Offline Reinforcement
Learning using Models

Michael Gimelfarb

What is Offline RL?

(a) online reinforcement learning

rollout data {(Sz‘, a;, ng T’z)}

o

|
(|&—r1\

4

Tk

t_a |

rollout(s) J

t

update
Tk+1

k41

(c) offline reinforcement learning

e e o - -

{(si,ai,si,mi)}
| i

t a |

—— |
/I S, T | : buffer I
3 7"- Il
8
|
|
|

\ rollout(s)

data collected ONCE == == == == = |
with any policy training phase

Motivation

- Evaluation: Use logged data to evaluate & select the best policy obtained from a training procedure
- Improvement: Use logged data to learn a policy that performs better than the policy that collected the data
- Challenges:

- Direct evaluation in the real world is also costly

- Real world data is costly to obtain

- Real world data can be limited in scale or scope

Large scale model-develop t with reliabl data collection offline RL
off-policy evaluation
online env logged data
Train 1000s of models i
with different ...|.»l Rank models with ..]..»l Evaluate the 10 best
h . off-policy evaluation on real hardware < é
yper-parameters . ‘
: offline RL-to-OPE — 'f-m ||
workflow = forere]
Iterate design based .

Misyanesue on real performance Corennaseet - logged data policy

When (and Where) to Trust the Model
in Offline Policy Optimization

A Brief Review of RL

- Policy: mapping from state/observation to action

Grasping Task

e N Grasping
grasp/assembly | posture
I planner) Guided Policy Search
Input Output

- A H/

Image input »/ CNN Policy
o J/

Y primitive shapes
R ‘A X
configuration

A Brief Review of RL

Model: describes the dynamics of the system P and the immediate rewards r

r| R
. ™ 5 |
a 1 \ 2 g ¥ Markov Property
'_ P(8t+1 =5 | Sty Qgy Sg—15 Ag—15 - - - S1, a1) = P($t+1 =5 | St, at)

A Brief Review of RL

Value: the expected (discounted) sum of all future rewards following a given policy

Q7(s5,0) =Efry + 772+ + 7 i [s1 =5, a1 = a

A Brief Review of RL

- Value: the expected (discounted) sum of all future rewards following a given policy

Q(s,a) =E[r +yra+ -+ i+ .. |51 = 5, a1 =]

- Monte-Carlo policy evaluation:

— 11:.3000,@_3.1133‘ = 7’51) + ’77’51) R ,yT—IT;l)
P T
o S AR 7“%3) + wés) +---+ ’)/T_IT?)

0.0 0.2 0.4 0.6 0.8 1.0

A Brief Review of RL

- Optimal Policy: the goal of RL is to find the policy that has the highest Q-value from some initial s, a

max, Q" (s, a)

A Brief Review of RL

- Optimal Policy: the goal of RL is to find the policy that has the highest Q-value from some initial s, a
max, Q" (s, a)
- Greedy policy improvement: basis of most RL algorithms

7'(s) = argmax, Q7 (s, a)

A Brief Review of RL

- Optimal Policy: the goal of RL is to find the policy that has the highest Q-value from some initial s, a
max, Q" (s, a)
- Greedy policy improvement: basis of most RL algorithms

7'(s) = argmax, Q7 (s, a)

Derive &’
greedily

Evaluate 7
toget Q7

Start with
policy =

Model-Based Offline Policy Optimization

{(sasr)}

= e o - -

3’”5

roIIout /

data collected once
with any policy

|
I
K
D |

training phase

rollout data {(Sz a;, S;, 7’z)}

N

/,—]\
T
1_|

roIIout(s)

k

y

update
Tk+1

|

7Tk+1

Model-Based Offline Policy Optimization

- Challenges of model-based offline RL:
- Impossible to learn a globally accurate model
- Compounding errors for long horizon
- Policy distribution shift
- Learn both an autoregressive dynamics model and a value function:
- How to get the “best of both worlds”?
- Canwerely on the model only where accurate?
- How to do this automatically without complicated validation?

Sx A

{0} Data support
I Known

Unknown

Model-Based Offline Policy Optimization

Replace Monte-Carlo with (n-step) bootstrapping

QW(S,CL) :E[Tl-|—’}’7“2+"'-|—’YH_17“H-|—’YH<7“H+1 +YrH42 + ...

