p(x|c), e.g. that each x; is an
independent Bernoulli.
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Mathematical Notation and Assumptions

Data x; € RY are:
@ independent, identically distributed (i.i.d.)
@ generated from the following joint distribution (with the true parameter

6* unknown)

Po+(z,x) = pg=(2)ps- (x|2)

Where z is a low-dimensional vector (latent embedding)

@ Example x could be an MNIST digit

@ Think of z as encoding digit features like digit shape, tilt, line
thickness, font style, etc. ..

@ To generate an image, we first sample from the prior distribution py«(z)
to decide on these digit features, and use pyp+(x|z) to generate an
image given those features
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Intractability

Our data set is large, and so the computation of the following is intractable:

@ evidence py-(x)
@ posterior distributions pg«(z|x)

In other words, exactly computing the distribution of p(x) and p(z|x) using
our dataset has high runtime complexity.
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The decoder and encoder

input output

code

With this assumption, we can think of the autoencoder as doing the
following:

Decoder: A point approximation of the true distribution py«(x|z)

Encoder: Making a point prediction for the value of the latent vector z
that generated the image x

Alternative:

e what if, instead, we try to infer the distribution py-(z|x)?
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VAE Setup so far

Decoder: An approximation of the true distribution py«(x|z)

Encoder: An approximation of the true distribution py«(z|x)
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Computing the encoding distribution py-(z|x)

Unfortunately, the true distribution py-(z|x) is complex (e.g. can be
multi-modal).

But can we approximate this distribution with a simpler distribution?

Let's restrict our estimate gy(z|x) = N (z; p, X) to be a multivariate
Gaussian distribution with ¢ = (u, X)

o It suffices to estimate the mean p and covariance matrix X of gy(z|x)
@ Let's make it simpler and assume that the covariance matrix is
diagonal, £ = ¢?lgxy

(Note: we don’t have to make this assumption, but it will make
computation easier later on)
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VAE Setup so far

Decoder: An approximation of the true distribution py~(x|z)

Encoder: Predicts the mean and standard deviations of a distribution
gs(z|x), so that the distribution is close to the true distribution pg-(z|x)

We want our estimate distribution to be close to the true distribution. How
do we measure the difference between distributions?
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(Discrete) Entropy

HIX) = 3 plX |ogp(X1_X) — Ellog p(lx)]

Many ways to think about this quantity:

@ The expected number of yes/no questions you would need to ask to
correctly predict the next symbol sampled from distribution p(X)

@ The expected “surprise” or “information” in the possible outcomes of
random variable X

@ The minimum number of bits required to compress a symbol x sampled
from distribution p(X)
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(Discrete) Entropy of a Coin Flip

0.5
PrX=1)

Figure 4. Binary Entropy

Entropy of a fair coin flip is 0.5/0g(2) + 0.5/og(2) = log(2) =1 bits
Entropy of a fair dice is log(6) = 2.58 bits

Entropy of characters in English words is about 2.62 bits

Entropy of characters from the English alphabet selected uniformly at
random is log(26) = 4.7 bits
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Kullback-Leibler Divergence

Also called: KL Divergence, Relative Entropy

For discrete probability distributions:

KL[q(z) || p(z ]—Zq ) log (;

For continuous probability distributions:

Kilg(e) || ple)] = [ a(2) |og28dz
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KL Divergence Example Computation

Approximating an unfair coin with a fair coin.

@ p(z=1)=0.7and p(z=0)=0.3
0 g(z=1)=q(z=0)=05

q(z)

p(z)
Egg +4q(1)lo ngl;
—05|og8—2+05|og¥

KLlq(2) || p(z ]—Zq(z log =%

= q(0) log

=0.872
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KL Divergence is not symmetric!

Approximating a fair coin with an unfair coin.

@ p(z=1)=0.7and p(z=0)=0.3
0 g(z=1)=¢q(z=0)=05

KUp(z) | a(2)] = 3ol log 2
= p(0) log qu; + p(1)log p(i;
—03Iog%—|—07log8;

=0.823
# KL[q(2) || p(2)]
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Minimizing KL Divergence

Minimising Q’Exclusive
KL(O||P)

: P
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Figure 5: Two directions of the KL Divergence
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KL divergence Properties

The KL divergence is a measure of the difference between probability
distributions.

KL divergence is an asymmetric, nonnegative measure, not a norm. It
doesn't obey the triangle inequality.

KL divergence is always non-negative. Hint: you can show this using the
inequality In(x) < x—1for x >0
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KL Divergence: continuous example

Suppose we have two Gaussian distributions p(x) ~ N(u1,0%) and
q(x) ~ N(p2,03).

