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Bias-Variance Decomposition
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Bias-Variance Decomposition

Recall that overly simple models underfit the data, and overly complex
models overfit.

We quantify this effect in terms of the bias-variance decomposition.
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Bias-Variance Decomposition for the Mean Estimator

For the next few slides, we consider the simple problem of estimating the
mean of a random variable using data.

Consider a r.v. Y with an unknown distribution p. This random variable
has an (unknown) mean m = E [Y ] and variance
σ2 = Var[Y ] = E

[
(Y −m)2

]
.

Given: a dataset D = {Y1, . . . , Yn} with independently sampled Yi ∼ p.
How can we estimate m using D?

Consider an algorithm that receives D, does some processing on data,
and outputs a number. The goal of this algorithm is to provide an
estimate of m. Let us denote it by h(D).

Some good and bad examples:

I Sample average: h(D) = 1
n

∑n
i=1 Yi

I Single-sample estimator: h(D) = Y1
I Zero estimator: h(D) = 0

How well do they perform?
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Bias-Variance Decomposition for the Mean Estimator

How can we assess the performance of a particular h(D)?

Ideally, we want h(D) be exactly equal to m = E [Y ]. But this might be
too much to ask. (why?)

What we can hope for is that h(D) ≈ m. How can we quantify the
accuracy of approximation?

We use the squared error err(D) = |h(D)−m|2 as a measure of quality.
This is the familiar squared error loss function in regression.

The error err(D) is a r.v. itself. (why?) For a dataset D = {Y1, . . . , Yn}
the loss err(D) might be small, but for another D′ = {Y ′1 , . . . , Y ′n} (still
with Y ′i ∼ p) the loss err(D′) might be large. We would like to quantify
the “average” error.

We focus on the expectation of err(D), i.e.,

E [err(D)] = ED
[
|h(D)−m|2

]
.

Note that the dataset D is random and this expectation is w.r.t. its
randomness.
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Bias-Variance Decomposition for the Mean Estimator

We would like to understand what determines ED
[
|h(D)−m|2

]
by

looking more closely at it.

We can decompose ED
[
|h(D)−m|2

]
by adding and subtracting

ED [h(D)] inside | · |:

ED
[
|h(D)−m|2

]
=ED

[
|h(D)− ED [h(D)] + ED [h(D)]−m|2

]
=ED

[
|h(D)− ED [h(D)]|2

]
+ ED

[
|ED [h(D)]−m|2

]
+

2ED [(h(D)− ED [h(D)]) (ED [h(D)]−m)] .

Let us simplify the right hand side (RHS).

Recall that if X is a random variable and f is a function, the quantity
f(X) is a random variable. But its expectation E [f(X)] is not. We can
say that the expectation takes the randomness away. So ED [h(D)] is not
a random variable anymore. We have

ED
[
|ED [h(D)]−m|2

]
= |ED [h(D)]−m|2 .
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Bias-Variance Decomposition for the Mean Estimator

Let us consider ED [(h(D)− ED [h(D)]) (ED [h(D)]−m)]. To reduce the
clutter, we denote m̄ = ED [h(D)]. Note that m̄ is an expectation of a
r.v., so it is not random. This means that E [m̄h(D)] = m̄E [h(D)].

We have

ED [(h(D)− ED [h(D)]) (ED [h(D)]−m)] =

ED [(h(D)− m̄)(m̄−m)] = (m̄−m) (E [h(D)]− m̄)︸ ︷︷ ︸
=0

= 0
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Bias-Variance Decomposition for the Mean Estimator

Bias-Variance Decomposition

ED
[
|h(D)−m|2

]
= |ED [h(D)]−m|2︸ ︷︷ ︸

bias

+ED
[
|h(D)− ED [h(D)]|2

]
︸ ︷︷ ︸

variance

.

Bias: The error of the expected estimator (over draws of dataset D)
compared to the mean m = E [Y ] of the random variable Y .

Variance: The variance of a single estimator h(D) (whose randomness
comes from D).

This is for an estimator of a mean of a random variable. We shall extend
this decomposition to more general estimators too.
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Bias-Variance Decomposition for the Mean Estimator:
Examples

Bias-Variance Decomposition

ED
[
|h(D)−m|2

]
= |ED [h(D)]−m|2︸ ︷︷ ︸

bias

+ED
[
|h(D)− ED [h(D)]|2

]
︸ ︷︷ ︸

variance

.

Let us compute the bias and variance of a few estimators. Recall that
m = E [Y ] and σ2 = Var{Y } = E

[
(Y −m)2

]
.

Sample average: h(D) = 1
n

∑n
i=1 Yi.

I Bias |ED [h(D)]−m|2 = |E
[
1
n

∑n
i=1 Yi

]
−m|2 =

| 1n
∑n
i=1 E [Yi]−m|2 = | 1n

∑n
i=1m−m|2 = 0.