= E[Tl —|—"}/’]"2 + .- _|_fyH_1/r~H _‘_,YHQﬂ'(S/’a/)]

1 T9 o« o o g TH+1 + «

\ J \ J
Y Y

Sample from autoregressive model Q Replace by bootstrap QW

Model-Based Offline Policy Optimization

Produce an ensemble of estimators:

Ry = QW(S: a‘)
Ry =11 +9Q"(s,d)

Ry=ri+ -+ ",«"‘H_l'T‘H + ",""HQW(SI: a’)

71 T9 .« o o 'H THa1

\ J \ J
Y Y

Sample from autoregressive model Q Replace by bootstrap QW

ing in ML

Bootstrapp

Cat 99%
Dog 1%

N

W

Q
N

R

)

4

N

DAL

O
W

W\

“o
\ L (/
vA"v A"'/

\\

A

; ,.A«OA'

NN

A
o

Bootstrapping in ML

100 AR
Ny

)
N NARKA
l,_cw, died htod

ML

ing in

Bootstrapp

ing in ML

Bootstrapp

Cat 90%
Dog 10%

\

Nwe

W
NN

:
\\

AR
i

o‘ A‘ﬁ«‘

%\

N

N

/)

Cat 80%
Dog 20%

\ _.Z.,w\w
W

Naed

i

7\

(0

ing in ML

Bootstrapp

Cat 80%
Dog 20%

\

/4 /lv '0}‘\«

Voo e

NABEEA

7

/
N oeed

BAAL
Vi

Cat 25%
Dog 75%

L

:

Model-Based Offline Policy Optimization

Produce an ensemble of estimators:

Ry = QW(S: a‘)
Ry =11 +9Q"(s,d)

Ry=ri+ -+ ",«"‘H_l'T‘H + ",""HQW(SI: a’)

71 T9 .« o o 'H THa1

\ J \ J
Y Y

Sample from autoregressive model Q Replace by bootstrap QW

Model-Based Offline Policy Optimization

1. Use statistical bootstrap to estimate variation of n-step return
2. Fit aGaussian to each return estimator in the ensemble
3. Apply Bayes' rule to estimate total variance

Model-Based Offline Policy Optimization

1. Use statistical bootstrap to estimate variation of n-step return
2. FitaGaussian to each return estimator in the ensemble
3. Apply Bayes' rule to estimate total variance

Ay +AQ™ (S d)

RH:~7‘1—|—...

Model-Based Offline Policy Optimization

1. Use statistical bootstrap to estimate variation of n-step return
2. Fit aGaussian to each return estimator in the ensemble
3. Apply Bayes' rule to estimate total variance

p = ErRy) = Efk[]Ew[RH’fk:H A)
oy = Varz[Ry) = E; [Var: Ryl fil|[+Var; [Ex Ryl fi]]

Model-Based Offline Policy Optimization

1. Use statistical bootstrap to estimate variation of n-step return
2. Fit aGaussian to each return estimator in the ensemble
3. Apply Bayes' rule to estimate total variance

posterior = likelihood x prior
Given:

- Prior P(sick)
- Likelihood P(cough|sick) P(cough|not sick)

p I\ P(si
P(sick|cough) = (cough|sick)P(sick)

P(coughlsick)P(sick)+ P(cough|not sick)(1 — P(sick))

Model-Based Offline Policy Optimization

1. Use statistical bootstrap to estimate variation of n-step return
2. Fit aGaussian to each return estimator in the ensemble
3. Apply Bayes' rule to estimate total variance

IP’(Q” | Ro, ... }?H) OC]P’(I;)O B | Q“)]P(Q”) :F(Q”) Hp(m | Q”)

Gaussian

(improper) Likelihood

Rp | Qﬂ ~ N(pn, o)

Model-Based Offline Policy Optimization

1. Use statistical bootstrap to estimate variation of n-step return
2. Fit aGaussian to each return estimator in the ensemble
3. Apply Bayes' rule to estimate total variance

A

P(Q"|Ry,. .. Ryr) ~ N (p, 1/p)

D h (%}21) Hn
o=
2 ()

1
PZZg
h),

h

Model-Based Offline Policy Optimization

L
B = Sophx o7
| = —Z _]_
h ”!':
- < 1 Lo,
Py 12 = 1 0.024
& c 1.51 L 0.022
10+
g E 1.4 1 0.020
N -g 13.
‘= 81 -y 0.018
(@) =)
- 212 £ 0.016
o] 6 7 e 1.1
(] p,~ e -0.014
t 8 10-
o 4- 9 L0.012
o 2 49
ux.l T T T T - ; & o -0.010
0 20 40 60 80 100 | 10 I 20 30 40 S0 60 70 80 90 100
Epochs (policy training) Epochs (dynamics training)

