Bias-Variance Decomposition

Low Variance
Low Bias

High Variance

High Bias
Recall that overly simple models underfit the data, and overly complex models overfit.

We quantify this effect in terms of the bias-variance decomposition.
Bias-Variance Decomposition for the Mean Estimator

- For the next few slides, we consider the simple problem of estimating the mean of a random variable using data.

- Consider a r.v. Y with an unknown distribution p. This random variable has an (unknown) mean $m = \mathbb{E}[Y]$ and variance $\sigma^2 = \text{Var}[Y] = \mathbb{E}[(Y - m)^2]$.

- Given: a dataset $\mathcal{D} = \{Y_1, \ldots, Y_n\}$ with $Y_i \sim p$.

- How can we estimate m using \mathcal{D}?

- Consider an algorithm that receives \mathcal{D}, does some processing on data, and outputs a number. The goal of this algorithm is to provide an estimate of m. Let us denote it by $h(\mathcal{D})$.

- Some good and bad examples:
 - Sample average: $h(\mathcal{D}) = \frac{1}{n} \sum_{i=1}^{n} Y_i$
 - Single-sample estimator: $h(\mathcal{D}) = Y_1$
 - Zero estimator: $h(\mathcal{D}) = 0$

- How well do they perform?
How can we assess the performance of a particular \(h(D) \)?

Ideally, we want \(h(D) \) be exactly equal to \(m = \mathbb{E}[Y] \). But this might be too much to ask. (why?)

What we can hope for is that \(h(D) \approx m \). How can we quantify the accuracy of approximation?

We use the squared error \(\text{err}(D) = |h(D) - m|^2 \) as a measure of quality. This is the familiar squared error loss function in regression.

The error \(\text{err}(D) \) is a r.v. itself. (why?) For a dataset \(D = \{Y_1, \ldots, Y_n\} \) the loss \(\text{err}(D) \) might be small, but for another \(D' = \{Y'_1, \ldots, Y'_n\} \) (still with \(Y'_i \sim p \)) the loss \(\text{err}(D') \) might be large. We would like to quantify the “average” error.

We focus on the expectation of \(\text{err}(D) \), i.e.,

\[
\mathbb{E} [\text{err}(D)] = \mathbb{E}_D \left[|h(D) - m|^2 \right].
\]

Note that the dataset \(D \) is random and this expectation is w.r.t. its randomness.
We would like to understand what determines $\mathbb{E}_D \left[|h(D) - m|^2 \right]$ by looking more closely at it.

We can decompose $\mathbb{E}_D \left[|h(D) - m|^2 \right]$ by adding and subtracting $\mathbb{E}_D [h(D)]$ inside $| \cdot |$:

\[
\mathbb{E}_D \left[|h(D) - m|^2 \right] = \mathbb{E}_D \left[|h(D) - \mathbb{E}_D [h(D)] + \mathbb{E}_D [h(D)] - m|^2 \right] \\
= \mathbb{E}_D \left[|h(D) - \mathbb{E}_D [h(D)]|^2 \right] + \mathbb{E}_D \left[|\mathbb{E}_D [h(D)] - m|^2 \right] + 2\mathbb{E}_D \left[(h(D) - \mathbb{E}_D [h(D)]) (\mathbb{E}_D [h(D)] - m) \right].
\]

Let us simplify the right hand side (RHS).

Recall that if X is a random variable and f is a function, the quantity $f(X)$ is a random variable. But its expectation $\mathbb{E}[f(X)]$ is not. We can say that the expectation takes the randomness away. So $\mathbb{E}_D [h(D)]$ is not a random variable anymore. We have

\[
\mathbb{E}_D \left[|\mathbb{E}_D [h(D)] - m|^2 \right] = |\mathbb{E}_D [h(D)] - m|^2.
\]
Let us consider $\mathbb{E}_D [(h(D) - \mathbb{E}_D [h(D)]) (\mathbb{E}_D [h(D)] - m)]$. To reduce the clutter, we denote $\bar{m} = \mathbb{E}_D [h(D)]$. Note that \bar{m} is an expectation of a r.v., so it is not random. This means that $\mathbb{E} [\bar{m}h(D)] = \bar{m}\mathbb{E} [h(D)]$.

We have

$$
\begin{align*}
\mathbb{E}_D [(h(D) - \mathbb{E}_D [h(D)]) (\mathbb{E}_D [h(D)] - m)] &= \mathbb{E}_D [(h(D) - \bar{m})(\bar{m} - m)] = (\bar{m} - m) (\mathbb{E} [h(D)] - \bar{m}) = 0
\end{align*}
$$
Bias-Variance Decomposition for the Mean Estimator

Bias-Variance Decomposition

\[\mathbb{E}_D \left[|h(D) - m|^2 \right] = \mathbb{E}_D \left[|h(D) - m|^2 \right] + \mathbb{E}_D \left[|h(D) - \mathbb{E}_D [h(D)]|^2 \right]. \]

- **Bias**: The error of the expected estimator (over draws of dataset \(D \)) compared to the mean \(m = \mathbb{E} [Y] \) of the random variable \(Y \).

- **Variance**: The variance of a single estimator \(h(D) \) (whose randomness comes from \(D \)).

