
CSC413 Neural Networks and Deep Learning
Lecture 10: Generative Models

Mar 19/21, 2024

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 1 / 63

Table of Contents

1 Generative Models

2 Transposed Convolution

3 Autoencoder

4 An autoencoder for MNIST

5 Variational Autoencoders

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 2 / 63

Announcement from Accessibility Services

Accessibility Services is seeking volunteer note takers for students in this
class who are registered in Accessibility Services. By volunteering to take
notes for students with disabilities, you are making a positive contribution
to their academic success. By volunteering as a note-taker, you will benefit
as well - It is an excellent way to improve your own note-taking skills and to
maintain consistent class attendance. At the end of term, we would be
happy to provide a Certificate of Appreciation for your hard work. To
request a Certificate of Appreciation please fill out the form at this link:
Certificate of Appreciation or email us at at as.notetaking@utoronto.ca. You
may also qualify for a Co-Curricular Record by registering your volunteer
work on Folio before the end of June. We also have a draw for qualifying
volunteers throughout the academic year.

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 3 / 63

https://forms.office.com/r/zAu5tNNDJ5
as.notetaking@utoronto.ca

Announcement from Accessibility Services

Steps to Register as a Volunteer :
1 Register Online as a Volunteer Note-Taker at:

https://clockwork.studentlife.utoronto.ca/custom/misc/home.aspx
2 For a step-to-step guide please follow this link to the Volunteer

Notetaking Portal Guide
3 Click on Volunteer Notetakers, and sign in using your UTORid
4 Select the course(s) you wish to take notes for. Please note: you do

NOT need to upload sample notes or be selected as a volunteer to
begin uploading your notes.

5 Start uploading notes.

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 3 / 63

https://clockwork.studentlife.utoronto.ca/custom/misc/home.aspx
https://studentlife.utoronto.ca/wp-content/uploads/Notetaking-Program-Volunteers-Notetaking-Portal-Guide.pdf
https://studentlife.utoronto.ca/wp-content/uploads/Notetaking-Program-Volunteers-Notetaking-Portal-Guide.pdf

Announcement from Accessibility Services

Email us at as.notetaking@utoronto.ca if you have questions or require any
assistance with uploading notes. If you are no longer able to upload notes
for a course, please also let us know immediately .

For more information about the Accessibility Services Peer Notetaking
program, please visit Student Life Volunteer Note Taking.

Thank you for your support and for making notes more accessible for our
students.

AS Note-taking Team

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 3 / 63

as.notetaking@utoronto.ca
https://studentlife.utoronto.ca/program/volunteer-note-taking/

Section 1

Generative Models

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 4 / 63

Generating Images

How to generate new data of certain types

generate text that looks like our training data
generate images that look like our training data

Models:

Autoencoder (AE)
Variational Autoencoder (VAE)
Generative Adversarial Networks (GANs)
Generative RNNs
Diffusion Models

lilianweng.github.io/posts/2021-07-11-diffusion-models/

We’ll talk about autoencoders and variational autoencoders today.

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 5 / 63

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

Autoencoders

There are two ways of thinking of an image autoencoder:

a model that finds a low-dimensional representation of images
a model that will eventually help us generate new images

Both are considered unsupervised learning tasks, since no labels are
involved. However, we do have a dataset of unlabelled images.

We talk about images as the data type, but autoencoders can be applied to
other data types too.

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 6 / 63

Image Autoencoder

Idea: In order to learn to generate images, we’ll learn to reconstruct
images from a low-dimensional representation.

An image autoencoder has two components:
1 An encoder neural network that takes the image as input, and

produces a low-dimensional embedding.
2 A decoder neural network that takes the low-dimensional embedding

as input, and reconstructs the image.

A good, low-dimensional representation should allow us to reconstruct
everything about the image.

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 7 / 63

The components of an autoencoder
Encoder:

Input = image
Output = low-dimensional embedding

Decoder:

Input = low-dimensional embedding
Output = image

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 8 / 63

Image Encoder Architecture

What would the architecture of the encoder look like?

We can use a FC NN (MLP)
But MLPs are not the best architecture to deal with images

We can also use a convolutional neural network

We can use downsampling to reduce the dimensionality of the data

Q: How can we downsample the dimensionality of an image?

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 9 / 63

Image Decoder Architecture

What would the architecture of the decoder look like?

We need to be able to increase the image resolution.