I Variance:
E
[
|h(D)− ED [h(D)]|2

]
= E

[
| 1n
∑n
i=1 Yi − E

[
1
n

∑n
i=1 Yi

]
|2
]

=

E
[
| 1n
∑n
i=1(Yi −m)|2

]
= 1

n2

∑n
i=1 E

[
(Yi −m)2

]
= 1

n2nσ
2 = σ2

n .

I ED
[
|h(D)−m|2

]
= bias + variance = 0 + σ2

n .
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Bias-Variance Decomposition for the Mean Estimator:
Examples

Bias-Variance Decomposition

ED
[
|h(D)−m|2

]
= |ED [h(D)]−m|2︸ ︷︷ ︸

bias

+ED
[
|h(D)− ED [h(D)]|2

]
︸ ︷︷ ︸

variance

.

Single-sample estimator: h(D) = Y1

I The algorithm behind this estimator only looks at the first data
point and ignores the rest.

I Bias |ED [h(D)]−m|2 = |E [Y1]−m|2 = |m−m|2 = 0.

I Variance: E
[
|h(D)− ED [h(D)]|2

]
= E

[
|Y1 − E [Y1] |2

]
= σ2.

I ED
[
|h(D)−m|2

]
= bias + variance = 0 + σ2.
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Bias-Variance Decomposition for the Mean Estimator:
Examples

Bias-Variance Decomposition

ED
[
|h(D)−m|2

]
= |ED [h(D)]−m|2︸ ︷︷ ︸

bias

+ED
[
|h(D)− ED [h(D)]|2

]
︸ ︷︷ ︸

variance

.

Zero estimator: h(D) = 0

I The algorithm behind this estimator does not look at data and
always outputs zero. (We do not really want to use it in practice.)

I Bias |ED [h(D)]−m|2 = |0−m|2 = m2.

I Variance: E
[
|h(D)− ED [h(D)]|2

]
= E

[
|0− E [0] |2

]
= 0.

I ED
[
|h(D)−m|2

]
= bias + variance = m2 + 0.
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Bias-Variance Decomposition for the Mean Estimator:
Examples

Summary:

I Sample average: ED
[
|h(D)−m|2

]
= bias + variance = 0 + σ2

n

I Single-sample estimator:

ED
[
|h(D)−m|2

]
= bias + variance = 0 + σ2.

I Zero estimator: ED
[
|h(D)−m|2

]
= bias + variance = m2 + 0.

These estimators show different behaviour of bias and variance. The zero
estimator has no variance (surprising?), but potentially a lot of bias
(unless we are “lucky” and the m is in fact very close to 0). On the other
hand, the sample average has zero bias, but in general it has a non-zero
variance.(Q: When does it have a zero variance?)
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Bias-Variance Decomposition for the Mean Estimator

We could also define error as

ED,Y
[
|h(D)− Y |2

]
instead of ED

[
|h(D)−m|2

]
. This measure the expected squared error of

h(D) compared to Y instead of the mean m = E [Y ].

We have a similar decomposition:

E
[
|h(D)− Y |2

]
=E

[
|h(D)−m+m− Y |2

]
=E

[
|h(D)−m|2

]
+ E

[
|m− Y |2

]
+

2E [(h(D)−m) (m− Y )] .

The last term is zero because

E [(h(D)−m) (m− Y )] = E [E [(h(D)−m) (m− Y ) | D]]

= E [(h(D)−m)E [m− Y | D]] = 0.
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Bias-Variance Decomposition for the Mean Estimator

Bias-Variance Decomposition

E
[
|h(D)− Y |2

]
= |ED [h(D)]−m|2︸ ︷︷ ︸

bias

+ED
[
|h(D)− ED [h(D)]|2

]︸ ︷︷ ︸
variance

+E
[
|Y −m|2

]︸ ︷︷ ︸
Bayes error

.

We have an additional term of E
[
|m− Y |2

]
= σ2. This is the variance of

Y . This comes from the randomness of the r.v. Y and cannot be
avoided. This is called the Bayes error.
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Bias-Variance Decomposition: General Case

What about the bias-variance decomposition for a machine learning
algorithm such as a regression estimator or a classifier?

Two importance issues to be addressed:

I We are not trying to estimate a single real-valued number
(h(D) ∈ R) anymore, but a function over input x. How can we
measure the error in this case?

I When we only wanted to estimate the mean, the “best” solution
was m = E [Y ]. What is the best solution here?
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Bias-Variance Decomposition: General Case

Suppose that the training set D consists of N pairs (x(i), t(i))
sampled independent and identically distributed (i.i.d.)
from a sample generating distribution psample, i.e.,
(x(i), t(i)) ∼ psample.
Let us denote its marginal distribution on x by px.
Let pdataset denote the induced distribution over training sets, i.e.
D ∼ pdataset.
Pick a fixed query point x (denoted with a green x).
Consider an experiment where we sample lots of training datasets
i.i.d. from pdataset.
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Bias-Variance Decomposition: General Case

Let us run our learning algorithm on each training set D,
producing a regressor or classifier h(D) : X → T .