- This is for an estimator of a mean of a random variable. We shall extend this decomposition to more general estimators too.
Bias-Variance Decomposition for the Mean Estimator: Examples

Bias-Variance Decomposition

\[\mathbb{E}_D \left[|h(D) - m|^2 \right] = \left(\mathbb{E}_D [h(D)] - m \right)^2 + \mathbb{E}_D \left[|h(D) - \mathbb{E}_D [h(D)]|^2 \right]. \]

- Let us compute the bias and variance of a few estimators. Recall that
 \(m = \mathbb{E} [Y] \) and \(\sigma^2 = \text{Var}\{Y\} = \mathbb{E} [(Y - m)^2] \).

- Sample average: \(h(D) = \frac{1}{n} \sum_{i=1}^{n} Y_i \).
 - Bias: \(|\mathbb{E}_D [h(D)] - m|^2 = |\mathbb{E} \left[\frac{1}{n} \sum_{i=1}^{n} Y_i \right] - m|^2 = \left| \frac{1}{n} \sum_{i=1}^{n} \mathbb{E} [Y_i] - m \right|^2 = \frac{1}{n} \sum_{i=1}^{n} m - m |^2 = 0. \)
 - Variance:
 \[\mathbb{E} \left[|h(D) - \mathbb{E}_D [h(D)]|^2 \right] = \mathbb{E} \left[|\frac{1}{n} \sum_{i=1}^{n} Y_i - \mathbb{E} \left[\frac{1}{n} \sum_{i=1}^{n} Y_i \right] |^2 \right] = \mathbb{E} \left[\frac{1}{n} \sum_{i=1}^{n} (Y_i - m)^2 \right] = \frac{1}{n^2} \sum_{i=1}^{n} \mathbb{E} [(Y_i - m)^2] = \frac{1}{n^2} n \sigma^2 = \frac{\sigma^2}{n}. \]
 - \(\mathbb{E}_D \left[|h(D) - m|^2 \right] = \text{bias} + \text{variance} = 0 + \frac{\sigma^2}{n}. \)
Bias-Variance Decomposition for the Mean Estimator: Examples

Bias-Variance Decomposition

\[
\mathbb{E}_D \left[|h(D) - m|^2 \right] = \mathbb{E}_D \left[|h(D)| - m \right]^2 + \mathbb{E}_D \left[|h(D) - \mathbb{E}_D [h(D)]|^2 \right].
\]

- Single-sample estimator: \(h(D) = Y_1 \)
 - The algorithm behind this estimator only looks at the first data point and ignores the rest.
 - Bias \(|\mathbb{E}_D [h(D)] - m|^2 = |\mathbb{E} [Y_1] - m|^2 = |m - m|^2 = 0. \)
 - Variance: \(\mathbb{E} \left[|h(D) - \mathbb{E}_D [h(D)]|^2 \right] = \mathbb{E} \left[|Y_1 - \mathbb{E} [Y_1]|^2 \right] = \sigma^2. \)
 - \(\mathbb{E}_D \left[|h(D) - m|^2 \right] = \text{bias} + \text{variance} = 0 + \sigma^2. \)
Bias-Variance Decomposition for the Mean Estimator: Examples

Zero estimator: $h(D) = 0$

- The algorithm behind this estimator does not look at data and always outputs zero. (We do not really want to use it in practice.)
- Bias $|\mathbb{E}_D [h(D)] - m|^2 = |0 - m|^2 = m^2$.
- Variance: $\mathbb{E} \left[|h(D) - \mathbb{E}_D [h(D)]|^2 \right] = \mathbb{E} \left[|0 - \mathbb{E} [0]|^2 \right] = 0$.
- $\mathbb{E}_D \left[|h(D) - m|^2 \right] = \text{bias} + \text{variance} = m^2 + 0$.

Bias-Variance Decomposition

$$\mathbb{E}_D \left[|h(D) - m|^2 \right] = \underbrace{|\mathbb{E}_D [h(D)] - m|^2}_{\text{bias}} + \underbrace{\mathbb{E}_D \left[|h(D) - \mathbb{E}_D [h(D)]|^2 \right]}_{\text{variance}}.$$
Bias-Variance Decomposition for the Mean Estimator: Examples

- **Summary:**
 - Sample average: $\mathbb{E}_D \left[|h(D) - m|^2 \right] = \text{bias} + \text{variance} = 0 + \frac{\sigma^2}{n}$
 - Single-sample estimator:
 $$\mathbb{E}_D \left[|h(D) - m|^2 \right] = \text{bias} + \text{variance} = 0 + \sigma^2.$$
 - Zero estimator: $\mathbb{E}_D \left[|h(D) - m|^2 \right] = \text{bias} + \text{variance} = m^2 + 0.$

- These estimators show different behaviour of bias and variance. The zero estimator has no variance (surprising?), but potentially a lot of bias (unless we are “lucky” and the m is in fact very close to 0). On the other hand, the sample average has zero bias, but in general it has a non-zero variance. (Q: When does it have a zero variance?)
Bias-Variance Decomposition for the Mean Estimator

- We could also define error as

\[\mathbb{E}_{D,Y} \left[|h(D) - Y|^2 \right] \]

instead of \(\mathbb{E}_D \left[|h(D) - m|^2 \right] \). This measure the expected squared error of \(h(D) \) compared to \(Y \) instead of the mean \(m = \mathbb{E}[Y] \).