What is the KL divergence KL[p(z) || q(2)]?
Recall:

1 (z—11)?
p(zip1,03) = ——=e ™1
\/2mo?
)2
log p(z; i1, 03) = — log /2703 — w
207
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KL Divergence: Entropy and Cross-Entropy

We can split the KL divergence into two terms, which we can compute
separately:

B p(z)
KLlp(2) |l a(2)) = [ plz)1og 775z
_ / p(z)(log p(z) — log q(z))dz

= /p(z) Iogp(z)dz—/P(Z) log g(z)dz

= —entropy — cross-entropy
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KL Divergence: continuous example, entropy computation

7 — )2
/p(z) log p(z)dz = /p(z)(— log \/2m0? — %)dz

207
2
/p — log( 27r01 dz—/p 7/;1)dz
207
1 1
— 5 log(2no}) [ p(2)dz ~ 5 5 [ pl)(z — m)Pdz
2 207

1 1

1 1 1

= —Zlog(0?) — = log(27) — =
5 log(o1) — 5 log(27) — 7

Since [ p(z)dz =1 and [ p(z)(z — p1)?dz = o3
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KL Divergence: continuous example, cross-entropy
computation

2

/p(z) log q(z)dz = /p(z)(—log 2mo3 — M)dz

2
205

7 — 115)2
= —/P(Z);Iog(27m§)dz_/p(z)(2(7/§2)dz

= —% log(27m03) — /p(z)(z — p2)dz

2
205

03+ (1 — )
20%

1
=-3 log(2mo3)
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Back to autoencoders: summary so far

Autoencoder:

@ Decoder: point estimate of py-(x|z)
@ Encoder: point estimate of the value of z that generated the image x

VAE:

@ Decoder: probabilistic estimate of py«(x|z)
@ Encoder: probabilistic estimate of a Gaussian distribution g,(z|x) that
approximates the distribution py-(z|x)
e In particular, our encoder will be a neural network that predicts the
mean and standard deviation of g4(z|x)
e We can then sample z from this distribution!

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 48 /63



VAE Objective

But how do we train a VAE?
We want to maximize the likelihood of our data:
log p(x) = log [ p(x, z)dz = log [ p(x|z)p(z)dz

And we want to make sure that the distributions g(z|x) and p(z|x) are
close:

e We want to minimize KL[q(z|x) || p(z|x)]
@ This is a measure of encoder quality

In other words, we want to maximize

—KL[q(z[x) || p(z|x)] + log p(x)
How can we optimize this quantity in a tractable way?
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VAE: Evidence Lower-Bound

Kila(e) || pzb)] = [ glzix)log 22 oz

p(zlx)

e d(z)

= Fallo8 (apy)

— Eq[log q(zlx)] — Eqllog p(zlx)]

= Eq[log q(z[x)] — Eq[log p(2, x)] + Eq[log p(x)]
= [Eq4[log q(z|x)] — Eq4[log p(z,x)] + log p(x)

We'll define the evidence lower-bound:

ELBO4(x) = Eq4[log p(z, x) — log g(z|x)]

So we have

log p(x) — KL[q(zlx) || p(zlx)] = ELBOG(x)
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Optimizing the ELBO

The ELBO gives us a way to estimate the gradients of
log p(x) — KL[q(z|x) || p(z[x)]
How?

ELBO4(x) = Eq4[log p(z, x) — log g(z|x)]

@ The right hand side of this expression is an expectation over z ~ g(z|x)
@ To estimate the ELBO, we can sample from the distribution
z ~ q(z|x), and compute the terms inside.
@ We can estimate gradients in the same way—this is called a
Monte-Carlo gradient estimator
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Monte Carlo Estimation

(This notation is unrelated to other slides: p(z) is just a univariate Gaussian
distribution, and f4(z) is a function parameterized by ¢)

Suppose we want to optimize an objective L£(¢) = E,p(,)[f5(2)] where
p(z) is a normal distribution.

We can estimate £(¢) by sampling z; ~ p(z) and computing

£(¢) = IEzwp(z) [f¢(z)]
= [ p2)2)dz

1 N
~ — Z f¢(2,')
N i=1
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Monte Carlo Gradient Estimation

Likewise, if we want to estimate V4L, we can sample z; ~ p(z) and
compute

V¢£ = V<Z§IEz~p(z)[f<f>(z)]
=V, [ p(2)ful2)az
1 N
~ Vd’ﬁ Z f¢(2,')
i=1
1 N
=N > Vofs(z)

i=1
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The reparamaterization trick

ELBOg,¢(x) = Eq, [logpy(z, x) — logge(z|x)]
Problem: typical Monte-Carlo gradient estimator with samples z ~ g4(z|x)

has very high variance

Reparameterization trick: instead of sampling z ~ g,(z|x) express
z = gy4(€,x) where g is deterministic and only € is stochastic.

