Today

- Decision Trees
 - Simple but powerful learning algorithm
 - One of the most widely used learning algorithms in Kaggle competitions
 - Lets us introduce ensembles, a key idea in ML

- Useful information theoretic concepts (entropy, mutual information, etc.)
Decision trees make predictions by recursively splitting on different attributes according to a tree structure.

Example: classifying fruit as an orange or lemon based on height and width.
Decision Trees

Test example

width > 6.5cm?

height > 9.5cm? height > 6.0cm?

Yes No Yes No

Yes No Yes No

lemon orange lemon orange
Decision Trees

- For continuous attributes, split based on less than or greater than some threshold
- Thus, input space is divided into regions with boundaries parallel to axes
Example with Discrete Inputs

- What if the attributes are discrete?

<table>
<thead>
<tr>
<th>Example</th>
<th>Input Attributes</th>
<th>Goal</th>
<th>WillWait</th>
</tr>
</thead>
<tbody>
<tr>
<td>x₁</td>
<td>Yes No No Yes Some $$$ No Yes French 0–10</td>
<td>y₁ = Yes</td>
<td></td>
</tr>
<tr>
<td>x₂</td>
<td>Yes No No Yes Full $ No No Thai 30–60</td>
<td>y₂ = No</td>
<td></td>
</tr>
<tr>
<td>x₃</td>
<td>No Yes No No Some $ No No Burger 0–10</td>
<td>y₃ = Yes</td>
<td></td>
</tr>
<tr>
<td>x₄</td>
<td>Yes No Yes Yes Full $ Yes No Thai 10–30</td>
<td>y₄ = Yes</td>
<td></td>
</tr>
<tr>
<td>x₅</td>
<td>Yes No Yes No Full $$$ No Yes French >60</td>
<td>y₅ = No</td>
<td></td>
</tr>
<tr>
<td>x₆</td>
<td>No Yes No Yes Some $$ Yes Yes Italian 0–10</td>
<td>y₆ = No</td>
<td></td>
</tr>
<tr>
<td>x₇</td>
<td>No Yes No No None $ Yes No Burger 0–10</td>
<td>y₇ = No</td>
<td></td>
</tr>
<tr>
<td>x₈</td>
<td>No No No Yes Some $$ Yes Yes Thai 0–10</td>
<td>y₈ = Yes</td>
<td></td>
</tr>
<tr>
<td>x₉</td>
<td>No Yes Yes No Full $ Yes No Burger >60</td>
<td>y₉ = No</td>
<td></td>
</tr>
<tr>
<td>x₁₀</td>
<td>Yes Yes Yes Yes Full $$$ No Yes Italian 10–30</td>
<td>y₁₀ = No</td>
<td></td>
</tr>
<tr>
<td>x₁₁</td>
<td>No No No No None $ No No Thai 0–10</td>
<td>y₁₁ = No</td>
<td></td>
</tr>
<tr>
<td>x₁₂</td>
<td>Yes Yes Yes Yes Full $ No No Burger 30–60</td>
<td>y₁₂ = Yes</td>
<td></td>
</tr>
</tbody>
</table>

Attributes:

1. Alternate: whether there is a suitable alternative restaurant nearby.
2. Bar: whether the restaurant has a comfortable bar area to wait in.
3. Fri/Sat: true on Fridays and Saturdays.
4. Hungry: whether we are hungry.
5. Patrons: how many people are in the restaurant (values are None, Some, and Full).
6. Price: the restaurant's price range ($, $$, $$$).
7. Raining: whether it is raining outside.
8. Reservation: whether we made a reservation.
9. Type: the kind of restaurant (French, Italian, Thai or Burger).
10. WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).
Possible tree to decide whether to wait (T) or not (F)

- **Patrons?**
 - None: F
 - Some: T
 - Full: **WaitEstimate?**
 - >60: F
 - 30–60: T
 - 10–30: **Alternate?**
 - No: F
 - Yes: T
 - 0–10: **Hungry?**
 - No: F
 - Yes: T