- We have a similar decomposition:

\[
\mathbb{E} \left[|h(D) - Y|^2 \right] = \mathbb{E} \left[|h(D) - m + m - Y|^2 \right]
\]

\[= \mathbb{E} \left[|h(D) - m|^2 \right] + \mathbb{E} \left[|m - Y|^2 \right] +
2 \mathbb{E} \left[(h(D) - m) (m - Y) \right].\]

- The last term is zero because

\[
\mathbb{E} \left[(h(D) - m) (m - Y) \right] = \mathbb{E} \left[\mathbb{E} \left[(h(D) - m) (m - Y) \mid D \right] \right]
\]

\[= \mathbb{E} \left[(h(D) - m) \mathbb{E} [m - Y \mid D] \right] = 0. \]
Bias-Variance Decomposition for the Mean Estimator

Bias-Variance Decomposition

\[E \left[|h(D) - Y|^2 \right] = \left(E_D [h(D)] - m \right)^2 + E_D \left[|h(D) - E_D [h(D)]|^2 \right] + E \left[|Y - m|^2 \right]. \]

- We have an additional term of \(E \left[|m - Y|^2 \right] = \sigma^2 \). This is the variance of \(Y \). This comes from the randomness of the r.v. \(Y \) and cannot be avoided. This is called the Bayes error.
What about the bias-variance decomposition for a machine learning algorithm such as a regression estimator or a classifier?

Two importance issues to be addressed:

- We are not trying to estimate a single real-valued number \(h(D) \in \mathbb{R} \) anymore, but a function over input \(x \). How can we measure the error in this case?
- When we only wanted to estimate the mean, the “best” solution was \(m = \mathbb{E}[Y] \). What is the best solution here?
Bias-Variance Decomposition: General Case

- Suppose that the training set \mathcal{D} consists of N pairs $(x^{(i)}, t^{(i)})$ sampled independent and identically distributed (i.i.d.) from a sample generating distribution p_{sample}, i.e., $(x^{(i)}, t^{(i)}) \sim p_{\text{sample}}$.
- Let us denote its marginal distribution on x by p_x.
- Let p_{dataset} denote the induced distribution over training sets, i.e., $\mathcal{D} \sim p_{\text{dataset}}$.
- Pick a fixed query point x (denoted with a green x).
- Consider an experiment where we sample lots of training datasets i.i.d. from p_{dataset}.

![Graph showing the bias-variance tradeoff](image)
Let us run our learning algorithm on each training set \mathcal{D}, producing a regressor or classifier $h(\mathcal{D}) : \mathcal{X} \to \mathcal{T}$.

Note that $h(\mathcal{D})$ is a random function.

Fix a query point \mathbf{x}. We use $h(\mathcal{D})$ to predict the output at \mathbf{x}, i.e., $y = h(\mathbf{x}; \mathcal{D})$.

y is a random variable, where the randomness comes from the choice of training set

- \mathcal{D} is random $\implies h(\cdot; \mathcal{D})$ is random $\implies h(\mathbf{x}; \mathcal{D})$ is random
Bias-Variance Decomposition: Basic Setup

Here is the analogous setup for regression:

Since \(y = h(x; D) \) is a random variable, we can talk about its expectation, variance, etc. over the distribution of training sets \(p_{\text{dataset}} \).
Bias-Variance Decomposition: General Case

- Recap of the setup:

- When \(x \) is fixed, this is very similar to the mean estimator case.

- Can we have a bias-variance decomposition for a \(h(D) \), where we measured \(\mathbb{E}_D \left[|h(D) - m|^2 \right] \)?

- Two questions:
 - What should replace \(m \) in the error decomposition?
 - How should we evaluate the performance when \(x \) is random?
Bayes Optimality

Claim: For a fixed \mathbf{x}, the best estimator is the conditional expectation of the target value $y^*(\mathbf{x}) = \mathbb{E}[t|\mathbf{x}]$ (Distribution of $t \sim p(t|\mathbf{x})$), i.e.,

$$y^*(\mathbf{x}) = \arg\min_y \mathbb{E}[(y - t)^2 | \mathbf{x}].$$

Proof: Start by conditioning on (a fixed) \mathbf{x}.

$$\mathbb{E}[(y - t)^2 | \mathbf{x}] = \mathbb{E}[y^2 - 2yt + t^2 | \mathbf{x}]$$

$$= y^2 - 2y\mathbb{E}[t | \mathbf{x}] + \mathbb{E}[t^2 | \mathbf{x}]$$

$$= y^2 - 2y\mathbb{E}[t | \mathbf{x}] + \mathbb{E}[t | \mathbf{x}]^2 + \text{Var}[t | \mathbf{x}]$$

$$= (y - y^*(\mathbf{x}))^2 + \text{Var}[t | \mathbf{x}]$$

- The first term is nonnegative, and can be made 0 by setting $y = y^*(\mathbf{x})$.
- The second term does not depend on y. It corresponds to the inherent unpredictability, or *noise*, of the targets, and is called the *Bayes error* or *irreducible error*.

 - This is the best we can ever hope to do with any learning algorithm. An algorithm that achieves it is *Bayes optimal*.