In practise, the reparameterization trick is what makes the VAE encoder
deterministic. When running a VAE forward pass:

@ We get the means and standard deviations from the VAE

@ We sample from N(0, 1)

© We use the samples from step 2 to get a sample from g(z) obtained
from step 1
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VAE: Summary so far

Decoder: estimate of pg-(x|z)

Encoder: estimate of a Gaussian distribution gg(z|x) that approximates the
distribution pg«(z|x)

@ Encoder is a NN that predicts the mean and standard deviation of

qp(2[x)
@ Use the reparameterization trick to sample from this distribution

The VAE objective is equal to the evidence lower-bound:

log p(x) — KL[a(z|x) || p(z|x)] = ELBO4(x)
Which we can estimate using Monte Carlo
ELBO4(x) = Eq[log p(z, x) — log q(z|x)]
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VAE: Summary so far

But given a value z ~ g(z|x), how can we compute

log p(z, x) — log q(z|x)

...or its derivative with respect to the neural network parameters?

We need to do some more math to write this quantity in a form that is
easier to estimate.
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VAE: a simpler form

ELBOg 4(x) = Eq, [logpg(z, x) — logge(z|x)]
Eq¢[logp9(x|z) + logps(z) — logqe(z|x)]

= [Eq,[logpg(x|z)] — Eq,[loggs(z|x) — logps(2)]

Eq, [logpg(x|2)] — KL(gs(2|x) || po(2))

= decoding quality — encoding regularization

Both terms can be computed easily if we make some simplifying assumptions

Let's see how. ..
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Computing Decoding Quality

In order to estimate this quantity

Eq, [logpo(x|2)]

...we need to make some assumptions about the distribution py(x|z).

If we make the assumption that py(x|z) is a normal distribution centered
around some pixel intensity, then optimizing py(x|z) is equivalent to
optimizing the square loss!

That is, pp(x|z) tells us how intense a pixel could be, but that pixel could
be a bit darker/lighter, following a normal distribution).

Bonus: A traditional autoencoder is optimizing this same quantity!
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Computing Encoding Quality

This KL divergence computes the difference in distribution between two
distributions:

KL(qp(2|x) || po(2))

@ g4(z|x) is a normal distribution that approximates py(z|x)
@ py(z) is the prior distribution on z

e distribution of z when we don't know anything about x or any other
quantity

Since z is a /atent variable, not actually observed in the real word, we can
choose py(z)

e we choose py(z) = N(0,1)

...and we know how to compute the KL divergence of two Gaussian
distributions!
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Interpretation

The VAE objective

Eq, [logpo(x[2)] — KL(as(2|x) || po(2))

has an extra regularization term that the traditional autoencoder does not.

This extra regularization term pushes the values of z to be closer to 0!
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MNIST results

MNIST, N, =3
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Figure 2: Comparison of our AEVB method to the wake-sleep algorithm, in terms of optimizing the
lower bound, for different dimensionality of latent space (IV,). Our method converged considerably
faster and reached a better solution in all experiments. Interestingly enough, more latent variables
does not result in more overfitting, which is explained by the regularizing effect of the lower bound.
Vertical axis: the estimated average variational lower bound per datapoint. The estimator variance
was small (< 1) and omitted. Horizontal axis: amount of training points evaluated. Computa-
tion took around 20-40 minutes per million training samples with a Intel Xeon CPU running at an
effective 40 GFLOPS.
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Frey Faces results
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(a) Learned Frey Face manifold (b) Learned MNIST manifold

Figure 4: Visualisations of learned data manifold for generative models with two-dimensional latent
space, learned with AEVB. Since the prior of the latent space is Gaussian, linearly spaced coor-
dinates on the unit square were transformed through the inverse CDF of the Gaussian to produce
values of the latent variables z. For each of these values z, we plotted the corresponding generative
pe(x|z) with the learned parameters 6.
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Dimension of latent variables
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(b) 5-D latent space (c) 10-D latent space (d) 20-D latent space

(a) 2-D latent space

Figure 5: Random samples from learned generative models of MNIST for different dimensionalities

of latent space.
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