Note that h(D) is a random function.

Fix a query point x. We use h(D) to predict the output at x, i.e.,
y = h(x;D).
y is a random variable, where the randomness comes from the
choice of training set

I D is random =⇒ h(·;D) is random =⇒ h(x;D) is random

Intro ML (UofT) CSC311-Lec4 17 / 70



Bias-Variance Decomposition: Basic Setup

Here is the analogous setup for regression:

Since y = h(x;D) is a random variable, we can talk about its expectation,
variance, etc. over the distribution of training sets pdataset
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Bias-Variance Decomposition: General Case

Recap of the setup:
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When x is fixed, this is very similar to the mean estimator case.

Can we have a bias-variance decomposition for a h(D), where we

measured ED
[
|h(D)−m|2

]
?

Two questions:

I What should replace m in the error decomposition?
I How should we evaluate the performance when x is random?

Intro ML (UofT) CSC311-Lec4 19 / 70



Bayes Optimality

Claim: For a fixed x, the best estimator is the conditional expectation of the
target value y∗(x) = E [t|x] (Distribution of t ∼ p(t|x)), i.e.,

y∗(x) = argmin
y

E[(y − t)2 |x].

Proof: Start by conditioning on (a fixed) x.

E[(y − t)2 |x] = E[y2 − 2yt+ t2 |x]

= y2 − 2yE[t |x] + E[t2 |x]

= y2 − 2yE[t |x] + E[t |x]2 + Var[t |x]

= y2 − 2yy∗(x) + y∗(x)2 + Var[t |x]

= (y − y∗(x))2 + Var[t |x]

The first term is nonnegative, and can be made 0 by setting y = y∗(x).

The second term does not depend on y. It corresponds to the inherent
unpredictability, or noise, of the targets, and is called the Bayes error or
irreducible error.

I This is the best we can ever hope to do with any learning
algorithm. An algorithm that achieves it is Bayes optimal.
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Bias-Variance Decomposition: General Case

For each query point x, the expected loss is different. We are interested
in quantifying how well our estimator performs over the distribution
psample. That is, the error measure is

err(D) = Ex∼px

[
|h(x;D)− y∗(x)|2

]
=

∫
|h(x;D)− y∗(x)|2 px(x)dx.

This is similar to err(D) = |h(D)−m|2 of the Mean Estimator case,
except that

I The ideal estimator is y∗(x) and not m.
I We take average over x according to the probability distribution px.

As before, err(D) is random due to the randomness of D ∼ pdataset.
We focus on the expectation of err(D), i.e.,

E [err(D)] = ED∼pdataset,x∼px

[
|h(x;D)− y∗(x)|2

]
.
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Bias-Variance Decomposition: General Case

To obtain the bias-variance decomposition of

E [err(D)] = ED∼pdataset,x∼px

[
|h(x;D)− y∗(x)|2

]
.

we add and subtract ED [h(x;D) | x] inside | · | (similar to the previous
case):

ED,x
[
|h(x;D)− y∗(x)|2

]
=

ED,x
[
|h(x;D)− ED [h(x;D) | x] + ED [h(x;D) | x]− y∗(x)|2

]
=

ED,x
[
|h(x;D)− ED [h(x;D) | x]|2

]
+ ED,x

[
|ED [h(x;D) | x]− y∗(x)|2

]
+

2ED,x [(h(x;D)− ED [h(x;D) | x]) (ED [h(x;D) | x]− y∗(x))] =

ED,x
[
|h(x;D)− ED [h(x;D) | x]|2

]
+ Ex

[
|ED [h(x;D) | x]− y∗(x)|2

]
Try to convince yourself that the inner product term is zero.

This is the bias and variance decomposition for the general estimator
(with the squared error loss).
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Bias-Variance Decomposition for the General Estimator

Bias-Variance Decomposition

ED,x
[
|h(x;D)− y∗(x)|2

]
=Ex

[
|ED [h(x;D) | x]− y∗(x)|2

]
︸ ︷︷ ︸

bias

+

ED,x
[
|h(x;D)− ED [h(x;D) | x]|2

]
︸ ︷︷ ︸

variance

.

Bias: The squared error between the average estimator (averaged
over dataset D) and the best predictor y∗(x) = E [t|x], averaged
over x ∼ px.