Intro ML (UofT)
CSC311-Lec4
20 / 70
Bias-Variance Decomposition: General Case

- For each query point \(x \), the expected loss is different. We are interested in quantifying how well our estimator performs over the distribution \(\mathcal{D}_{\text{sample}} \). That is, the error measure is

\[
\text{err}(\mathcal{D}) = \mathbb{E}_{x \sim \mathcal{D}_{\text{sample}}} \left[|h(x; \mathcal{D}) - y_{\text{opt}}(x)|^2 \right]
\]

\[
= \int |h(x; \mathcal{D}) - y_{\text{opt}}(x)|^2 p_x(x) dx.
\]

- This is similar to \(\text{err}(\mathcal{D}) = |h(\mathcal{D}) - m|^2 \) of the Mean Estimator case, except that
 - The ideal estimator is \(y_{\text{opt}}(x) \) and not \(m \).
 - We take average over \(x \) according to the probability distribution \(p_x \).

- As before, \(\text{err}(\mathcal{D}) \) is random due to the randomness of \(\mathcal{D} \sim p_{\text{dataset}} \).

- We focus on the expectation of \(\text{err}(\mathcal{D}) \), i.e.,

\[
\mathbb{E} [\text{err}(\mathcal{D})] = \mathbb{E}_{\mathcal{D} \sim p_{\text{dataset}}, x \sim p_x} \left[|h(x; \mathcal{D}) - y_{\text{opt}}(x)|^2 \right].
\]
To obtain the bias-variance decomposition of
\[\mathbb{E} [\text{err}(\mathcal{D})] = \mathbb{E}_{\mathcal{D} \sim p_{\text{dataset}}, \mathbf{x} \sim p_{\mathbf{x}}} \left[|h(\mathbf{x}; \mathcal{D}) - y_*(\mathbf{x})|^2 \right] . \]
we add and subtract \(\mathbb{E}_{\mathcal{D}} [h(\mathbf{x}; \mathcal{D}) | \mathbf{x}] \) inside \(| \cdot |\) (similar to the previous case):

\[
\begin{align*}
\mathbb{E}_{\mathcal{D}, \mathbf{x}} \left[|h(\mathbf{x}; \mathcal{D}) - y_*(\mathbf{x})|^2 \right] &= \\
\mathbb{E}_{\mathcal{D}, \mathbf{x}} \left[|h(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}} [h(\mathbf{x}; \mathcal{D}) | \mathbf{x}] + \mathbb{E}_{\mathcal{D}} [h(\mathbf{x}; \mathcal{D}) | \mathbf{x}] - y_*(\mathbf{x})|^2 \right] &= \\
\mathbb{E}_{\mathcal{D}, \mathbf{x}} \left[|h(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}} [h(\mathbf{x}; \mathcal{D}) | \mathbf{x}]|^2 \right] + \mathbb{E}_{\mathcal{D}, \mathbf{x}} \left[|\mathbb{E}_{\mathcal{D}} [h(\mathbf{x}; \mathcal{D}) | \mathbf{x}] - y_*(\mathbf{x})|^2 \right] + \\
2 \mathbb{E}_{\mathcal{D}, \mathbf{x}} [(h(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}} [h(\mathbf{x}; \mathcal{D}) | \mathbf{x}]) (\mathbb{E}_{\mathcal{D}} [h(\mathbf{x}; \mathcal{D}) | \mathbf{x}] - y_*(\mathbf{x}))] &= \\
\mathbb{E}_{\mathcal{D}, \mathbf{x}} \left[|h(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}} [h(\mathbf{x}; \mathcal{D}) | \mathbf{x}]|^2 \right] + \mathbb{E}_{\mathbf{x}} \left[|\mathbb{E}_{\mathcal{D}} [h(\mathbf{x}; \mathcal{D}) | \mathbf{x}] - y_*(\mathbf{x})|^2 \right]
\end{align*}
\]

Try to convince yourself that the inner product term is zero.

This is the bias and variance decomposition for the general estimator (with the squared error loss).
Bias-Variance Decomposition for the General Estimator

Bias-Variance Decomposition

\[
\mathbb{E}_{D,\mathbf{x}} \left[|h(\mathbf{x}; D) - y_*(\mathbf{x})|^2 \right] = \mathbb{E}_{\mathbf{x}} \left[|\mathbb{E}_D [h(\mathbf{x}; D) \mid \mathbf{x}] - y_*(\mathbf{x})|^2 \right] + \\
\mathbb{E}_{D,\mathbf{x}} \left[|h(\mathbf{x}; D) - \mathbb{E}_D [h(\mathbf{x}; D) \mid \mathbf{x}]|^2 \right].
\]

- **Bias**: The squared error between the average estimator (averaged over dataset \(D \)) and the best predictor \(y_*(\mathbf{x}) = \mathbb{E}[t \mid \mathbf{x}] \), averaged over \(\mathbf{x} \sim p_\mathbf{x} \).
- **Variance**: The variance of a single estimator \(h(\mathbf{x}; D) \) (whose randomness comes from \(D \)).
Bias-Variance Decomposition: General Case

Bias-Variance Decomposition

$$\mathbb{E}_{D,x} \left[|h(x; D) - t|^2 \right] = \mathbb{E}_x \left[\mathbb{E}_D \left[|h(x; D) - y_*(x)|^2 \right] \right] +$$

$$\mathbb{E}_{D,x} \left[|h(x; D) - \mathbb{E}_D [h(x; D) | x]|^2 \right] + \mathbb{E} \left[|y_*(x) - t|^2 \right].$$

- We have an additional term of $$\mathbb{E} \left[|y_*(x) - t|^2 \right] = \mathbb{E}_x \left[\text{Var}[t | x] \right]$$. This is due to the the variance of $$t$$ at each fixed $$x$$, averaged over $$x \sim p_x$$. As before, this comes from the randomness of the r.v. $$t$$ and cannot be avoided. This is the Bayes error.
Bias-Variance Decomposition: A Visualization

- Throwing darts = predictions for each draw of a dataset

- What doesn’t this capture?
- We average over points x from the data distribution
We can visualize this decomposition in **output space**, where the axes correspond to predictions on the test examples.

