CSC 311: Introduction to Machine Learning Lecture 4 - Bias-Variance Decomposition, Ensemble Method I: Bagging, Linear Classification

Amir-massoud Farahmand & Emad A.M. Andrews

University of Toronto

Bias-Variance Decomposition

Recall that overly simple models underfit the data, and overly complex models overfit.

We quantify this effect in terms of the bias-variance decomposition.

- For the next few slides, we consider the simple problem of estimating the mean of a random variable using data.
- \bullet Consider a r.v. Y with an unknown distribution p. This random variable has an (unknown) mean $m = \mathbb{E}[Y]$ and variance $\sigma^2 = \text{Var}[Y] = \mathbb{E} \left[(Y - m)^2 \right].$
- Given: a dataset $\mathcal{D} = \{Y_1, \ldots, Y_n\}$ with independently sampled $Y_i \sim p$.
- \bullet How can we estimate m using \mathcal{D} ?
- \bullet Consider an algorithm that receives \mathcal{D} , does some processing on data, and outputs a number. The goal of this algorithm is to provide an estimate of m. Let us denote it by $h(\mathcal{D})$.
- Some good and bad examples:
	- Sample average: $h(\mathcal{D}) = \frac{1}{n} \sum_{i=1}^{n} Y_i$
	- \blacktriangleright Single-sample estimator: $h(\mathcal{D}) = Y_1$
	- \blacktriangleright Zero estimator: $h(\mathcal{D})=0$
- How well do they perform?

- How can we assess the performance of a particular $h(\mathcal{D})$?
- Ideally, we want $h(\mathcal{D})$ be exactly equal to $m = \mathbb{E}[Y]$. But this might be too much to ask. (why?)
- What we can hope for is that $h(\mathcal{D}) \approx m$. How can we quantify the accuracy of approximation?
- We use the squared error $err(\mathcal{D}) = |h(\mathcal{D}) m|^2$ as a measure of quality. This is the familiar squared error loss function in regression.
- The error $err(\mathcal{D})$ is a r.v. itself. (why?) For a dataset $\mathcal{D} = \{Y_1, \ldots, Y_n\}$ the loss $err(D)$ might be small, but for another $\mathcal{D}' = \{Y'_1, \ldots, Y'_n\}$ (still with $Y_i' \sim p$) the loss $err(D')$ might be large. We would like to quantify the "average" error.
- We focus on the expectation of $err(\mathcal{D})$, i.e.,

$$
\mathbb{E}\left[\mathrm{err}(\mathcal{D})\right] = \mathbb{E}_{\mathcal{D}}\left[\left|h(\mathcal{D}) - m\right|^2\right].
$$

 \bullet Note that the dataset $\mathcal D$ is random and this expectation is w.r.t. its randomness.

Intro ML (UofT) [CSC311-Lec4](#page-0-0) 5 / 70

- We would like to understand what determines $\mathbb{E}_{\mathcal{D}}\left[|h(\mathcal{D}) m|^2 \right]$ by looking more closely at it.
- We can decompose $\mathbb{E}_{\mathcal{D}}\left[|h(\mathcal{D})-m|^2\right]$ by adding and subtracting $\mathbb{E}_{\mathcal{D}}[h(\mathcal{D})]$ inside $|\cdot|$: $\mathbb{E}_{\mathcal{D}}\left[\left|h(\mathcal{D})-m\right|^2\right] = \mathbb{E}_{\mathcal{D}}\left[\left|h(\mathcal{D})-\mathbb{E}_{\mathcal{D}}\left[h(\mathcal{D})\right]+\mathbb{E}_{\mathcal{D}}\left[h(\mathcal{D})\right]-m\right|^2\right]$ $=\hspace{-0.1cm}\mathbb{E}_{\mathcal{D}}\left[\left|h(\mathcal{D})-\mathbb{E}_{\mathcal{D}}\left[h(\mathcal{D})\right]\right|^{2}\right]+\hspace{-0.1cm}\mathbb{E}_{\mathcal{D}}\left[\left|\mathbb{E}_{\mathcal{D}}\left[h(\mathcal{D})\right]-m\right|^{2}\right]+$ $2\mathbb{E}_{\mathcal{D}}[(h(\mathcal{D}) - \mathbb{E}_{\mathcal{D}}[h(\mathcal{D})]) (\mathbb{E}_{\mathcal{D}}[h(\mathcal{D})] - m)].$
- Let us simplify the right hand side (RHS).
- \bullet Recall that if X is a random variable and f is a function, the quantity $f(X)$ is a random variable. But its expectation $\mathbb{E}[f(X)]$ is not. We can say that the expectation takes the randomness away. So $\mathbb{E}_{\mathcal{D}}[h(\mathcal{D})]$ is not a random variable anymore. We have

$$
\mathbb{E}_{\mathcal{D}}\left[\left|\mathbb{E}_{\mathcal{D}}\left[h(\mathcal{D})\right]-m\right|^2\right]=\left|\mathbb{E}_{\mathcal{D}}\left[h(\mathcal{D})\right]-m\right|^2.
$$

- \bullet Let us consider $\mathbb{E}_{\mathcal{D}}[(h(\mathcal{D})-\mathbb{E}_{\mathcal{D}}[h(\mathcal{D})]) (\mathbb{E}_{\mathcal{D}}[h(\mathcal{D})]-m)].$ To reduce the clutter, we denote $\bar{m} = \mathbb{E}_{\mathcal{D}}[h(\mathcal{D})]$. Note that \bar{m} is an expectation of a r.v., so it is not random. This means that $\mathbb{E}[\bar{m}h(\mathcal{D})] = \bar{m}\mathbb{E}[h(\mathcal{D})]$.
- We have

$$
\mathbb{E}_{\mathcal{D}}\left[(h(\mathcal{D}) - \mathbb{E}_{\mathcal{D}}[h(\mathcal{D})]) \left(\mathbb{E}_{\mathcal{D}}[h(\mathcal{D})] - m\right)\right] =
$$

$$
\mathbb{E}_{\mathcal{D}}\left[(h(\mathcal{D}) - \bar{m})(\bar{m} - m)\right] = (\bar{m} - m)\underbrace{\left(\mathbb{E}[h(\mathcal{D})] - \bar{m}\right)}_{=0} = 0
$$