We haven’t learned how to do this yet. Let us introduce a new NN layer:
Transposed Convolution.

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 10 / 63

Section 2

Transposed Convolution

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 11 / 63

Transposed Convolution

Let us have a detour and talk about another type of layer: Transposed
Convolution or Deconvolution.

It is used to increase the resolution of a feature map.

This is useful for:

image generation problems (as we use in the decoder part of the
autoencoders)
pixel-wise prediction problems

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 12 / 63

Pixel-wise prediction

A prediction problem where we label the content of each pixel is known as a
pixel-wise prediction problem

Figure 1: http://deeplearning.net/tutorial/fcn_2D_segm.html

Q: How do we generate pixel-wise predictions?

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 13 / 63

http://deeplearning.net/tutorial/fcn_2D_segm.html

What we need:

We need to be able to up-sample features, i.e. to obtain high-resolution
features from low-resolution features

Opposite of max-pooling
Opposite of a strided convolution

We need an inverse convolution, i.e., transposed convolution (or
commonly used, but incorrect term: deconvolution).

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 14 / 63

Architectures with Transposed Convolution

Figure 2. Overall architecture of the proposed network. On top of the convolution network based on VGG 16-layer net, we put a multi-
layer deconvolution network to generate the accurate segmentation map of an input proposal. Given a feature representation obtained from
the convolution network, dense pixel-wise class prediction map is constructed through multiple series of unpooling, deconvolution and
rectification operations.

We employ VGG 16-layer net [22] for convolutional part
with its last classification layer removed. Our convolution
network has 13 convolutional layers altogether, rectifica-
tion and pooling operations are sometimes performed be-
tween convolutions, and 2 fully connected layers are aug-
mented at the end to impose class-specific projection. Our
deconvolution network is a mirrored version of the convo-
lution network, and has multiple series of unpooing, decon-
volution, and rectification layers. Contrary to convolution
network that reduces the size of activations through feed-
forwarding, deconvolution network enlarges the activations
through the combination of unpooling and deconvolution
operations. More details of the proposed deconvolution net-
work is described in the following subsections.

3.2. Deconvolution Network for Segmentation

We now discuss two main operations, unpooling and de-
convolution, in our deconvolution network in details.

3.2.1 Unpooling

Pooling in convolution network is designed to filter noisy
activations in a lower layer by abstracting activations in a
receptive field with a single representative value. Although
it helps classification by retaining only robust activations in
upper layers, spatial information within a receptive field is
lost during pooling, which may be critical for precise local-
ization that is required for semantic segmentation.

To resolve such issue, we employ unpooling layers in de-
convolution network, which perform the reverse operation
of pooling and reconstruct the original size of activations as
illustrated in Figure 3. To implement the unpooling opera-
tion, we follow the similar approach proposed in [24, 25]. It
records the locations of maximum activations selected dur-
ing pooling operation in switch variables, which are em-
ployed to place each activation back to its original pooled
location. This unpooling strategy is particularly useful to
reconstruct the structure of input object as described in [24].

Figure 3. Illustration of deconvolution and unpooling operations.

3.2.2 Deconvolution

The output of an unpooling layer is an enlarged, yet sparse
activation map. The deconvolution layers densify the sparse
activations obtained by unpooling through convolution-like
operations with multiple learned filters. However, contrary
to convolutional layers, which connect multiple input ac-
tivations within a filter window to a single activation, de-
convolutional layers associate a single input activation with
multiple outputs, as illustrated in Figure 3. The output of
the deconvolutional layer is an enlarged and dense activa-
tion map. We crop the boundary of the enlarged activation
map to keep the size of the output map identical to the one
from the preceding unpooling layer.

The learned filters in deconvolutional layers correspond
to bases to reconstruct shape of an input object. Therefore,
similar to the convolution network, a hierarchical structure
of deconvolutional layers are used to capture different level
of shape details. The filters in lower layers tend to cap-
ture overall shape of an object while the class-specific fine-
details are encoded in the filters in higher layers. In this
way, the network directly takes class-specific shape infor-

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 15 / 63

Transposed Convolution Layer

With stride = 1

Figure 2: Image credit:
https://d2l.ai/chapter_computer-vision/transposed-conv.html

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 16 / 63

https://d2l.ai/chapter_computer-vision/transposed-conv.html

Transposed Convolution Layer
With stride = 2

Figure 3: Image credit:
https://d2l.ai/chapter_computer-vision/transposed-conv.html

More at https://github.com/vdumoulin/conv_arithmetic
Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 17 / 63

https://d2l.ai/chapter_computer-vision/transposed-conv.html
https://github.com/vdumoulin/conv_arithmetic

Section 3

Autoencoder

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 18 / 63

Let’s get back to the autoencoder

Recall that we want a model that generates images that looks like our
training data

Idea:

In order to learn to generate images, we’ll learn to reconstruct images
from a low-dimensional representation.
A good, low-dimensional representation should allow us to reconstruct
“important” aspects of the image.