If we have an overly simple model (e.g. k-NN with large k), it might have

- high bias (because it is too simplistic to capture the structure in the data)
- low variance (because there is enough data to get a stable estimate of the decision boundary)
If you have an overly complex model (e.g. k-NN with $k = 1$), it might have

- low bias (since it learns all the relevant structure)
- high variance (it fits the quirks of the data you happened to sample)
Ensemble Methods – Part I: Bagging
Ensemble Methods: Brief Overview

- An ensemble of predictors is a set of predictors whose individual decisions are combined in some way to predict new examples, for example by (weighted) majority vote.

- For the result to be nontrivial, the learned hypotheses must differ somehow, for example because of:
 - Different algorithms
 - Different choices of hyperparameters
 - Trained on different data sets
 - Trained with different weighting of the training examples

- Ensembles are usually easy to implement. The hard part is deciding what kind of ensemble you want, based on your goals.

- Two major types of ensembles methods:
 - Bagging
 - Boosting
Bagging: Motivation

- Suppose we could somehow sample \(m \) independent training sets \(\{\mathcal{D}_i\}_{i=1}^m \) from \(p_{\text{dataset}} \).
- We could then learn a predictor \(h_i \triangleq h(\cdot; \mathcal{D}_i) \) based on each one, and take the average \(h(x) = \frac{1}{m} \sum_{i=1}^m h_i(x) \).
- How does this affect the terms of the expected loss?
 - **Bias: Unchanged**, since the averaged prediction has the same expectation
 \[
 \mathbb{E}_{\mathcal{D}_1, \ldots, \mathcal{D}_m \sim p_{\text{dataset}}} [h(x)] = \frac{1}{m} \sum_{i=1}^m \mathbb{E}_{\mathcal{D}_i \sim p_{\text{dataset}}} [h_i(x)] = \mathbb{E}_{\mathcal{D} \sim p_{\text{dataset}}} [h(x; \mathcal{D})].
 \]
 - **Variance: Reduced**, since we are averaging over independent samples
 \[
 \text{Var}_{\mathcal{D}_1, \ldots, \mathcal{D}_m} [h(x)] = \frac{1}{m^2} \sum_{i=1}^m \text{Var}_{\mathcal{D}_i} [h_i(x)] = \frac{1}{m} \text{Var}_{\mathcal{D}} [h_{\mathcal{D}}(x)].
 \]

What if \(m \to \infty? \)
In practice, we don’t have access to the underlying data generating distribution p_{sample}.

It is expensive to collect many i.i.d. datasets from p_{dataset}.

Solution: bootstrap aggregation, or bagging.

- Take a single dataset \mathcal{D} with n examples.
- Generate m new datasets, each by sampling n training examples from \mathcal{D}, with replacement.
- Average the predictions of models trained on each of these datasets.
Problem: the datasets are not independent, so we don’t get the $\frac{1}{m}$ variance reduction.

- Possible to show that if the sampled predictions have variance σ^2 and correlation ρ, then

$$\text{Var} \left(\frac{1}{m} \sum_{i=1}^{m} h_i(x) \right) = \frac{1}{m} (1 - \rho)\sigma^2 + \rho\sigma^2.$$

Ironically, it can be advantageous to introduce additional variability into your algorithm, as long as it reduces the correlation between samples.

- Intuition: you want to invest in a diversified portfolio, not just one stock.
- Can help to use average over multiple algorithms, or multiple configurations of the same algorithm.
Random forests: bagged decision trees, with one extra trick to decorrelate the predictions

When choosing each node of the decision tree, choose a random set of d input features, and only consider splits on those features

The main idea in random forests is to improve the variance reduction of bagging by reducing the correlation between the trees ($\sim \rho$).

Random forests are probably the best black-box machine learning algorithm. They often work well with no tuning whatsoever.

- one of the most widely used algorithms in Kaggle competitions
Classification with Linear Models
Overview

- **Classification**: predicting a discrete-valued target
 - **Binary classification**: predicting a binary-valued target

- **Examples**
 - predict whether a patient has a disease, given the presence or absence of various symptoms
 - classify e-mails as spam or non-spam
 - predict whether a financial transaction is fraudulent
Overview

Binary linear classification

- **classification**: predict a discrete-valued target
- **binary**: predict a binary target \(t \in \{0, 1\} \)
 - Training examples with \(t = 1 \) are called positive examples, and training examples with \(t = 0 \) are called negative examples.
 - \(t \in \{0, 1\} \) or \(t \in \{-1, +1\} \) is for computational convenience.
- **linear**: model is a linear function of \(x \), followed by a threshold \(r \):

 \[
 z = w^T x + b
 \]

 \[
 y = \begin{cases}
 1 & \text{if } z \geq r \\
 0 & \text{if } z < r
 \end{cases}
 \]
Some Simplifications