Bias-Variance Decomposition

$$
\mathbb{E}_{\mathcal{D}}\left[|h(\mathcal{D})-m|^2\right] = \underbrace{\left[\mathbb{E}_{\mathcal{D}}\left[h(\mathcal{D})\right]-m\right]^2}_{\text{bias}} + \underbrace{\mathbb{E}_{\mathcal{D}}\left[|h(\mathcal{D})-\mathbb{E}_{\mathcal{D}}\left[h(\mathcal{D})\right]|^2\right]}_{\text{variance}}.
$$

- \bullet Bias: The error of the expected estimator (over draws of dataset \mathcal{D}) compared to the mean $m = \mathbb{E}[Y]$ of the random variable Y.
- Variance: The variance of a single estimator $h(\mathcal{D})$ (whose randomness comes from \mathcal{D}).
- This is for an estimator of a mean of a random variable. We shall extend this decomposition to more general estimators too.

Bias-Variance Decomposition

$$
\mathbb{E}_{\mathcal{D}}\left[|h(\mathcal{D})-m|^2\right] = \underbrace{\left[\mathbb{E}_{\mathcal{D}}\left[h(\mathcal{D})\right]-m\right]^2}_{\text{bias}} + \underbrace{\mathbb{E}_{\mathcal{D}}\left[|h(\mathcal{D})-\mathbb{E}_{\mathcal{D}}\left[h(\mathcal{D})\right]|^2\right]}_{\text{variance}}.
$$

Let us compute the bias and variance of a few estimators. Recall that $m = \mathbb{E}[Y]$ and $\sigma^2 = \text{Var}\{Y\} = \mathbb{E}[(Y-m)^2].$

Sample average: $h(\mathcal{D}) = \frac{1}{n} \sum_{i=1}^{n} Y_i$.

▶ Bias
$$
|\mathbb{E}_{\mathcal{D}}[h(\mathcal{D})] - m|^2 = |\mathbb{E}[\frac{1}{n}\sum_{i=1}^n Y_i] - m|^2 = |\frac{1}{n}\sum_{i=1}^n m - m|^2 = 0.
$$

\n $\sum_{i=1}^n \mathbb{E}[Y_i] - m|^2 = |\frac{1}{n}\sum_{i=1}^n m - m|^2 = 0.$

► Variance:
\n
$$
\mathbb{E}\left[|h(\mathcal{D}) - \mathbb{E}_{\mathcal{D}}[h(\mathcal{D})]|^2\right] = \mathbb{E}\left[|\frac{1}{n}\sum_{i=1}^n Y_i - \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^n Y_i\right]|^2\right] =
$$
\n
$$
\mathbb{E}\left[|\frac{1}{n}\sum_{i=1}^n (Y_i - m)|^2\right] = \frac{1}{n^2}\sum_{i=1}^n \mathbb{E}\left[(Y_i - m)^2\right] = \frac{1}{n^2}n\sigma^2 = \frac{\sigma^2}{n}.
$$
\n▶
$$
\mathbb{E}_{\mathcal{D}}\left[|h(\mathcal{D}) - m|^2\right] = \text{bias} + \text{variance} = 0 + \frac{\sigma^2}{n}.
$$

Intro ML (UofT) [CSC311-Lec4](#page-0-0) 9 / 70

Bias-Variance Decomposition

$$
\mathbb{E}_{\mathcal{D}}\left[\left|h(\mathcal{D})-m\right|^2\right] = \underbrace{\left|\mathbb{E}_{\mathcal{D}}\left[h(\mathcal{D})\right]-m\right|^2}_{\text{bias}} + \underbrace{\mathbb{E}_{\mathcal{D}}\left[\left|h(\mathcal{D})-\mathbb{E}_{\mathcal{D}}\left[h(\mathcal{D})\right]\right|^2\right]}_{\text{variance}}.
$$

• Single-sample estimator: $h(\mathcal{D}) = Y_1$

- \triangleright The algorithm behind this estimator only looks at the first data point and ignores the rest.
- ► Bias $|\mathbb{E}_{\mathcal{D}}[h(\mathcal{D})] m|^2 = |\mathbb{E}[Y_1] m|^2 = |m m|^2 = 0.$

$$
\triangleright \text{ Variance: } \mathbb{E}\left[\left|h(\mathcal{D}) - \mathbb{E}_{\mathcal{D}}\left[h(\mathcal{D})\right]\right|^2\right] = \mathbb{E}\left[\left|Y_1 - \mathbb{E}\left[Y_1\right]\right|^2\right] = \sigma^2.
$$

$$
\blacktriangleright \mathbb{E}_{\mathcal{D}}\left[|h(\mathcal{D}) - m|^2 \right] = \text{bias} + \text{variance} = 0 + \sigma^2.
$$

Bias-Variance Decomposition

$$
\mathbb{E}_{\mathcal{D}}\left[\left|h(\mathcal{D})-m\right|^2\right] = \underbrace{\left|\mathbb{E}_{\mathcal{D}}\left[h(\mathcal{D})\right]-m\right|^2}_{\text{bias}} + \underbrace{\mathbb{E}_{\mathcal{D}}\left[\left|h(\mathcal{D})-\mathbb{E}_{\mathcal{D}}\left[h(\mathcal{D})\right]\right|^2\right]}_{\text{variance}}.
$$

• Zero estimator:
$$
h(\mathcal{D}) = 0
$$

 \triangleright The algorithm behind this estimator does not look at data and always outputs zero. (We do not really want to use it in practice.) ► Bias $|\mathbb{E}_{\mathcal{D}}[h(\mathcal{D})] - m|^2 = |0 - m|^2 = m^2$. ► Variance: $\mathbb{E}\left[|h(\mathcal{D}) - \mathbb{E}_{\mathcal{D}}[h(\mathcal{D})]|^2\right] = \mathbb{E}\left[|0 - \mathbb{E}[0]|^2\right] = 0.$ $\blacktriangleright \mathbb{E}_{\mathcal{D}}\left[|h(\mathcal{D})-m|^2\right] = \text{bias} + \text{variance} = m^2 + 0.$