- **Reservation?**
 - No: F
 - Yes: T

- **Fri/Sat?**
 - No: F
 - Yes: T

- **Bar?**
 - No: F
 - Yes: T
- **Internal nodes** test attributes
- **Branching** is determined by attribute value
- **Leaf nodes** are outputs (predictions)
Expressiveness

- **Discrete-input, discrete-output case:**
 - Decision trees can express any function of the input attributes
 - Example: For Boolean functions, the truth table row → path to leaf

```
A  B  A xor B
F  F  F
F  T  T
T  F  T
T  T  F
```

- **Continuous-input, continuous-output case:**
 - Can approximate any function arbitrarily closely
 - Trivially, there is a consistent decision tree for any training set w/ one path to leaf for each example (unless \(f \) nondeterministic in \(x \)) but it probably won’t generalize to new examples

[Slide credit: S. Russell]
Decision Tree: Classification and Regression

- Each path from root to a leaf defines a region R_m of input space
- Let $\{(x^{(m_1)}, t^{(m_1)}), \ldots, (x^{(m_k)}, t^{(m_k)})\}$ be the training examples that fall into R_m

Classification tree:
- discrete output
 - leaf value y^m typically set to the most common value in $\{t^{(m_1)}, \ldots, t^{(m_k)}\}$

Regression tree:
- continuous output
 - leaf value y^m typically set to the mean value in $\{t^{(m_1)}, \ldots, t^{(m_k)}\}$

Note: We will focus on classification
How do we Learn a DecisionTree?

- How do we construct a useful decision tree?
Learning Decision Trees

Learning the simplest (smallest) decision tree which correctly classifies training set is an NP complete problem (if you are interested, check: Hyafil & Rivest’76).

- Resort to a **greedy heuristic**! Start with empty decision tree and complete training set
 - Split on the “best” attribute, i.e. partition dataset
 - Recurse on subpartitions

- When should we stop?
- Which attribute is the “best” (and where should we split, if continuous)?
 - Choose based on accuracy?
 - Loss: misclassification error
 - Say region R is split in R_1 and R_2 based on loss $L(R)$.
 - Accuracy gain is $L(R) - \frac{|R_1|L(R_1)+|R_2|L(R_2)}{|R_1|+|R_2|}$
Choosing a Good Split

- Why isn’t accuracy a good measure?
- Classify by the majority, loss is the misclassification error.

Is this split good? Zero accuracy gain

\[
L(R) = \frac{|R_1|L(R_1) + |R_2|L(R_2)}{|R_1| + |R_2|} = \frac{49}{149} - \frac{50 \times 0 + 99 \times \frac{49}{99}}{149} = 0
\]

But we have reduced our uncertainty about whether a fruit is a lemon!
Choosing a Good Split

- How can we quantify uncertainty in prediction for a given leaf node?
 - All examples in leaf have the same class: good (low uncertainty)
 - Each class has the same number of examples in leaf: bad (high uncertainty)

- **Idea:** Use counts at leaves to define probability distributions, and use information theory to measure uncertainty
Flipping Two Different Coins

Q: Which coin is more uncertain?

Sequence 1:
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 ... ?

Sequence 2:
0 1 0 1 0 1 1 1 0 1 0 0 1 1 0 1 0 1 ... ?

16

versus

8

10

0 1

0 1
Quantifying Uncertainty

Entropy is a measure of expected “surprise”: How uncertain are we of the value of a draw from this distribution?

\[H(X) = -\mathbb{E}_{X \sim p}[\log_2 p(X)] = -\sum_{x \in X} p(x) \log_2 p(x) \]

\[
\begin{align*}
&\frac{8}{9} \log_2 \frac{8}{9} - \frac{1}{9} \log_2 \frac{1}{9} \approx \frac{1}{2} \\
&\frac{4}{9} \log_2 \frac{4}{9} - \frac{5}{9} \log_2 \frac{5}{9} \approx 0.99
\end{align*}
\]

- Averages over information content of each observation
- Unit = **bits** (based on the base of logarithm)
- A fair coin flip has 1 bit of entropy
Quantifying Uncertainty

\[H(X) = - \sum_{x \in X} p(x) \log_2 p(x) \]
Entropy

- **“High Entropy”:**
 - Variable has a uniform like distribution
 - Flat histogram
 - Values sampled from it are less predictable