Eliminating the threshold

- We can assume without loss of generality (w.l.o.g.) that the threshold is $r = 0$:

$$w^T x + b \geq r \iff w^T x + b - r \geq 0.$$

Eliminating the bias

- Add a dummy feature x_0 which always takes the value 1. The weight $w_0 = b$ is equivalent to a bias (same as linear regression)

Simplified model

$$z = w^T x$$

$$y = \begin{cases} 1 & \text{if } z \geq 0 \\ 0 & \text{if } z < 0 \end{cases}$$
Examples

- Let us consider some simple examples to examine the properties of our model.
- Forget about generalization and suppose we just want to learn Boolean functions.
Examples

This is our “training set”

<table>
<thead>
<tr>
<th>x_0</th>
<th>x_1</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

What conditions are needed on w_0, w_1 to classify all examples?

- When $x_1 = 0$, need: $z = w_0 x_0 + w_1 x_1 > 0 \iff w_0 > 0$
- When $x_1 = 1$, need: $z = w_0 x_0 + w_1 x_1 < 0 \iff w_0 + w_1 < 0$

Example solution: $w_0 = 1, w_1 = -2$

Is this the only solution?
Examples

AND

<table>
<thead>
<tr>
<th>x_0</th>
<th>x_1</th>
<th>x_2</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

$z = w_0 x_0 + w_1 x_1 + w_2 x_2$

need: $w_0 < 0$

need: $w_0 + w_2 < 0$

need: $w_0 + w_1 < 0$

need: $w_0 + w_1 + w_2 > 0$

Example solution: $w_0 = -1.5, w_1 = 1, w_2 = 1$
The Geometric Picture

Input Space, or Data Space for NOT example

- Training examples are points
- Weights (hypotheses) \mathbf{w} can be represented by half-spaces
 \[H_+ = \{ \mathbf{x} : \mathbf{w}^T \mathbf{x} \geq 0 \} , \quad H_- = \{ \mathbf{x} : \mathbf{w}^T \mathbf{x} < 0 \} \]
 - The boundaries of these half-spaces pass through the origin (why?)
- The boundary is the decision boundary: $\{ \mathbf{x} : \mathbf{w}^T \mathbf{x} = 0 \}$
 - In 2-D, it is a line, but think of it as a hyperplane
- If the training examples can be perfectly separated by a linear decision rule, we say **data is linearly separable.**
The Geometric Picture

Weight Space

Weights (hypotheses) \(\mathbf{w} \) are points.

Each training example \(\mathbf{x} \) specifies a half-space \(\mathbf{w} \) must lie in to be correctly classified: \(\mathbf{w}^T \mathbf{x} > 0 \) if \(t = 1 \).

For NOT example:
- \(x_0 = 1, x_1 = 0, t = 1 \) \(\implies \) \((w_0, w_1) \in \{ \mathbf{w} : w_0 > 0 \} \)
- \(x_0 = 1, x_1 = 1, t = 0 \) \(\implies \) \((w_0, w_1) \in \{ \mathbf{w} : w_0 + w_1 < 0 \} \)

The region satisfying all the constraints is the feasible region; if this region is nonempty, the problem is feasible, otw it is infeasible.
The AND example requires three dimensions, including the dummy one.

To visualize data space and weight space for a 3-D example, we can look at a 2-D slice.

The visualizations are similar.

- Feasible set will always have a corner at the origin.
The Geometric Picture

Visualizations of the AND example

- Slice for $x_0 = 1$ and $w_0 = -1.5$, $w_1 = 1$, $w_2 = 1$
- decision boundary: $w_0 x_0 + w_1 x_1 + w_2 x_2 = 0$
 $\implies -1.5 + x_1 + x_2 = 0$

- Slice for $w_0 = -1.5$ for the constraints
 - $w_0 < 0$
 - $w_0 + w_2 < 0$
 - $w_0 + w_1 < 0$
 - $w_0 + w_1 + w_2 > 0$
Some datasets are not linearly separable, e.g. XOR
Recall: binary linear classifiers. Targets $t \in \{0, 1\}$

$$z = \mathbf{w}^T \mathbf{x} + b$$

$$y = \begin{cases} 1 & \text{if } z \geq 0 \\ 0 & \text{if } z < 0 \end{cases}$$

How can we find good values for \mathbf{w}, b?

If training set is separable, we can solve for \mathbf{w}, b using linear programming.

If it’s not separable, the problem is harder
 - data is almost never separable in real life.
Loss Functions

- Instead: define loss function then try to minimize the resulting cost function
 - Recall: cost is loss averaged (or summed) over the training set
- Seemingly obvious loss function: 0-1 loss

\[
L_{0-1}(y, t) = \begin{cases}
0 & \text{if } y = t \\
1 & \text{if } y \neq t \\
\end{cases} = \mathbb{I}[y \neq t]
\]
Attempt 1: 0-1 Loss

Usually, the cost \mathcal{J} is the averaged loss over training examples; for 0-1 loss, this is the misclassification rate/error:

$$\mathcal{J} = \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}[y^{(i)} \neq t^{(i)}]$$
Attempt 1: 0-1 Loss

- Problem: how to optimize? In general, a hard problem (can be NP-hard)
- This is due to the step function (0-1 loss) not being nice (continuous/smooth/convex etc)
Attempt 1: 0-1 Loss

- Minimum of a function will be at its critical points.
- Let’s try to find the critical point of 0-1 loss
- Chain rule:
 \[
 \frac{\partial L_{0-1}}{\partial w_j} = \frac{\partial L_{0-1}}{\partial z} \frac{\partial z}{\partial w_j}
 \]
- But \(\frac{\partial L_{0-1}}{\partial z} \) is zero everywhere it is defined!