Summary:

- ► Sample average: $\mathbb{E}_{\mathcal{D}}\left[|h(\mathcal{D})-m|^2\right] = \text{bias} + \text{variance} = 0 + \frac{\sigma^2}{n}$ n
- \triangleright Single-sample estimator: $\mathbb{E}_{\mathcal{D}}\left[|h(\mathcal{D})-m|^2\right] = \text{bias} + \text{variance} = 0 + \sigma^2.$
- ► Zero estimator: $\mathbb{E}_{\mathcal{D}}\left[|h(\mathcal{D})-m|^2\right] = \text{bias} + \text{variance} = m^2 + 0.$
- These estimators show different behaviour of bias and variance. The zero estimator has no variance (surprising?), but potentially a lot of bias (unless we are "lucky" and the m is in fact very close to 0). On the other hand, the sample average has zero bias, but in general it has a non-zero variance.(Q: When does it have a zero variance?)

We could also define error as

$$
\mathbb{E}_{\mathcal{D},Y}\left[|h(\mathcal{D}) - Y|^2\right]
$$

instead of $\mathbb{E}_{\mathcal{D}}\left[|h(\mathcal{D}) - m|^2 \right]$. This measure the expected squared error of $h(\mathcal{D})$ compared to Y instead of the mean $m = \mathbb{E}[Y]$.

We have a similar decomposition:

$$
\mathbb{E}\left[|h(\mathcal{D}) - Y|^2\right] = \mathbb{E}\left[|h(\mathcal{D}) - m + m - Y|^2\right]
$$

$$
= \mathbb{E}\left[|h(\mathcal{D}) - m|^2\right] + \mathbb{E}\left[|m - Y|^2\right] + 2\mathbb{E}\left[(h(\mathcal{D}) - m)(m - Y)\right].
$$

• The last term is zero because

$$
\mathbb{E}[(h(\mathcal{D}) - m)(m - Y)] = \mathbb{E}[\mathbb{E}[(h(\mathcal{D}) - m)(m - Y) | \mathcal{D}]]
$$

=
$$
\mathbb{E}[(h(\mathcal{D}) - m) \mathbb{E}[m - Y | \mathcal{D}]] = 0.
$$

Bias-Variance Decomposition

$$
\mathbb{E}\left[|h(\mathcal{D}) - Y|^2\right] = \underbrace{\left|\mathbb{E}_{\mathcal{D}}\left[h(\mathcal{D})\right] - m\right|^2}_{\text{bias}} + \underbrace{\mathbb{E}_{\mathcal{D}}\left[|h(\mathcal{D}) - \mathbb{E}_{\mathcal{D}}\left[h(\mathcal{D})\right]|^2\right]}_{\text{variance}} + \underbrace{\mathbb{E}\left[|Y - m|^2\right]}_{\text{Bayes error}}.
$$

We have an additional term of $\mathbb{E} \left[|m - Y|^2 \right] = \sigma^2$. This is the variance of Y. This comes from the randomness of the r.v. Y and cannot be avoided. This is called the Bayes error.

- What about the bias-variance decomposition for a machine learning algorithm such as a regression estimator or a classifier?
- Two importance issues to be addressed:
	- \triangleright We are not trying to estimate a single real-valued number $(h(\mathcal{D}) \in \mathbb{R})$ anymore, but a function over input **x**. How can we measure the error in this case?
	- ► When we only wanted to estimate the mean, the "best" solution was $m = \mathbb{E}[Y]$. What is the best solution here?

Bias-Variance Decomposition: General Case

- Suppose that the training set D consists of N pairs $(\mathbf{x}^{(i)}, t^{(i)})$ sampled independent and identically distributed (i.i.d.) from a sample generating distribution p_{sample} , i.e., $(\mathbf{x}^{(i)}, t^{(i)}) \sim p_{\text{sample}}.$
- Let us denote its marginal distribution on x by p_x .
- \bullet Let p_{dataset} denote the induced distribution over training sets, i.e. $\mathcal{D} \sim p_{\text{dataset}}$.
- Pick a fixed query point **x** (denoted with a green x).
- Consider an experiment where we sample lots of training datasets i.i.d. from p_{dataset} .

Bias-Variance Decomposition: General Case

- \bullet Let us run our learning algorithm on each training set \mathcal{D} , producing a regressor or classifier $h(\mathcal{D}): \mathcal{X} \to \mathcal{T}$.
- Note that $h(\mathcal{D})$ is a random function.
- Fix a query point **x**. We use $h(\mathcal{D})$ to predict the output at **x**, i.e., $y = h(\mathbf{x}; \mathcal{D}).$
- \bullet y is a random variable, where the **randomness comes from the** choice of training set

 \triangleright D is random $\implies h(\cdot; \mathcal{D})$ is random $\implies h(\mathbf{x}; \mathcal{D})$ is random

 $\rm Intro\,\, ML \,\, (Uof T) \,\, \rm (17.77)$ $\rm CSC311-Lec4$ $\rm CSC311-Lec4$

Bias-Variance Decomposition: Basic Setup

Here is the analogous setup for regression:

Since $y = h(\mathbf{x}; \mathcal{D})$ is a random variable, we can talk about its expectation, variance, etc. over the distribution of training sets p_{dataset}

Bias-Variance Decomposition: General Case

• Recap of the setup:

- When x is fixed, this is very similar to the mean estimator case.
- Can we have a bias-variance decomposition for a $h(\mathcal{D})$, where we measured $\mathbb{E}_{\mathcal{D}}\left[|h(\mathcal{D})-m|^2\right]$?
- Two questions:
	- \triangleright What should replace m in the error decomposition?
	- \blacktriangleright How should we evaluate the performance when **x** is random?