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 19 / 63

The components of an autoencoder

Encoder:

Input = image
Output = low-dimensional embedding

Decoder:

Input = low-dimensional embedding
Output = image

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 20 / 63

Why autoencoders?

Dimension reduction:
find a low dimensional representation of the image

Image Generation:
generate new images not in the training set

Autoencoders are not used for supervised learning. The task is not to
predict something about the image!

Autoencoders are considered a generative model.

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 21 / 63

How to train autoencoders?

Loss function: How close were the reconstructed image from the
original? Here are some ideas. . .

Mean Square Error (MSE): look at the mean square error across all
pixels.
Mean Square-Gradient Error (MSGE): take the average of the
differences of squared gradients (computed with something like the
Sobel filter) across all pixels.
Corner Detection: use computer vision to identify corners. Then across
the image (or patches in a partition of the image), compare corner
counts, corresponding positions, and/or nearest distances.

Optimizer:
Just like before: use SGD or other optimizers.

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 22 / 63

Section 4

An autoencoder for MNIST

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 23 / 63

Structure in the Embedding Space

The dimensionality reduction means that there will be structure in the
embedding space.

If the dimensionality of the embedding space is not too large, similar images
should map to similar locations.

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 24 / 63

Interpolating in the Embedding Space

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 25 / 63

Generating New Images

Q: Can we pick a random point in the embedding space, and decode it to
get an image of a digit?

A: Unfortunately not necessarily. Can we figure out why not?

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 26 / 63

Autoencoder Overfitting

Overfitting can occur if the size of the embedding space is too large.

If the dimensionality of the embedding space is small, then the neural
network needs to map similar images to similar locations.

If the dimensionality of the embedding space is too large, then the neural
network can simply memorize the images!

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 27 / 63

Blurry reconstructions

Q: Why do autoencoders produce blurry images?

Hint: it has to do with the use of the MSELoss.

Read more: ieeexplore.ieee.org/document/8461664

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 28 / 63

https://ieeexplore.ieee.org/document/8461664

Section 5

Variational Autoencoders

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 29 / 63

Generative Model

In Intro to ML course (CSC311), we learned about generative models that
describe the distribution that the data comes from.

Describe the distribution x ∼ p(x), where x is a single data point

For example, in the Naive Bayes model for data x (e.g. bag-of-word
encoding of an email, which could be spam or not spam) with x ∼ p(x), we
assumed that p(x) =

∑
c p(x|c)p(c), where c is either spam or not spam.

We made further assumptions about p(x|c), e.g. that each xi is an
independent Bernoulli.

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 30 / 63

Mathematical Notation and Assumptions

Data xi ∈ Rd are:

independent, identically distributed (i.i.d.)
generated from the following joint distribution (with the true parameter
θ∗ unknown)

pθ∗(z, x) = pθ∗(z)pθ∗(x|z)

Where z is a low-dimensional vector (latent embedding)

Example x could be an MNIST digit
Think of z as encoding digit features like digit shape, tilt, line
thickness, font style, etc. . .
To generate an image, we first sample from the prior distribution pθ∗(z)
to decide on these digit features, and use pθ∗(x|z) to generate an
image given those features

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 31 / 63

Intractability

Our data set is large, and so the computation of the following is intractable:

evidence pθ∗(x)
posterior distributions pθ∗(z|x)

In other words, exactly computing the distribution of p(x) and p(z|x) using
our dataset has high runtime complexity.

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 32 / 63

The decoder and encoder

With this assumption, we can think of the autoencoder as doing the
following:

Decoder: A point approximation of the true distribution pθ∗(x|z)

Encoder: Making a point prediction for the value of the latent vector z
that generated the image x

Alternative:

what if, instead, we try to infer the distribution pθ∗(z|x)?
Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 33 / 63

VAE Setup so far

Decoder: An approximation of the true distribution pθ∗(x|z)

Encoder: An approximation of the true distribution pθ∗(z|x)

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 34 / 63

Computing the encoding distribution pθ∗(z|x)

Unfortunately, the true distribution pθ∗(z|x) is complex (e.g. can be
multi-modal).