\(\frac{\partial L_{0-1}}{\partial w_j} = 0 \) means that changing the weights by a very small amount has no effect on the loss (whenever the gradient of the loss is defined)

\[0-1\]
Sometimes we can replace the loss function we care about with one that is easier to optimize. This is known as relaxation with a smooth surrogate loss function.

One problem with \mathcal{L}_{0-1} is that it is defined in terms of final prediction, which inherently involves a discontinuity.

Instead, define loss in terms of $w^T x + b$ directly.

Redo notation for convenience: $z = w^T x + b$
We already know how to fit a linear regression model using the squared error loss. Can we use the same squared error loss instead?

\[
z = \mathbf{w}^\top \mathbf{x} + b
\]

\[
\mathcal{L}_{SE}(z, t) = \frac{1}{2}(z - t)^2
\]

Doesn’t matter that the targets are actually binary. Treat them as continuous values.

For this loss function, it makes sense to make final predictions by thresholding \(z\) at \(\frac{1}{2}\) (why?)
The problem:

- The loss function penalizes you when you make correct predictions with high confidence!
- If $t = 1$, the loss is larger when $z = 10$ than when $z = 0$.
There’s obviously no reason to predict values outside $[0, 1]$. Let’s squash y into this interval.

The **logistic function** is a kind of sigmoid, or S-shaped function:

$$
\sigma(z) = \frac{1}{1 + e^{-z}}
$$

$\sigma^{-1}(y) = \log(y/(1 - y))$ is called the logit.

A linear model with a logistic nonlinearity is known as log-linear:

$$
z = \mathbf{w}^\top \mathbf{x} + b
$$

$$
y = \sigma(z)
$$

$$
\mathcal{L}_{SE}(y, t) = \frac{1}{2} (y - t)^2.
$$

Used in this way, σ is called an activation function.
Attempt 3: Logistic Activation Function

The problem:
(plot of L_{SE} as a function of z, assuming $t = 1$)

For $z \ll 0$, we have $\sigma(z) \approx 0$.

$\frac{\partial L}{\partial z} \approx 0 \text{ (check!)} \implies \frac{\partial L}{\partial w_j} \approx 0 \implies$ derivative w.r.t. w_j is small

$\implies w_j$ is like a critical point

If the prediction is really wrong, you should be far from a critical point (which is your candidate solution).
Logistic Regression

- Because $y \in [0, 1]$, we can interpret it as the estimated probability that $t = 1$.
- The pundits who were 99% confident Clinton would win were much more wrong than the ones who were only 90% confident.
- Cross-entropy loss (aka log loss) captures this intuition:

\[
L_{CE}(y, t) = \begin{cases}
- \log y & \text{if } t = 1 \\
- \log(1 - y) & \text{if } t = 0
\end{cases}
\]

\[
= -t \log y - (1 - t) \log(1 - y)
\]
Logistic Regression:

\[z = \mathbf{w}^\top \mathbf{x} + b \]

\[y = \sigma(z) \]

\[= \frac{1}{1 + e^{-z}} \]

\[\mathcal{L}_{CE} = -t \log y - (1 - t) \log(1 - y) \]

Plot is for target \(t = 1 \).
Logistic Regression

- Problem: what if \(t = 1 \) but you’re really confident it’s a negative example \((z \ll 0)\)?

- If \(y \) is small enough, it may be numerically zero. This can cause very subtle and hard-to-find bugs.

\[
y = \sigma(z) \quad \Rightarrow \quad y \approx 0
\]

\[
\mathcal{L}_{\text{CE}} = -t \log y - (1 - t) \log(1 - y) \quad \Rightarrow \quad \text{computes } \log 0
\]

- Instead, we combine the activation function and the loss into a single \textit{logistic-cross-entropy} function.

\[
\mathcal{L}_{\text{LCE}}(z, t) = \mathcal{L}_{\text{CE}}(\sigma(z), t) = t \log(1 + e^{-z}) + (1 - t) \log(1 + e^z)
\]

- Numerically stable computation:

\[
E = t \times \text{np.logaddexp}(0, -z) + (1-t) \times \text{np.logaddexp}(0, z)
\]
Logistic Regression

Comparison of loss functions: (for $t = 1$)
Gradient Descent

- How do we minimize the cost \mathcal{J} in this case? No direct solution.
 - Taking derivatives of \mathcal{J} w.r.t. \mathbf{w} and setting them to 0 doesn’t have an explicit solution.

- Now let’s see a second way to minimize the cost function which is more broadly applicable: gradient descent.

- Gradient descent is an iterative algorithm, which means we apply an update repeatedly until some criterion is met.