Bayes Optimality

Claim: For a fixed x, the best estimator is the conditional expectation of the target value $y_*(\mathbf{x}) = \mathbb{E}[t|\mathbf{x}]$ (Distribution of $t \sim p(t|\mathbf{x})$), i.e.,

$$
y_*(\mathbf{x}) = \operatorname*{argmin}_{y} \mathbb{E}[(y-t)^2 \,|\, \mathbf{x}].
$$

• Proof: Start by conditioning on (a fixed) **x**.

$$
\mathbb{E}[(y-t)^2 | \mathbf{x}] = \mathbb{E}[y^2 - 2yt + t^2 | \mathbf{x}]
$$

\n
$$
= y^2 - 2y\mathbb{E}[t | \mathbf{x}] + \mathbb{E}[t^2 | \mathbf{x}]
$$

\n
$$
= y^2 - 2y\mathbb{E}[t | \mathbf{x}] + \mathbb{E}[t | \mathbf{x}]^2 + \text{Var}[t | \mathbf{x}]
$$

\n
$$
= y^2 - 2yy_*(\mathbf{x}) + y_*(\mathbf{x})^2 + \text{Var}[t | \mathbf{x}]
$$

\n
$$
= (y - y_*(\mathbf{x}))^2 + \text{Var}[t | \mathbf{x}]
$$

- The first term is nonnegative, and can be made 0 by setting $y = y_*(\mathbf{x})$.
- \bullet The second term does not depend on y. It corresponds to the inherent unpredictability, or noise, of the targets, and is called the Bayes error or irreducible error.
	- \triangleright This is the best we can ever hope to do with any learning algorithm. An algorithm that achieves it is Bayes optimal.

Intro ML $(Uo f T)$ [CSC311-Lec4](#page-0-0) 20 / 70

Bias-Variance Decomposition: General Case

For each query point x, the expected loss is different. We are interested in quantifying how well our estimator performs over the distribution p_{sample} . That is, the error measure is

$$
err(\mathcal{D}) = \mathbb{E}_{\mathbf{x} \sim p_{\mathbf{x}}} [|h(\mathbf{x}; D) - y_{*}(\mathbf{x})|^2]
$$

= $\int |h(\mathbf{x}; D) - y_{*}(\mathbf{x})|^2 p_{\mathbf{x}}(\mathbf{x}) d\mathbf{x}.$

- This is similar to $err(\mathcal{D}) = |h(\mathcal{D}) m|^2$ of the Mean Estimator case, except that
	- \triangleright The ideal estimator is $y_*(\mathbf{x})$ and not m.
	- \triangleright We take average over **x** according to the probability distribution p_x .
- As before, err (\mathcal{D}) is random due to the randomness of $\mathcal{D} \sim p_{\text{dataset}}$.
- We focus on the expectation of $err(\mathcal{D})$, i.e.,

$$
\mathbb{E}\left[\mathrm{err}(\mathcal{D})\right] = \mathbb{E}_{\mathcal{D}\sim p_{\mathrm{dataset}},\mathbf{x}\sim p_{\mathbf{x}}}\left[\left|h(\mathbf{x};D)-y_{*}(\mathbf{x})\right|^{2}\right].
$$

Bias-Variance Decomposition: General Case

To obtain the bias-variance decomposition of

$$
\mathbb{E}\left[\operatorname{err}(\mathcal{D})\right] = \mathbb{E}_{\mathcal{D} \sim p_{\text{dataset}}, \mathbf{x} \sim p_{\mathbf{x}}} \left[\left| h(\mathbf{x}; D) - y_{*}(\mathbf{x}) \right|^{2} \right].
$$

we add and subtract $\mathbb{E}_{\mathcal{D}}[h(\mathbf{x}; \mathcal{D}) | \mathbf{x}]$ inside $|\cdot|$ (similar to the previous case):

$$
\mathbb{E}_{\mathcal{D},\mathbf{x}}\left[|h(\mathbf{x};\mathcal{D}) - y_{*}(\mathbf{x})|^{2}\right] = \n\mathbb{E}_{\mathcal{D},\mathbf{x}}\left[|h(\mathbf{x};\mathcal{D}) - \mathbb{E}_{\mathcal{D}}\left[h(\mathbf{x};\mathcal{D}) \mid \mathbf{x}\right] + \mathbb{E}_{\mathcal{D}}\left[h(\mathbf{x};\mathcal{D}) \mid \mathbf{x}\right] - y_{*}(\mathbf{x})|^{2}\right] = \n\mathbb{E}_{\mathcal{D},\mathbf{x}}\left[|h(\mathbf{x};\mathcal{D}) - \mathbb{E}_{\mathcal{D}}\left[h(\mathbf{x};\mathcal{D}) \mid \mathbf{x}\right]^{2}\right] + \mathbb{E}_{\mathcal{D},\mathbf{x}}\left[\left|\mathbb{E}_{\mathcal{D}}\left[h(\mathbf{x};\mathcal{D}) \mid \mathbf{x}\right] - y_{*}(\mathbf{x})\right|^{2}\right] + \n2\mathbb{E}_{\mathcal{D},\mathbf{x}}\left[(h(\mathbf{x};\mathcal{D}) - \mathbb{E}_{\mathcal{D}}\left[h(\mathbf{x};\mathcal{D}) \mid \mathbf{x}\right])\left(\mathbb{E}_{\mathcal{D}}\left[h(\mathbf{x};\mathcal{D}) \mid \mathbf{x}\right] - y_{*}(\mathbf{x})\right)\right] = \n\mathbb{E}_{\mathcal{D},\mathbf{x}}\left[\left|h(\mathbf{x};\mathcal{D}) - \mathbb{E}_{\mathcal{D}}\left[h(\mathbf{x};\mathcal{D}) \mid \mathbf{x}\right]\right] + \mathbb{E}_{\mathbf{x}}\left[\left|\mathbb{E}_{\mathcal{D}}\left[h(\mathbf{x};\mathcal{D}) \mid \mathbf{x}\right] - y_{*}(\mathbf{x})\right|^{2}\right]
$$

- Try to convince yourself that the inner product term is zero.
- This is the bias and variance decomposition for the general estimator $(\text{with the squared error loss}).$ $\rm Int\,o\,ML$ (UofT) $\rm CSC311-Lee4$ $\rm22$ / 70