- **“Low Entropy”**
 - Distribution of variable has peaks and valleys
 - Histogram has lows and highs
 - Values sampled from it are more predictable

[Slide credit: Vibhav Gogate]
Example: \(X = \{\text{Raining, Not raining}\}, \ Y = \{\text{Cloudy, Not cloudy}\} \)

<table>
<thead>
<tr>
<th></th>
<th>Cloudy</th>
<th>Not Cloudy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raining</td>
<td>24/100</td>
<td>1/100</td>
</tr>
<tr>
<td>Not Raining</td>
<td>25/100</td>
<td>50/100</td>
</tr>
</tbody>
</table>

\[
H(X,Y) = - \sum_{x \in X} \sum_{y \in Y} p(x, y) \log_2 p(x, y)
\]

\[
= - \frac{24}{100} \log_2 \frac{24}{100} - \frac{1}{100} \log_2 \frac{1}{100} - \frac{25}{100} \log_2 \frac{25}{100} - \frac{50}{100} \log_2 \frac{50}{100}
\]

\[
\approx 1.56 \text{bits}
\]
Specific Conditional Entropy

- Example: $X = \{\text{Raining, Not raining}\}$, $Y = \{\text{Cloudy, Not cloudy}\}$

<table>
<thead>
<tr>
<th></th>
<th>Cloudy</th>
<th>Not Cloudy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raining</td>
<td>24/100</td>
<td>1/100</td>
</tr>
<tr>
<td>Not Raining</td>
<td>25/100</td>
<td>50/100</td>
</tr>
</tbody>
</table>

What is the entropy of cloudiness Y, given that it is raining?

$$H(Y|X = \text{raining}) = -\sum_{y \in Y} p(y|\text{raining}) \log_2 p(y|\text{raining})$$

$$= -\frac{24}{25} \log_2 \frac{24}{25} - \frac{1}{25} \log_2 \frac{1}{25}$$

$$\approx 0.24 \text{bits}$$

We used: $p(y|x) = \frac{p(x,y)}{p(x)}$, and $p(x) = \sum_y p(x,y)$ (sum in a row)
Conditional Entropy

<table>
<thead>
<tr>
<th></th>
<th>Cloudy</th>
<th>Not Cloudy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raining</td>
<td>24/100</td>
<td>1/100</td>
</tr>
<tr>
<td>Not Raining</td>
<td>25/100</td>
<td>50/100</td>
</tr>
</tbody>
</table>

The expected conditional entropy:

\[
H(Y|X) = \mathbb{E}_{X \sim p(x)}[H(Y|X)] \\
= \sum_{x \in X} p(x) H(Y|X = x) \\
= -\sum_{x \in X} \sum_{y \in Y} p(x, y) \log_2 p(y|x) \\
= -\mathbb{E}_{(X,Y) \sim p(x,y)}[\log_2 p(Y|X)]
\]
Conditional Entropy

- Example: \(X = \{ \text{Raining, Not raining} \} \), \(Y = \{ \text{Cloudy, Not cloudy} \} \)

\[
\begin{array}{|c|c|c|}
\hline
& \text{Cloudy} & \text{Not Cloudy} \\
\hline
\text{Raining} & 24/100 & 1/100 \\
\hline
\text{Not Raining} & 25/100 & 50/100 \\
\hline
\end{array}
\]

- What is the entropy of cloudiness, given the knowledge of whether or not it is raining?

\[
H(Y|X) = \sum_{x \in X} p(x)H(Y|X = x)
\]

\[
= \frac{1}{4}H(\text{cloudy}|\text{raining}) + \frac{3}{4}H(\text{cloudy}|\text{not raining})
\]

\[
\approx 0.75 \text{ bits}
\]
Some useful properties for the discrete case:

- \(H \) is always non-negative.
- Chain rule: \(H(X, Y) = H(X|Y) + H(Y) = H(Y|X) + H(X) \).
- If \(X \) and \(Y \) independent, then \(X \) does not tell us anything about \(Y \): \(H(Y|X) = H(Y) \).
- If \(X \) and \(Y \) independent, then \(H(X, Y) = H(X) + H(Y) \).
- But \(Y \) tells us everything about \(Y \): \(H(Y|Y) = 0 \).
- By knowing \(X \), we can only decrease uncertainty about \(Y \): \(H(Y|X) \leq H(Y) \).