But can we approximate this distribution with a simpler distribution?

Let’s restrict our estimate qϕ(z|x) = N (z; µ, Σ) to be a multivariate
Gaussian distribution with ϕ = (µ, Σ)

It suffices to estimate the mean µ and covariance matrix Σ of qϕ(z|x)
Let’s make it simpler and assume that the covariance matrix is
diagonal, Σ = σ2Id×d

(Note: we don’t have to make this assumption, but it will make
computation easier later on)

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 35 / 63

VAE Setup so far

Decoder: An approximation of the true distribution pθ∗(x|z)

Encoder: Predicts the mean and standard deviations of a distribution
qϕ(z|x), so that the distribution is close to the true distribution pθ∗(z|x)

We want our estimate distribution to be close to the true distribution. How
do we measure the difference between distributions?

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 36 / 63

(Discrete) Entropy

H[X] =
∑

x
p(X = x) log 1

p(X = x) = E[log 1
p(X)]

Many ways to think about this quantity:

The expected number of yes/no questions you would need to ask to
correctly predict the next symbol sampled from distribution p(X)
The expected “surprise” or “information” in the possible outcomes of
random variable X
The minimum number of bits required to compress a symbol x sampled
from distribution p(X)

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 37 / 63

(Discrete) Entropy of a Coin Flip

0 0.5 1
0

0.5

1

Pr(X = 1)
H

(X
)

Figure 4: Binary Entropy

Entropy of a fair coin flip is 0.5log(2) + 0.5log(2) = log(2) = 1 bits
Entropy of a fair dice is log(6) = 2.58 bits
Entropy of characters in English words is about 2.62 bits
Entropy of characters from the English alphabet selected uniformly at
random is log(26) = 4.7 bits

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 38 / 63

Kullback-Leibler Divergence

Also called: KL Divergence, Relative Entropy

For discrete probability distributions:

KL[q(z) || p(z)] =
∑

z
q(z) log q(z)

p(z)

For continuous probability distributions:

KL[q(z) || p(z)] =
∫

q(z) log q(z)
p(z)dz

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 39 / 63

KL Divergence Example Computation

Approximating an unfair coin with a fair coin.

p(z = 1) = 0.7 and p(z = 0) = 0.3
q(z = 1) = q(z = 0) = 0.5

KL[q(z) || p(z)] =
∑

z
q(z) log q(z)

p(z)

= q(0) log q(0)
p(0) + q(1) log q(1)

p(1)

= 0.5 log 0.5
0.3 + 0.5 log 0.5

0.7
= 0.872

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 40 / 63

KL Divergence is not symmetric!

Approximating a fair coin with an unfair coin.

p(z = 1) = 0.7 and p(z = 0) = 0.3
q(z = 1) = q(z = 0) = 0.5

KL[p(z) || q(z)] =
∑

z
p(z) log p(z)

q(z)

= p(0) log p(0)
q(0) + p(1) log p(1)

q(1)

= 0.3 log 0.3
0.5 + 0.7 log 0.7

0.5
= 0.823
̸= KL[q(z) || p(z)]

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 41 / 63

Minimizing KL Divergence

Figure 5: Two directions of the KL Divergence

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 42 / 63

KL divergence Properties

The KL divergence is a measure of the difference between probability
distributions.

KL divergence is an asymmetric, nonnegative measure, not a norm. It
doesn’t obey the triangle inequality.

KL divergence is always non-negative. Hint: you can show this using the
inequality ln(x) ≤ x − 1 for x > 0

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 43 / 63

KL Divergence: continuous example

Suppose we have two Gaussian distributions p(x) ∼ N(µ1, σ2
1) and

q(x) ∼ N(µ2, σ2
2).

What is the KL divergence KL[p(z) || q(z)]?