Bias-Variance Decomposition

$$
\mathbb{E}_{\mathcal{D},\mathbf{x}}\left[|h(\mathbf{x};\mathcal{D})-y_{*}(\mathbf{x})|^2\right] = \underbrace{\mathbb{E}_{\mathbf{x}}\left[\left|\mathbb{E}_{\mathcal{D}}\left[h(\mathbf{x};\mathcal{D})\mid\mathbf{x}\right]-y_{*}(\mathbf{x})|^2\right]}_{\text{bias}} + \underbrace{\mathbb{E}_{\mathcal{D},\mathbf{x}}\left[|h(\mathbf{x};\mathcal{D})-\mathbb{E}_{\mathcal{D}}\left[h(\mathbf{x};\mathcal{D})\mid\mathbf{x}\right]|^2\right]}_{\text{variance}}.
$$

- Bias: The squared error between the average estimator (averaged over dataset \mathcal{D}) and the best predictor $y_*(\mathbf{x}) = \mathbb{E}[t|\mathbf{x}]$, averaged over $\mathbf{x} \sim p_{\mathbf{x}}$.
- Variance: The variance of a single estimator $h(\mathbf{x}; \mathcal{D})$ (whose randomness comes from \mathcal{D}).

Bias-Variance Decomposition

$$
\mathbb{E}_{\mathcal{D},\mathbf{x}}\left[\left|h(\mathbf{x};\mathcal{D})-t\right|^{2}\right]=\underbrace{\mathbb{E}_{\mathbf{x}}\left[\left|\mathbb{E}_{\mathcal{D}}\left[h(\mathbf{x};\mathcal{D})\mid\mathbf{x}\right]-y_{*}(\mathbf{x})\right|^{2}\right]}_{\text{bias}}+\underbrace{\mathbb{E}_{\mathcal{D},\mathbf{x}}\left[\left|h(\mathbf{x};\mathcal{D})-\mathbb{E}_{\mathcal{D}}\left[h(\mathbf{x};\mathcal{D})\mid\mathbf{x}\right]\right|^{2}\right]}_{\text{variance}}+\underbrace{\mathbb{E}\left[\left|y_{*}(\mathbf{x})-t\right|^{2}\right]}_{\text{Bayes error}}.
$$

We have an additional term of $\mathbb{E} [y_*(\mathbf{x}) - t]^2] = \mathbb{E}_{\mathbf{x}} [Var[t | \mathbf{x}]]$. This is due to the the variance of t at each fixed x, averaged over $\mathbf{x} \sim p_{\mathbf{x}}$. As before, this comes from the randomness of the r.v. t and cannot be avoided. This is the Bayes error.

Bias-Variance Decomposition: A Visualization

Throwing darts = predictions for each draw of a dataset

- What doesn't this capture?
- We average over points **x** from the data distribution

Intro ML $(Uo f T)$ [CSC311-Lec4](#page-0-0) 25 / 70

Bias-Variance Decomposition: Another Visualization

- We can visualize this decomposition in output space, where the axes correspond to predictions on the test examples.
- If we have an overly simple model (e.g. k-NN with large k), it might have
	- \triangleright high bias (because it is too simplistic to capture the structure in the data)
	- \triangleright low variance (because there is enough data to get a stable estimate of the decision boundary)

Bias-Variance Decomposition: Another Visualization

- If you have an overly complex model (e.g. k-NN with $k = 1$), it might have
	- \triangleright low bias (since it learns all the relevant structure)
	- \triangleright high variance (it fits the quirks of the data you happened to sample)

Ensemble Methods – Part I: Bagging

- An ensemble of predictors is a set of predictors whose individual decisions are combined in some way to predict new examples, for example by (weighted) majority vote.
- For the result to be nontrivial, the learned hypotheses must differ somehow, for example because of
	- \triangleright Different algorithms
	- \triangleright Different choices of hyperparameters
	- \blacktriangleright Trained on different data sets
	- \triangleright Trained with different weighting of the training examples
- Ensembles are usually easy to implement. The hard part is deciding what kind of ensemble you want, based on your goals.
- Two major types of ensembles methods:
	- \blacktriangleright Bagging
	- \blacktriangleright Boosting

Bagging: Motivation

- \bullet Suppose we could somehow sample m independent training sets $\{\mathcal{D}_i\}_{i=1}^m$ from p_{dataset} .
- We could then learn a predictor $h_i \triangleq h(\cdot; \mathcal{D}_i)$ based on each one, and take the average $h(\mathbf{x}) = \frac{1}{m} \sum_{i=1}^{m} h_i(\mathbf{x}).$
- How does this affect the terms of the expected loss?
	- \triangleright Bias: Unchanged, since the averaged prediction has the same expectation

$$
\mathbb{E}_{\mathcal{D}_i,\ldots,\mathcal{D}_m \stackrel{\text{i.i.d.}}{\sim} p_{\text{dataset}}} [h(\mathbf{x})] = \frac{1}{m} \sum_{i=1}^m \mathbb{E}_{\mathcal{D}_i \sim p_{\text{dataset}}} [h_i(\mathbf{x})] \n= \mathbb{E}_{\mathcal{D} \sim p_{\text{dataset}}} [h(\mathbf{x}; \mathcal{D})].
$$

• Variance: Reduced, since we are averaging over independent samples

$$
\operatorname*{Var}_{\mathcal{D}_1,\dots,\mathcal{D}_m}[h(\mathbf{x})] = \frac{1}{m^2} \sum_{i=1}^m \operatorname*{Var}_{\mathcal{D}_i}[h_i(\mathbf{x})] = \frac{1}{m} \operatorname*{Var}_{\mathcal{D}}[h_{\mathcal{D}}(\mathbf{x})].
$$

What if $m \to \infty$?

Intro ML (UofT) [CSC311-Lec4](#page-0-0) 30 / 70

- In practice, we don't have access to the underlying data generating distribution p_{sample} .
- \bullet It is expensive to collect many i.i.d. datasets from p_{dataset} .
- Solution: bootstrap aggregation, or bagging.
	- \blacktriangleright Take a single dataset $\mathcal D$ with n examples.
	- Generate m new datasets, each by sampling n training examples from D, with replacement.
	- \triangleright Average the predictions of models trained on each of these datasets.