Exercise: Verify these!

The figure is reproduced from Fig 8.1 of MacKay, Information Theory, Inference, and
Information Gain

<table>
<thead>
<tr>
<th></th>
<th>Cloudy</th>
<th>Not Cloudy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raining</td>
<td>24/100</td>
<td>1/100</td>
</tr>
<tr>
<td>Not Raining</td>
<td>25/100</td>
<td>50/100</td>
</tr>
</tbody>
</table>

- How much information about cloudiness do we get by discovering whether it is raining?

\[
IG(Y|X) = H(Y) - H(Y|X)
\]

\[
\approx 0.25 \text{ bits}
\]

- This is called the **information gain** in \(Y \) due to \(X \), or the **mutual information** of \(Y \) and \(X \)

- If \(X \) is completely uninformative about \(Y \): \(IG(Y|X) = 0 \)
- If \(X \) is completely informative about \(Y \): \(IG(Y|X) = H(Y) \)
Revisiting Our Original Example

- Information gain measures the informativeness of a variable, which is exactly what we desire in a decision tree attribute!
- What is the information gain of this split?

Let Y be r.v. denoting lemon or orange, B be r.v. denoting whether left or right split taken, and treat counts as probabilities.

- Root entropy: $H(Y) = -\frac{49}{149} \log_2(\frac{49}{149}) - \frac{100}{149} \log_2(\frac{100}{149}) \approx 0.91$
- Leafs entropy: $H(Y|B=\text{left}) = 0$, $H(Y|B=\text{right}) \approx 1$.
- $IG(Y|B) = H(Y) - H(Y|B)$

 $$IG(Y|B) = H(Y) - \{ H(Y|B=\text{left})P(B=\text{left}) + H(Y|B=\text{right})P(B=\text{right}) \}$$

 $$\approx 0.91 - (0 \cdot \frac{1}{3} + 1 \cdot \frac{2}{3}) \approx 0.24 > 0$$
At each level, one must choose:

1. Which variable to split.
2. Possibly where to split it.

Choose them based on how much information we would gain from the decision! (choose attribute that gives the best gain)
Decision Tree Construction Algorithm

- Simple, greedy, recursive approach, builds up tree node-by-node
- Start with empty decision tree and complete training set
 - Split on the most informative attribute, partitioning dataset
 - Recurse on subpartitions
- Possible termination condition: end if all examples in current subpartition share the same class
Back to Our Example

<table>
<thead>
<tr>
<th>Example</th>
<th>Input Attributes</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>Yes No No Yes Some $$$ No Yes French $0-10$</td>
<td>$y_1 = Yes$</td>
</tr>
<tr>
<td>x_2</td>
<td>Yes No No Yes Full $ No No Thai $30-60$</td>
<td>$y_2 = No$</td>
</tr>
<tr>
<td>x_3</td>
<td>No Yes No No Some $ No No Burger $0-10$</td>
<td>$y_3 = Yes$</td>
</tr>
<tr>
<td>x_4</td>
<td>Yes No Yes Yes Full $ Yes No Thai $10-30$</td>
<td>$y_4 = Yes$</td>
</tr>
<tr>
<td>x_5</td>
<td>Yes No Yes No Full $$$ No Yes French >60</td>
<td>$y_5 = No$</td>
</tr>
<tr>
<td>x_6</td>
<td>No Yes No Yes Some $$ Yes Yes Italian $0-10$</td>
<td>$y_6 = Yes$</td>
</tr>
<tr>
<td>x_7</td>
<td>No Yes No No None $ Yes No Burger $0-10$</td>
<td>$y_7 = No$</td>
</tr>
<tr>
<td>x_8</td>
<td>No No No Yes Some $$ Yes Yes Thai $0-10$</td>
<td>$y_8 = Yes$</td>
</tr>
<tr>
<td>x_9</td>
<td>No Yes Yes No Full $ Yes No Burger >60</td>
<td>$y_9 = No$</td>
</tr>
<tr>
<td>x_{10}</td>
<td>Yes Yes Yes Yes Full $$$ No Yes Italian $10-30$</td>
<td>$y_{10} = No$</td>
</tr>
<tr>
<td>x_{11}</td>
<td>No No No No None $ No No Thai $0-10$</td>
<td>$y_{11} = No$</td>
</tr>
<tr>
<td>x_{12}</td>
<td>Yes Yes Yes Yes Full $ No No Burger $30-60$</td>
<td>$y_{12} = Yes$</td>
</tr>
</tbody>
</table>