Recall:

p(z ; µ1, σ2
1) = 1√

2πσ2
1

e
− (z−µ1)2

2σ2
1

log p(z ; µ1, σ2
1) = − log

√
2πσ2

1 − (z − µ1)2

2σ2
1

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 44 / 63

KL Divergence: Entropy and Cross-Entropy

We can split the KL divergence into two terms, which we can compute
separately:

KL[p(z) || q(z)] =
∫

p(z) log p(z)
q(z)dz

=
∫

p(z)(log p(z) − log q(z))dz

=
∫

p(z) log p(z)dz −
∫

p(z) log q(z)dz

= −entropy − cross-entropy

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 45 / 63

KL Divergence: continuous example, entropy computation

∫
p(z) log p(z)dz =

∫
p(z)(− log

√
2πσ2

1 − (z − µ1)2

2σ2
1

)dz

= −
∫

p(z)1
2 log(2πσ2

1)dz −
∫

p(z)(z − µ1)2

2σ2
1

dz

= −1
2 log(2πσ2

1)
∫

p(z)dz − 1
2σ2

1

∫
p(z)(z − µ1)2dz

= −1
2 log(2πσ2

1) − 1
2

= −1
2 log(σ2

1) − 1
2 log(2π) − 1

2

Since
∫

p(z)dz = 1 and
∫

p(z)(z − µ1)2dz = σ2
1

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 46 / 63

KL Divergence: continuous example, cross-entropy
computation

∫
p(z) log q(z)dz =

∫
p(z)(− log

√
2πσ2

2 − (z − µ2)2

2σ2
2

)dz

= −
∫

p(z)1
2 log(2πσ2

2)dz −
∫

p(z)(z − µ2)2

2σ2
2

dz

= −1
2 log(2πσ2

2) − 1
2σ2

2

∫
p(z)(z − µ2)2dz

= ...

= −1
2 log(2πσ2

2) − σ2
1 + (µ1 − µ2)2

2σ2
2

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 47 / 63

Back to autoencoders: summary so far

Autoencoder:

Decoder: point estimate of pθ∗(x|z)
Encoder: point estimate of the value of z that generated the image x

VAE:

Decoder: probabilistic estimate of pθ∗(x|z)
Encoder: probabilistic estimate of a Gaussian distribution qϕ(z|x) that
approximates the distribution pθ∗(z|x)

In particular, our encoder will be a neural network that predicts the
mean and standard deviation of qϕ(z|x)
We can then sample z from this distribution!

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 48 / 63

VAE Objective

But how do we train a VAE?

We want to maximize the likelihood of our data:

log p(x) = log
∫

p(x , z)dz = log
∫

p(x |z)p(z)dz

And we want to make sure that the distributions q(z |x) and p(z |x) are
close:

We want to minimize KL[q(z|x) || p(z|x)]
This is a measure of encoder quality

In other words, we want to maximize

−KL[q(z|x) || p(z|x)] + log p(x)

How can we optimize this quantity in a tractable way?

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 49 / 63

VAE: Evidence Lower-Bound

KL[q(z|x) || p(z|x)] =
∫

q(z|x) log q(z|x)
p(z|x)dz

= Eq[log q(z|x)
p(z|x)]

= Eq[log q(z|x)] − Eq[log p(z|x)]
= Eq[log q(z|x)] − Eq[log p(z, x)] + Eq[log p(x)]
= Eq[log q(z|x)] − Eq[log p(z, x)] + log p(x)

We’ll define the evidence lower-bound:

ELBOq(x) = Eq[log p(z, x) − log q(z|x)]

So we have

log p(x) − KL[q(z|x) || p(z|x)] = ELBOq(x)

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 50 / 63

Optimizing the ELBO

The ELBO gives us a way to estimate the gradients of
log p(x) − KL[q(z|x) || p(z|x)]

How?

ELBOq(x) = Eq[log p(z, x) − log q(z|x)]

The right hand side of this expression is an expectation over z ∼ q(z |x)
To estimate the ELBO, we can sample from the distribution
z ∼ q(z |x), and compute the terms inside.
We can estimate gradients in the same way—this is called a
Monte-Carlo gradient estimator

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 51 / 63

Monte Carlo Estimation

(This notation is unrelated to other slides: p(z) is just a univariate Gaussian
distribution, and fϕ(z) is a function parameterized by ϕ)

Suppose we want to optimize an objective L(ϕ) = Ez∼p(z)[fϕ(z)] where
p(z) is a normal distribution.