Bagging

- Problem: the datasets are not independent, so we don't get the $\frac{1}{m}$ variance reduction.
	- **Possible to show that if the sampled predictions have variance** σ^2 and correlation ρ , then

$$
\operatorname{Var}\left(\frac{1}{m}\sum_{i=1}^{m}h_i(\mathbf{x})\right) = \frac{1}{m}(1-\rho)\sigma^2 + \rho\sigma^2.
$$

- Ironically, it can be advantageous to introduce *additional* variability into your algorithm, as long as it reduces the correlation between samples.
	- Intuition: you want to invest in a diversified portfolio, not just one stock.
	- \triangleright Can help to use average over multiple algorithms, or multiple configurations of the same algorithm.
- Random forests: bagged decision trees, with one extra trick to decorrelate the predictions
- When choosing each node of the decision tree, choose a random set of d input features, and only consider splits on those features
- The main idea in random forests is to improve the variance reduction of bagging by reducing the correlation between the trees $(\sim \rho)$.
- Random forests are probably the best black-box machine learning algorithm. They often work well with no tuning whatsoever.
	- \triangleright one of the most widely used algorithms in Kaggle competitions

Classification with Linear Models

- Classification: predicting a discrete-valued target
	- \triangleright Binary classification: predicting a binary-valued target
- Examples
	- ^I predict whether a patient has a disease, given the presence or absence of various symptoms
	- ^I classify e-mails as spam or non-spam
	- \triangleright predict whether a financial transaction is fraudulent

Binary linear classification

- classification: predict a discrete-valued target
- binary: predict a binary target $t \in \{0, 1\}$
	- \triangleright Training examples with $t = 1$ are called positive examples, and training examples with $t = 0$ are called negative examples.
	- $\blacktriangleright t \in \{0,1\}$ or $t \in \{-1,+1\}$ is for computational convenience.

• linear: model is a linear function of x , followed by a threshold r:

$$
z = \mathbf{w}^T \mathbf{x} + b
$$

$$
y = \begin{cases} 1 & \text{if } z \ge r \\ 0 & \text{if } z < r \end{cases}
$$

Some Simplifications

Eliminating the threshold

We can assume without loss of generality (w.l.o.g.) that the threshold is $r = 0$:

$$
\mathbf{w}^T \mathbf{x} + b \ge r \quad \Longleftrightarrow \quad \mathbf{w}^T \mathbf{x} + \underbrace{b - r}_{\triangleq w_0} \ge 0.
$$

Eliminating the bias

• Add a dummy feature x_0 which always takes the value 1. The weight $w_0 = b$ is equivalent to a bias (same as linear regression)

Simplified model

$$
z = \mathbf{w}^T \mathbf{x}
$$

$$
y = \begin{cases} 1 & \text{if } z \ge 0 \\ 0 & \text{if } z < 0 \end{cases}
$$

- Let us consider some simple examples to examine the properties of our model
- Forget about generalization and suppose we just want to learn Boolean functions

NOT x_0 x_1 | t $1 \quad 0 \mid 1$ $1 \quad 1 \mid 0$

- This is our "training set"
- What conditions are needed on w_0, w_1 to classify all examples?
	- ► When $x_1 = 0$, need: $z = w_0x_0 + w_1x_1 > 0 \iff w_0 > 0$
	- ► When $x_1 = 1$, need: $z = w_0x_0 + w_1x_1 < 0 \iff w_0 + w_1 < 0$
- Example solution: $w_0 = 1, w_1 = -2$
- Is this the only solution?

AND

Example solution: $w_0 = -1.5, w_1 = 1, w_2 = 1$

Input Space, or Data Space for NOT example

- Training examples are points
- Weights (hypotheses) w can be represented by half-spaces $H_+ = {\mathbf{x} : \mathbf{w}^T \mathbf{x} \ge 0}, H_- = {\mathbf{x} : \mathbf{w}^T \mathbf{x} < 0}$
	- \triangleright The boundaries of these half-spaces pass through the origin (why?)
- The boundary is the decision boundary: $\{x : w^T x = 0\}$
	- \blacktriangleright In 2-D, it is a line, but think of it as a hyperplane
- If the training examples can be perfectly separated by a linear decision rule, we say data is linearly separable.

The Geometric Picture

Weight Space

- Weights (hypotheses) w are points
- Each training example x specifies a half-space w must lie in to be correctly classified: $\mathbf{w}^T \mathbf{x} > 0$ if $t = 1$.
- For NOT example:

$$
\blacktriangleright x_0 = 1, x_1 = 0, t = 1 \implies (w_0, w_1) \in \{ \mathbf{w} : w_0 > 0 \}
$$

$$
\blacktriangleright x_0 = 1, x_1 = 1, t = 0 \implies (w_0, w_1) \in \{ \mathbf{w} : w_0 + w_1 < 0 \}
$$

The region satisfying all the constraints is the feasible region; if this region is nonempty, the problem is feasible, otw it is infeasible.

- The AND example requires three dimensions, including the dummy one.
- To visualize data space and weight space for a 3-D example, we can look at a 2-D slice.
- The visualizations are similar.
	- \triangleright Feasible set will always have a corner at the origin.

Visualizations of the AND example

- Slice for $x_0 = 1$ and - example sol: $w_0 = -1.5$, $w_1 = 1$, $w_2 = 1$ - decision boundary: $w_0x_0+w_1x_1+w_2x_2=0$ $\implies -1.5+x_1+x_2=0$

- Slice for $w_0 = -1.5$ for the constraints

$$
- w_0 < 0
$$

\n
$$
- w_0 + w_2 < 0
$$

\n
$$
- w_0 + w_1 < 0
$$

\n
$$
- w_0 + w_1 + w_2 > 0
$$

Some datasets are not linearly separable, e.g. XOR

• Recall: binary linear classifiers. Targets $t \in \{0, 1\}$

$$
z = \mathbf{w}^T \mathbf{x} + b
$$

$$
y = \begin{cases} 1 & \text{if } z \ge 0 \\ 0 & \text{if } z < 0 \end{cases}
$$

