
HOMEWORK 3

CSC311 Spring 2020

• Deadline: Monday, March 16, 2020 at 16:59.
• Submission: You need to submit two files through MarkUs. One is a PDF file including

all your answers and plots. The other is a source file that reproduces your answers for each
question. You can produce the file however you like (e.g. LATEX, Microsoft Word, etc) as
long as it is readable. Points will be deducted if we have a hard time reading your solutions
or understanding the structure of your code. If the code does not run, you may lose most/all
of your points for that question.
• Late Submission: 10% of the marks will be deducted for each day late, up to a maximum

of 3 days. After that, no submissions will be accepted.
• Collaboration: Weekly homework assignments must be done individually, and you cannot

collaborate with others.

1. Backpropagation – 20pts.
The goal of this exercise is to help you practice how backpropagation works. We consider

a simple variation of the feedforward fully-connected network. In the usual feedforward fully-
connected network, each layer is connected to its previous layer. The main difference here is that
one of the hidden layers in this network is connected to the input too. The computation graph
and how each computation is performed is as follows:
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z1 = W (1)x with x ∈ Rd

h = σ(z1) with h ∈ Rd

z2 = h+ x

y = W (2)z2

L =
1

2
(y − t)2 with t ∈ R.

Here σ is the activation function, and you can assume that it is differentiable. Answer the following
questions:

(a) [4pt] Determine the dimensions of W (1), W (2), z1, and z2.
(b) [2pt] Calculate the number of parameters in this network, as a function of d.
(c) [14pt] Compute the gradient of loss L with respect to all variables. That is, compute
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• ȳ = ∂L
∂y = . . .

• W̄ (2) = ∂L
∂W (2) = . . .

• z̄2 = . . .

• h̄ = . . .

• z̄1 = . . .

• W̄ (1) = . . .

• x̄ = . . .
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2. Multi-Class Logistic Regression – 10pts.
The goal of this exercise is to verify the formula on Slide 8 of Lecture 5. Consider

z = Wx

y = softmax(z)

LCE(t,y) = −t> log y = −
K∑
k=1

tk log yk

Note that if x ∈ Rd, the dimension of W is K × d. We denote its k-th row by wk. The vector y
is a function of W and x. And the output t is a one-hot encoding of the output.

Recall that the k-th component of y is

yk = softmax(z1, . . . , zK)k =
exp(zk)∑K

k′=1 exp(zk′)
.

(a) [5pt] Compute
∂yk
∂zk′

,

for any k, k′ = 1, . . . ,K (note that k and k′ may or may not be the same). Try to write it
in a compact form (no exp(· · · ) would be needed).

(b) [5pt] Compute
∂LCE(t,y(x;W ))

∂wk
.

You need to show all the derivations in order to get the full mark. The final solution alone will
not give you any mark, as it is already shown on the slide.
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3. Handwritten Digit Classification – 70 points.
For this question you will build classifiers to label images of handwritten digits. Each image is

8 by 8 pixels and is represented as a vector of dimension 64 by listing all the pixel values in raster
scan order. The images are grayscale and the pixel values are between 0 and 1. The labels y are
0, 1, 2, · · · , 9 corresponding to which character was written in the image. There are 700 training
cases and 400 test cases for each digit; they can be found in a2digits.zip.

Starter code written in python is provided to help you load the data. A skeleton is also pro-
vided for each question that you should use to format your solution. You are welcome to use any
other programming language, as long as your code is functional and modular.

Please note that if you are asked to report/compute quantities these should be clearly
displayed in your written report. It is not sufficient to simply print these as an output
of your code. The same applies to plots and figures.

0. Load the data and plot the means for each of the digit classes in the training data (include
these in your report). Given that each image is a vector of size 64, the mean will be a vector
of size 64 which needs to be reshaped as an 8× 8 2D array to be rendered as an image. Plot
all 10 means side by side using the same scale.

3.1. K-NN Classifier.

1. Build a simple K nearest neighbour classifier using Euclidean distance on the raw pixel
data.

(a) For K = 1 report the train and test classification accuracy.

(b) For K = 15 report the train and test classification accuracy.

2. For K > 1 K-NN might encounter ties that need to be broken in order to make a decision.
Choose any (reasonable) method you prefer and explain it briefly in your report.

3. Use 10 fold cross validation to find the optimal K in the 1-15 range. You may use the KFold
implementation in sklearn or your existing code from Assignment 1. Report this value of K
along with the train classification accuracy, the average accuracy across folds and the test
accuracy.

3.2. Classifiers comparison. In this section, you will design three different classifiers for the
provided hand-written digits data set. You are free to implement your own classifier or to use any
package you prefer as long as you will provide readable modular code. We recommend exploring
well-known packages such as PyTorch, TensorFlow and scikit-learn. Here is the list of classifiers
you are to implement

1. MLP - Neural Network Classifier. Design a Multi-Layer Perceptron Neural Network.
We are asking for a fully connected network with one-hot encoding output. Your input
layer needs one unit for each pixel; given that your are distinguishing among 10 classes, the
output layer will need 10 units. Other than the input and the output layers, you are free
to deign the best network that provide the least possible error rate, taking overfitting into
consideration.
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2. SVM classifier. Design an SVM classifier. We will not cover all kernel types in the class,
but since you are using external packages, you have a pretty good chance to try different
kernel types easily. Also, there are useful grid search tools that helps you reach the optimal
set of hyper-parameters

3. AdaBoost Classifier. You will have a chance to turn a weak-learner into a strong per-
forming classifier. Again, you have total freedom of the architecture as long as you provide
original, readable and modular code.

3.3. Model Comparison. Briefly summarize the performance of each model, including the K-
NN model with the optimal K you found. This will be a good chance to study different ways
to measuring a classifier performance. Measuring MSE or error rate is not enough, you need to
provide, at least, the following metrics for each classifier:

1. ROC (Receiver Operating Characteristics) curve
2. Confusion Matrix
3. Accuracy
4. Precision
5. Recall

While we did not cover all these metrics in class, it is a very good idea to read and understand
what each one measures. A good starting point is perhaps this Wikipedia link Receiver operating
characteristic.
Which classifier performed best? Which performed worst? Did this match your expectations?
The most important is to show good understanding of why a certain classifier did better in the
provided dataset.
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