We can estimate L(ϕ) by sampling zi ∼ p(z) and computing

L(ϕ) = Ez∼p(z)[fϕ(z)]

=
∫

z
p(z)fϕ(z)dz

≈ 1
N

N∑
i=1

fϕ(zi)

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 52 / 63

Monte Carlo Gradient Estimation

Likewise, if we want to estimate ∇ϕL, we can sample zi ∼ p(z) and
compute

∇ϕL = ∇ϕEz∼p(z)[fϕ(z)]

= ∇ϕ

∫
z

p(z)fϕ(z)dz

≈ ∇ϕ
1
N

N∑
i=1

fϕ(zi)

= 1
N

N∑
i=1

∇ϕfϕ(zi)

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 53 / 63

The reparamaterization trick

ELBOθ,ϕ(x) = Eqϕ
[logpθ(z, x) − logqϕ(z|x)]

Problem: typical Monte-Carlo gradient estimator with samples z ∼ qϕ(z|x)
has very high variance

Reparameterization trick: instead of sampling z ∼ qϕ(z|x) express
z = gϕ(ϵ, x) where g is deterministic and only ϵ is stochastic.

In practise, the reparameterization trick is what makes the VAE encoder
deterministic. When running a VAE forward pass:

1 We get the means and standard deviations from the VAE
2 We sample from N (0, I)
3 We use the samples from step 2 to get a sample from q(z) obtained

from step 1

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 54 / 63

VAE: Summary so far

Decoder: estimate of pθ∗(x|z)

Encoder: estimate of a Gaussian distribution qϕ(z|x) that approximates the
distribution pθ∗(z|x)

Encoder is a NN that predicts the mean and standard deviation of
qϕ(z|x)
Use the reparameterization trick to sample from this distribution

The VAE objective is equal to the evidence lower-bound:

log p(x) − KL[q(z|x) || p(z|x)] = ELBOq(x)

Which we can estimate using Monte Carlo

ELBOq(x) = Eq[log p(z, x) − log q(z|x)]

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 55 / 63

VAE: Summary so far

But given a value z ∼ q(z |x), how can we compute

log p(z, x) − log q(z|x)

. . . or its derivative with respect to the neural network parameters?

We need to do some more math to write this quantity in a form that is
easier to estimate.

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 56 / 63

VAE: a simpler form

ELBOθ,ϕ(x) = Eqϕ
[logpθ(z, x) − logqϕ(z|x)]

= Eqϕ
[logpθ(x|z) + logpθ(z) − logqϕ(z|x)]

= Eqϕ
[logpθ(x|z)] − Eqϕ

[logqϕ(z|x) − logpθ(z)]
= Eqϕ

[logpθ(x|z)] − KL(qϕ(z|x) || pθ(z))
= decoding quality − encoding regularization

Both terms can be computed easily if we make some simplifying assumptions

Let’s see how. . .

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 57 / 63

Computing Decoding Quality

In order to estimate this quantity

Eqϕ
[logpθ(x|z)]

. . . we need to make some assumptions about the distribution pθ(x|z).

If we make the assumption that pθ(x|z) is a normal distribution centered
around some pixel intensity, then optimizing pθ(x|z) is equivalent to
optimizing the square loss!

That is, pθ(x|z) tells us how intense a pixel could be, but that pixel could
be a bit darker/lighter, following a normal distribution).

Bonus: A traditional autoencoder is optimizing this same quantity!

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 58 / 63

Computing Encoding Quality

This KL divergence computes the difference in distribution between two
distributions:

KL(qϕ(z|x) || pθ(z))

qϕ(z|x) is a normal distribution that approximates pθ(z|x)
pθ(z) is the prior distribution on z

distribution of z when we don’t know anything about x or any other
quantity

Since z is a latent variable, not actually observed in the real word, we can
choose pθ(z)

we choose pθ(z) = N (0, I)

. . . and we know how to compute the KL divergence of two Gaussian
distributions!

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 59 / 63

Interpretation

The VAE objective

Eqϕ
[logpθ(x|z)] − KL(qϕ(z|x) || pθ(z))

has an extra regularization term that the traditional autoencoder does not.

This extra regularization term pushes the values of z to be closer to 0!

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 60 / 63

MNIST results

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 61 / 63

Frey Faces results

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 62 / 63

Dimension of latent variables

Mar 19/21, 2024 CSC413 Neural Networks and Deep Learning 63 / 63

	Generative Models
	Transposed Convolution
	Autoencoder
	An autoencoder for MNIST
	Variational Autoencoders