- \bullet How can we find good values for \mathbf{w}, b ?
- \bullet If training set is separable, we can solve for \mathbf{w}, b using linear programming
- If it's not separable, the problem is harder
	- \triangleright data is almost never separable in real life.
- Instead: define loss function then try to minimize the resulting cost function
	- \triangleright Recall: cost is loss averaged (or summed) over the training set
- Seemingly obvious loss function: 0-1 loss

$$
\mathcal{L}_{0-1}(y,t) = \begin{cases} 0 & \text{if } y = t \\ 1 & \text{if } y \neq t \end{cases}
$$

$$
= \mathbb{I}[y \neq t]
$$

 \bullet Usually, the cost $\mathcal J$ is the averaged loss over training examples; for 0-1 loss, this is the misclassification rate/error:

$$
\mathcal{J} = \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}[y^{(i)} \neq t^{(i)}]
$$

- Problem: how to optimize? In general, a hard problem (can be NP-hard)
- This is due to the step function (0-1 loss) not being nice (continuous/smooth/convex etc)

Attempt 1: 0-1 Loss

- Minimum of a function will be at its critical points.
- Let's try to find the critical point of 0-1 loss
- Chain rule:

$$
\frac{\partial \mathcal{L}_{0-1}}{\partial w_j} = \frac{\partial \mathcal{L}_{0-1}}{\partial z} \frac{\partial z}{\partial w_j}
$$

• But $\partial \mathcal{L}_{0-1}/\partial z$ is zero everywhere it is defined!

- $\triangleright \partial \mathcal{L}_{0-1}/\partial w_i = 0$ means that changing the weights by a very small amount has no effect on the loss (whenever the gradient of the loss is defined)
- \blacktriangleright Almost any point has 0 gradient!

 $\rm Int\,o\,ML$ (Uof $\rm T$) [CSC311-Lec4](#page-0-0) 50 / 70

- Sometimes we can replace the loss function we care about with one that is easier to optimize. This is known as relaxation with a smooth surrogate loss function.
- One problem with \mathcal{L}_{0-1} is that it is defined in terms of final prediction, which inherently involves a discontinuity
- Instead, define loss in terms of $\mathbf{w}^T \mathbf{x} + b$ directly
	- Redo notation for convenience: $z = \mathbf{w}^T \mathbf{x} + b$

We already know how to fit a linear regression model using the squared error loss. Can we use the same squared error loss instead?

$$
z = \mathbf{w}^{\top} \mathbf{x} + b
$$

$$
\mathcal{L}_{\text{SE}}(z, t) = \frac{1}{2}(z - t)^2
$$

- Doesn't matter that the targets are actually binary. Treat them as continuous values.
- For this loss function, it makes sense to make final predictions by thresholding z at $\frac{1}{2}$ (why?)

Attempt 2: Linear Regression

The problem:

- The loss function penalizes you when you make correct predictions with high confidence!
- If $t = 1$, the loss is larger when $z = 10$ than when $z = 0$.

Attempt 3: Logistic Activation Function

- \bullet There's obviously no reason to predict values outside [0, 1]. Let's squash y into this interval.
- The logistic function is a kind of sigmoid, or S-shaped function:

$$
\sigma(z) = \frac{1}{1 + e^{-z}}
$$

- $\sigma^{-1}(y) = \log(y/(1-y))$ is called the logit.
- A linear model with a logistic nonlinearity is known as log-linear:

$$
z = \mathbf{w}^{\top} \mathbf{x} + b
$$

$$
y = \sigma(z)
$$

$$
\mathcal{L}_{\text{SE}}(y, t) = \frac{1}{2}(y - t)^2.
$$

• Used in this way, σ is called an activation function.

 $\rm Int\,o\,ML$ (UofT) $\rm CSC311\,Lec4$ $\rm 54$ / $\rm 70$

Attempt 3: Logistic Activation Function

The problem:

(plot of \mathcal{L}_{SE} as a function of z, assuming $t = 1$)

• For $z \ll 0$, we have $\sigma(z) \approx 0$.

- $\frac{\partial \mathcal{L}}{\partial z} \approx 0$ (check!) $\implies \frac{\partial \mathcal{L}}{\partial w_j} \approx 0 \implies$ derivative w.r.t. w_j is small $\implies w_i$ is like a critical point
- If the prediction is really wrong, you should be far from a critical point (which is your candidate solution).

Intro ML (UofT) [CSC311-Lec4](#page-0-0) 55 / 70

- Because $y \in [0, 1]$, we can interpret it as the estimated probability that $t = 1$.
- The pundits who were 99% confident Clinton would win were much more wrong than the ones who were only 90% confident.
- Cross-entropy loss (aka log loss) captures this intuition:

$$
\mathcal{L}_{CE}(y, t) = \begin{cases}\n-\log y & \text{if } t = 1 \\
-\log(1 - y) & \text{if } t = 0 \\
= -t \log y - (1 - t) \log(1 - y) & \sum_{\substack{5 \text{odd } 2 \text{ odd } 2}}^{s} \\
\text{if } t = 1\n\end{cases}
$$
\nt=0\n
$$
t = 0
$$
\nt=0

Logistic Regression:

Plot is for target $t = 1$.

- Problem: what if $t = 1$ but you're really confident it's a negative example $(z \ll 0)$?
- \bullet If y is small enough, it may be numerically zero. This can cause very subtle and hard-to-find bugs.

$$
y = \sigma(z) \qquad \Rightarrow y \approx 0
$$

\n
$$
\mathcal{L}_{CE} = -t \log y - (1 - t) \log(1 - y) \qquad \Rightarrow \text{computes } \log 0
$$

• Instead, we combine the activation function and the loss into a single logistic-cross-entropy function.

$$
\mathcal{L}_{\text{LCE}}(z, t) = \mathcal{L}_{\text{CE}}(\sigma(z), t) = t \log(1 + e^{-z}) + (1 - t) \log(1 + e^{z})
$$

• Numerically stable computation:

 $E = t * np.logadderxp(0, -z) + (1-t) * np.logadder(p, z)$

Comparison of loss functions: (for $t = 1$)

- \bullet How do we minimize the cost $\mathcal J$ in this case? No direct solution.
	- \triangleright Taking derivatives of $\mathcal J$ w.r.t. w and setting them to 0 doesn't have an explicit solution.
- Now let's see a second way to minimize the cost function which is more broadly applicable: gradient descent.
- Gradient descent is an iterative algorithm, which means we apply an update repeatedly until some criterion is met.
- We initialize the weights to something reasonable (e.g. all zeros) and repeatedly adjust them in the direction of steepest descent.