- We initialize the weights to something reasonable (e.g. all zeros) and repeatedly adjust them in the direction of steepest descent.
Gradient for Logistic Regression

Back to logistic regression:

\[\mathcal{L}_{CE}(y, t) = -t \log(y) - (1 - t) \log(1 - y) \]

\[y = 1/(1 + e^{-z}) \quad \text{and} \quad z = \mathbf{w}^T \mathbf{x} + b \]

Therefore

\[\frac{\partial \mathcal{L}_{CE}}{\partial w_j} = \frac{\partial \mathcal{L}_{CE}}{\partial y} \cdot \frac{\partial y}{\partial z} \cdot \frac{\partial z}{\partial w_j} = \left(-\frac{t}{y} + \frac{1-t}{1-y} \right) \cdot y(1-y) \cdot x_j \]

\[= (y - t)x_j \]

Exercise: Verify this!

Gradient descent (coordinatewise) update to find the weights of logistic regression:

\[w_j \leftarrow w_j - \alpha \frac{\partial \mathcal{J}}{\partial w_j} \]

\[= w_j - \frac{\alpha}{N} \sum_{i=1}^{N} (y^{(i)} - t^{(i)}) x_j^{(i)} \]
Comparision of gradient descent updates:

- Linear regression (verify!):

 \[\mathbf{w} \leftarrow \mathbf{w} - \frac{\alpha}{N} \sum_{i=1}^{N} (y^{(i)} - t^{(i)}) \mathbf{x}^{(i)} \]

- Logistic regression:

 \[\mathbf{w} \leftarrow \mathbf{w} - \frac{\alpha}{N} \sum_{i=1}^{N} (y^{(i)} - t^{(i)}) \mathbf{x}^{(i)} \]

- Not a coincidence! These are both examples of **generalized linear models**. But we won’t go in further detail.

- Notice \(\frac{1}{N} \) in front of sums due to averaged losses. This is why you need smaller learning rate when we optimize the sum of losses \((\alpha' = \alpha/N) \).
Stochastic Gradient Descent

- So far, the cost function J has been the average loss over the training examples:

$$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} L^{(i)} = \frac{1}{N} \sum_{i=1}^{N} L(y(x^{(i)}, \theta), t^{(i)})$$

- By linearity,

$$\frac{\partial J}{\partial \theta} = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial L^{(i)}}{\partial \theta}$$

- Computing the gradient requires summing over *all* of the training examples. This is known as **batch training**.

- Batch training is impractical if you have a large dataset $N \gg 1$ (e.g. millions of training examples)!
Stochastic Gradient Descent

- **Stochastic gradient descent (SGD):** update the parameters based on the gradient for a single training example,
 1. Choose \(i \) uniformly at random
 2. \(\theta \leftarrow \theta - \alpha \frac{\partial L(i)}{\partial \theta} \)

- Cost of each SGD update is independent of \(N \).
- SGD can make significant progress before even seeing all the data!
- Mathematical justification: if you sample a training example uniformly at random, the stochastic gradient is an **unbiased estimate** of the batch gradient:
 \[
 \mathbb{E} \left[\frac{\partial L(i)}{\partial \theta} \right] = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial L(i)}{\partial \theta} = \frac{\partial J}{\partial \theta}.
 \]

- **Problems:**
 - Variance in this estimate may be high
 - If we only look at one training example at a time, we can’t exploit efficient vectorized operations.
Stochastic Gradient Descent

- Compromise approach: compute the gradients on a randomly chosen medium-sized set of training examples $\mathcal{M} \subset \{1, \ldots, N\}$, called a mini-batch.
- Stochastic gradients computed on larger mini-batches have smaller variance. This is similar to bagging.
- The mini-batch size $|\mathcal{M}|$ is a hyperparameter that needs to be set.
 - Too large: takes more computation, i.e. takes more memory to store the activations, and longer to compute each gradient update
 - Too small: can’t exploit vectorization, has high variance
 - A reasonable value might be $|\mathcal{M}| = 100$.

Stochastic Gradient Descent

- Batch gradient descent moves directly downhill. SGD takes steps in a noisy direction, but moves downhill on average.

batch gradient descent stochastic gradient descent
SGD Learning Rate

- In stochastic training, the learning rate also influences the **fluctuations** due to the stochasticity of the gradients.

 ![Diagram showing small and large learning rates](image)

- **Typical strategy:**
 - Use a large learning rate early in training so you can get close to the optimum
 - Gradually decay the learning rate to reduce the fluctuations
Warning: by reducing the learning rate, you reduce the fluctuations, which can appear to make the loss drop suddenly. But this can come at the expense of long-run performance.
- Stochastic methods have a chance of escaping from bad minima.
- Gradient descent with small step-size converges to first minimum it finds.
Conclusion

- **Bias-Variance Decomposition**
 - The error of a machine learning algorithm can be decomposed to a bias term and a variance term.
 - Hyperparameters of an algorithm might allow us to tradeoff between these two.

- **Ensemble Methods**
 - Bagging as a simple way to reduce the variance of an estimation method

- **Binary Classification**
 - 0 – 1 loss is the difficult to work with
 - Use of surrogate loss functions such as the cross-entropy loss lead to computationally feasible solutions
 - Logistic regression as the result of using cross-entropy loss with a linear model going through logistic nonlinearity
 - No direct solution, but gradient descent can be used to minimize it
 - Stochastic gradient descent