Attributes:

1. **Alternate**: whether there is a suitable alternative restaurant nearby.
2. **Bar**: whether the restaurant has a comfortable bar area to wait in.
3. **Fri/Sat**: true on Fridays and Saturdays.
4. **Hungry**: whether we are hungry.
5. **Patrons**: how many people are in the restaurant (values are None, Some, and Full).
6. **Price**: the restaurant’s price range ($, $$, $$$).
7. **Raining**: whether it is raining outside.
8. **Reservation**: whether we made a reservation.
9. **Type**: the kind of restaurant (French, Italian, Thai or Burger).
10. **WaitEstimate**: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).

from: Russell & Norvig
Attribute Selection

\[IG(Y) = H(Y) - H(Y|X) \]

\[IG(type) = 1 - \left[\frac{2}{12}H(Y|Fr.) + \frac{2}{12}H(Y|It.) + \frac{4}{12}H(Y|Thai) + \frac{4}{12}H(Y|Bur.) \right] = 0 \]

\[IG(Patrons) = 1 - \left[\frac{2}{12}H(0, 1) + \frac{4}{12}H(1, 0) + \frac{6}{12}H\left(\frac{2}{6}, \frac{4}{6}\right) \right] \approx 0.541 \]
Which Tree is Better?

- **Patrons?**
 - None
 - Some
 - Full

- **Hungry?**
 - Yes
 - No

- **Type?**
 - French
 - Italian
 - Thai
 - Burger

- **Fri/Sat?**
 - Yes
 - No

- **Wait Estimate?**
 - >60
 - 30-60
 - 10-30
 - 0-10

- **Alternate?**
 - Yes
 - No

- **Reservation?**
 - Yes
 - No

- **Bar?**
 - Yes
 - No

- **Raining?**
 - Yes
 - No
What Makes a Good Tree?

- Not too small: need to handle important but possibly subtle distinctions in data

- Not too big:
 - Computational efficiency (avoid redundant, spurious attributes)
 - Avoid over-fitting training examples
 - Human interpretability

- “Occam’s Razor”: find the simplest hypothesis that fits the observations
 - Useful principle, but hard to formalize (how to define simplicity?)
 - See Domingos, 1999, “The role of Occam’s razor in knowledge discovery”

- We desire small trees with informative nodes near the root
Decision Tree Miscellany

- Problems:
 - You have exponentially less data at lower levels
 - A large tree can overfit the data
 - Greedy algorithms don’t necessarily yield the global optimum
 - Mistakes at top-level propagate down tree

- Handling continuous attributes
 - Split based on a threshold, chosen to maximize information gain

- There are other criteria used to measure the quality of a split, e.g., Gini index

- Trees can be pruned in order to make them less complex

- Decision trees can also be used for regression on real-valued outputs. Choose splits to minimize squared error, rather than maximize information gain.
Comparison to k-NN

Advantages of decision trees over k-NN

- Good with discrete attributes
- Easily deals with missing values (just treat as another value)
- Robust to scale of inputs; only depends on ordering
- Good when there are lots of attributes, but only a few are important
- Fast at test time
- More interpretable
Comparison to k-NN

Advantages of k-NN over decision trees

- Able to handle attributes/features that interact in complex ways
- Can incorporate interesting distance measures, e.g., shape contexts.