(uses converged dynamics) (uses converged value)

0SS

Validation |

Model-Based Offline Policy Optimization

argmax y — ko

P SU bSta ntl al Table 1: Normalized scores on D4RL MuJoCo Gym environments. Experiments ran with 5 seeds.
I m p ro Ve m e n ts MOPO MORcL COMBO CcQL TD3+BC EDAC IQL CBOP

I £ halfcheetah 35.4 + 2.5 25.6 38.8 35.4 10.2 4+ 1.3 28.44+1.0 - 32.8 +0.4

over prlor SOTA 3 hopper 11.74 0.4 53.6 17.9 10.8 11.0 +£0.1 31.3 4+ 0.0 - 31.4 +0.0

g walker2d 13.6 + 2.6 37.3 7.0 7.0 1.4+ 1.6 21.7 + 0.0 = 17.8 +£ 0.4

M B methOdS E halfcheetsh 42.3+ 1.6 42.1 54.2 44.4 42.8+0.3 67.5+1.2 47.4 74.3 +0.2
= hopper 28.0 +12.4 95.4 94.9 79.2 99.5 4+ 1.0 101.6 + 0.6 66.2 102.6 + 0.1

g walkerad ~ 17.8 +19.3 77.8 75.5 58.0 79.7+1.8 92.5 + 0.8 78.3 95.5+0.4

® SOTA reSU|tS fOl' E, halfcheetsh 53.1+ 2.0 40.2 55.1 46.2 43.3+0.5 63.9+0.8 44.2 66.4+0.3
lg-g_ hopper 67.5 + 24.7 93.6 73.1 48.6 31.4 + 3.0 101.8 £ 0.5 94.7 104.3 + 0.4

11 out Of 18 g2 walker2d 39.0 4+ 9.6 49.8 56.0 26.7 25.2+5.1 87.1+2.3 73.8 92.7+ 0.9

E. halfcheetsh 63.3 + 38.0 53.3 90.0 62.4 97.9+4.4 107.14+2.0 86.7 105.4+ 1.6

33 hopper 23.7 4+ 6.0 108.7 111.1 98.7 112.24+0.2 110.7+0.1 91.5 111.6 + 0.2
benchmark datasets %5 ke d46+120 956 96.1 111.0 101.1+9.3 114.7+0.9 109.6 117.2 + 0.5

& halfcheetah : b 5 5 105.7+1.9 106.8 + 3.4 B 100.4 + 0.9

§ hopper - - - - 112.2+ 0.2 110.3 £ 0.3 - 111.4 4+ 0.2
e Please check out 3 walker2d - - . - 105.7£2.7 115.1+1.9 . 122.7 + 0.8
' -z halfcheetah - - - - - 84.6 + 0.9 - 85.5 - 0.3
33 hopper s i : 5 i 105.4 + 0.7 i 108.1 + 0.3
Our paper' @ walker2d - - - - - 99.8 + 0.7 - 107.8 + 0.2

Off-Policy Evaluation using
Diffusion Models

Generative Models

GAN: Adversarial
training

VAE: maximize
variational lower bound

Flow-based models:
Invertible transform of
distributions

Discriminator

Generator

G(2)

Flow

f(x)

m Decoder
L po(x|z)
IT' Inverse
L] (=)

From https://lilianweng.github.io/

Diffusion Model

q(x; | xp1)

Xt-1 e Xr

Distribution of the
noised images Output Mean i, Variance %,

I | [‘]
q(zi|zi1) = N(@ }\/1 — Bizi_1 |Bel)

Notations:

t :time step (from O to 7)

Xo : a data sampled from the real data distrition g(x) (i.e. xg ~ g(x))

B; : variance schedule (0 < g, < 1, and ffy = small number, f7= large number)
1 :identity matrix

From Steins (medium.com)

Diffusion Model

From Steins (medium.com)

q(x; | x11)

»
>

&

q(xXe-1]xe)