Gradient for Logistic Regression

Back to logistic regression:

$$
\mathcal{L}_{CE}(y, t) = -t \log(y) - (1 - t) \log(1 - y)
$$

$$
y = 1/(1 + e^{-z}) \text{ and } z = \mathbf{w}^{T} \mathbf{x} + b
$$

Therefore

$$
\frac{\partial \mathcal{L}_{\text{CE}}}{\partial w_j} = \frac{\partial \mathcal{L}_{\text{CE}}}{\partial y} \cdot \frac{\partial y}{\partial z} \cdot \frac{\partial z}{\partial w_j} = \left(-\frac{t}{y} + \frac{1-t}{1-y} \right) \cdot y(1-y) \cdot x_j
$$

$$
= (y-t)x_j
$$

Exercise: Verify this!

Gradient descent (coordinatewise) update to find the weights of logistic regression:

$$
w_j \leftarrow w_j - \alpha \frac{\partial \mathcal{J}}{\partial w_j}
$$

= $w_j - \frac{\alpha}{N} \sum_{i=1}^N (y^{(i)} - t^{(i)}) x_j^{(i)}$

 $\rm Intro\,ML$ (UofT) $\rm CSC311-Lec4$ $\rm CSC311-Lec4$ 61 / 70

Comparison of gradient descent updates:

• Linear regression (verify!):

$$
\mathbf{w} \leftarrow \mathbf{w} - \frac{\alpha}{N} \sum_{i=1}^{N} (y^{(i)} - t^{(i)}) \mathbf{x}^{(i)}
$$

• Logistic regression:

$$
\mathbf{w} \leftarrow \mathbf{w} - \frac{\alpha}{N} \sum_{i=1}^{N} (y^{(i)} - t^{(i)}) \mathbf{x}^{(i)}
$$

- Not a coincidence! These are both examples of generalized linear models. But we won't go in further detail.
- Notice $\frac{1}{N}$ in front of sums due to averaged losses. This is why you need smaller learning rate when we optimize the sum of losses $(\alpha' = \alpha/N).$

Stochastic Gradient Descent

 \bullet So far, the cost function $\mathcal J$ has been the average loss over the training examples:

$$
\mathcal{J}(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}^{(i)} = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(y(\mathbf{x}^{(i)}, \boldsymbol{\theta}), t^{(i)}).
$$

• By linearity,

$$
\frac{\partial \mathcal{J}}{\partial \boldsymbol{\theta}} = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial \mathcal{L}^{(i)}}{\partial \boldsymbol{\theta}}.
$$

- Computing the gradient requires summing over all of the training examples. This is known as batch training.
- Batch training is impractical if you have a large dataset $N \gg 1$ (e.g. millions of training examples)!

Stochastic Gradient Descent

- \bullet Stochastic gradient descent (SGD): update the parameters based on the gradient for a single training example,
	- 1. Choose i uniformly at random

$$
2. \ \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \alpha \frac{\partial \mathcal{L}^{(i)}}{\partial \boldsymbol{\theta}}
$$

- Cost of each SGD update is independent of N.
- SGD can make significant progress before even seeing all the data!
- Mathematical justification: if you sample a training example uniformly at random, the stochastic gradient is an unbiased estimate of the batch gradient:

$$
\mathbb{E}\left[\frac{\partial \mathcal{L}^{(i)}}{\partial \boldsymbol{\theta}}\right] = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial \mathcal{L}^{(i)}}{\partial \boldsymbol{\theta}} = \frac{\partial \mathcal{J}}{\partial \boldsymbol{\theta}}.
$$

- Problems:
	- \triangleright Variance in this estimate may be high
	- If we only look at one training example at a time, we can't exploit efficient vectorized operations.

- Compromise approach: compute the gradients on a randomly chosen medium-sized set of training examples $\mathcal{M} \subset \{1, \ldots, N\},\$ called a mini-batch.
- Stochastic gradients computed on larger mini-batches have smaller variance. This is similar to bagging.
- The mini-batch size $|\mathcal{M}|$ is a hyperparameter that needs to be set.
	- \triangleright Too large: takes more computation, i.e. takes more memory to store the activations, and longer to compute each gradient update
	- \triangleright Too small: can't exploit vectorization, has high variance
	- A reasonable value might be $|\mathcal{M}| = 100$.

• Batch gradient descent moves directly downhill. SGD takes steps in a noisy direction, but moves downhill on average.

batch gradient descent stochastic gradient descent

SGD Learning Rate

• In stochastic training, the learning rate also influences the fluctuations due to the stochasticity of the gradients.

- Typical strategy:
	- \triangleright Use a large learning rate early in training so you can get close to the optimum
	- \triangleright Gradually decay the learning rate to reduce the fluctuations

Warning: by reducing the learning rate, you reduce the fluctuations, which can appear to make the loss drop suddenly. But this can come at the expense of long-run performance.

SGD and Non-convex optimization

- Stochastic methods have a chance of escaping from bad minima.
- Gradient descent with small step-size converges to first minimum it finds.

 $\frac{1}{100}$ Intro ML (UofT) [CSC311-Lec4](#page-0-0) 69 / 70

Conclusion

Bias-Variance Decomposition

- \triangleright The error of a machine learning algorithm can be decomposed to a bias term and a variance term.
- ^I Hyperparameters of an algorithm might allow us to tradeoff between these two.
- Ensemble Methods
	- \triangleright Bagging as a simple way to reduce the variance of an estimation method
- Binary Classification
	- \triangleright 0 − 1 loss is the difficult to work with
	- \triangleright Use of surrogate loss functions such as the cross-entropy loss lead to computationally feasible solutions
	- \triangleright Logistic regression as the result of using cross-entropy loss with a linear model going through logistic nonlinearity
	- \triangleright No direct solution, but gradient descent can be used to minimize it
	- \triangleright Stochastic gradient descent