X0 Xt-1 Xt

= Forward factorization: g(xg, Xy %) = g(x0) TIE-1 gl %e_1)
» Reverse factorization: q(xg, x4, ..., x7) = [[1=1 9 (xt—1]|xs) q(x71)
* Since joint distribution is Gaussian then q(x;_{|x;) is also Gaussian

 q(xe—1lxe) = N(xp—q |l (xp, t), o)

Diffusion Model

Recall that xy = v/t X0+ /(1 — ay) € . Ho et al. NeurlIPS 2020 observe that:

- 1 By
H't(xh Xo) = ﬁ <Xf - ﬁ(f)

They propose to represent the mean of the denoising model using a noise-prediction network:

1 Bf
1g(Xy 1) = ——— | Xt — —— ep(xy, t
po(Xs,) ’—l—ﬁf(f T—a a(X)>
With this parameterization

B

Li1 = Eyjngxo).e~N(0.1) [20;3(1 — 81— dI)||€ = 69(@ Xo+vV1—ay j,t)Hz] +C
i ; i <

Xt
slide from https://cvpr2022-tutorial-diffusion-models.github.io/

Diffuser

local receptive field

v ¥ Y

| [[| | | |

* Represent trajectories as single-channel images b0 sl gl |g g gl |s! st

1 2 3 4 5 6

@ | | | | | | |

o 1 1 1 1 1 1 1

g 0 Al 2 B A 2

o | | [| | I |

* Train a diffusion model to iteratively denoise N /N /N N JIN N /]
entire trajectory [Diffuser j

WA N\ NN A

| | | | | | |

0 0 0 0 0 0 0

. ‘ . . st s gills |5 g s

* Use (one-dimensional) convolutions for temporal |0 |1 |2 |3 |4 ? 16

v 0 0 0 0 0 0 0

a a a l|la|a a a

equivariance and horizon-independence |0 |1 |2 |3 |4 |5 |6

planning horizon ——

Diffuser

* Prediction is non-autoregressive: entire trajectory is predicted simultaneously

~ -

diffusion

https://docs.google.com/file/d/1i7cCZRaxlhpLKAff2g77S-1LJTYLmkJY/preview

Diffuser

» Diffuser is non-Markovian, but still compositional due to temporal convolutions

data plan

Diffuser

Diffuser is non-Markovian, but still compositional due to temporal convolutions

Offline data from behavior policy

data

Target policy

>

Rollout from target policy

plan

Diffuser

* Synthesize different behaviors through conditional trajectory synthesis with different learned

guidance functions:

Po(T) o< po(T) h(T)

Behavior Diffusion
Model Model

9
-

Diffuser

- How can the diffuser generate trajectories from another policy?
1. Guidance function
2. Inpainting

Diffuser

- How can the diffuser generate trajectories from another policy?
1. Guidance function

2. Inpainting
pe(T' ™ | 7%, 0nr) m N (T u+ Tg, X)
Po(T) o po(T) h(T) /
Behavior Diffusion § = N LOE p(OlzT | T)’T:N
Model Model

I
- Z Vst:at 'I‘(St, at>|(st-at)=lbt = Vj('u)

t=0

Dhariwal, Prafulla, and Alexander Nichol. "Diffusion models beat gans on image synthesis." Advances in neural information processing systems 34 (2021):
8780-8794.

Diffuser

- How can the diffuser generate trajectories from another policy?
1. Guidance function
2. Inpainting

* Specify a guidance function over the final explicit goal state of a trajectory

po(T)

k— Po(T)

I —

» Construct a goal seeking policy through guidance

Diffuser

Diffuser for Off-Policy Evaluation

- Recall that we collect data from some behavior policy
- But we want to evaluate some other target policy

Diffuser for Off-Policy Evaluation

- Recall that we collect data from some behavior policy
- But we want to evaluate some other target policy

po(T' 1 | 7, 01p) m N (77 i+ £g,)

Do(T) o po(T) h(T) / /

Behavior Diffusion .
Model Model g = v"' 10% p(OlfT | T)l"':,ll

log Vs.a H Ti'((l‘t |Sf) = Z 108; vs,a-ﬂ-(al‘lsf)
t t

Use the target policy probability as prior

Summary

- Off-policy RLis an important and challenging problem

- Discussed how statistical bootstrapping can produce an estimate of uncertainty of any ML model
- Applied this idea to choose the best rollout horizon in offline policy optimization

- Introduced the diffusion model as a powerful way of simulating trajectories from any policy

- Applied diffusion as a potential way to evaluate any target policy through guidance