Variance: The variance of a single estimator h(x;D) (whose
randomness comes from D).
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Bias-Variance Decomposition: General Case

Bias-Variance Decomposition

ED,x
[
|h(x;D)− t|2

]
=Ex

[
|ED [h(x;D) | x]− y∗(x)|2

]
︸ ︷︷ ︸

bias

+

ED,x
[
|h(x;D)− ED [h(x;D) | x]|2

]
︸ ︷︷ ︸

variance

+E
[
|y∗(x)− t|2

]︸ ︷︷ ︸
Bayes error

.

We have an additional term of E
[
|y∗(x)− t|2

]
= Ex [Var[t | x]]. This is

due to the the variance of t at each fixed x, averaged over x ∼ px. As
before, this comes from the randomness of the r.v. t and cannot be
avoided. This is the Bayes error.
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Bias-Variance Decomposition: A Visualization

Throwing darts = predictions for each draw of a dataset

What doesn’t this capture?

We average over points x from the data distribution
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Bias-Variance Decomposition: Another Visualization

We can visualize this decomposition in output space, where the
axes correspond to predictions on the test examples.
If we have an overly simple model (e.g. k-NN with large k), it
might have

I high bias (because it is too simplistic to capture the structure in the
data)

I low variance (because there is enough data to get a stable estimate
of the decision boundary)
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Bias-Variance Decomposition: Another Visualization

If you have an overly complex model (e.g. k-NN with k = 1), it
might have

I low bias (since it learns all the relevant structure)
I high variance (it fits the quirks of the data you happened to sample)
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Ensemble Methods – Part I: Bagging
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Ensemble Methods: Brief Overview

An ensemble of predictors is a set of predictors whose individual
decisions are combined in some way to predict new examples, for
example by (weighted) majority vote.

For the result to be nontrivial, the learned hypotheses must differ
somehow, for example because of

I Different algorithms
I Different choices of hyperparameters
I Trained on different data sets
I Trained with different weighting of the training examples

Ensembles are usually easy to implement. The hard part is deciding
what kind of ensemble you want, based on your goals.

Two major types of ensembles methods:

I Bagging
I Boosting
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Bagging: Motivation

Suppose we could somehow sample m independent training sets
{Di}mi=1 from pdataset.

We could then learn a predictor hi , h(·;Di) based on each one,
and take the average h(x) = 1

m

∑m
i=1 hi(x).

How does this affect the terms of the expected loss?
I Bias: Unchanged, since the averaged prediction has the same

expectation

E
Di,...,Dm

i.i.d.∼ pdataset
[h(x)] =

1

m

m∑
i=1

EDi∼pdataset [hi(x)]

= ED∼pdataset
[h(x;D)] .

I Variance: Reduced, since we are averaging over independent
samples

Var
D1,...,Dm

[h(x)] =
1

m2

m∑
i=1

Var
Di

[hi(x)] =
1

m
Var
D

[hD(x)].

What if m→∞?
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Bagging

In practice, we don’t have access to the underlying data generating
distribution psample.

It is expensive to collect many i.i.d. datasets from pdataset.

Solution: bootstrap aggregation, or bagging.

I Take a single dataset D with n examples.

I Generate m new datasets, each by sampling n training examples
from D, with replacement.

I Average the predictions of models trained on each of these datasets.
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Bagging

Problem: the datasets are not independent, so we don’t get the 1
m

variance reduction.
I Possible to show that if the sampled predictions have variance σ2

and correlation ρ, then

Var

(
1

m

m∑
i=1

hi(x)

)
=

1

m
(1− ρ)σ2 + ρσ2.

Ironically, it can be advantageous to introduce additional
variability into your algorithm, as long as it reduces the
correlation between samples.

I Intuition: you want to invest in a diversified portfolio, not just one
stock.

I Can help to use average over multiple algorithms, or multiple
configurations of the same algorithm.
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Random Forests

Random forests: bagged decision trees, with one extra trick to
decorrelate the predictions

When choosing each node of the decision tree, choose a random
set of d input features, and only consider splits on those features

The main idea in random forests is to improve the variance
reduction of bagging by reducing the correlation between the trees
(∼ ρ).

Random forests are probably the best black-box machine learning
algorithm. They often work well with no tuning whatsoever.

I one of the most widely used algorithms in Kaggle competitions
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Classification with Linear Models
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Overview

Classification: predicting a discrete-valued target
I Binary classification: predicting a binary-valued target

Examples
I predict whether a patient has a disease, given the presence or

absence of various symptoms
I classify e-mails as spam or non-spam
I predict whether a financial transaction is fraudulent
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Overview

Binary linear classification

classification: predict a discrete-valued target

binary: predict a binary target t ∈ {0, 1}
I Training examples with t = 1 are called positive examples, and

training examples with t = 0 are called negative examples.
I t ∈ {0, 1} or t ∈ {−1,+1} is for computational convenience.

linear: model is a linear function of x, followed by a threshold r:

z = wTx + b

y =

{
1 if z ≥ r
0 if z < r
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Some Simplifications

Eliminating the threshold

We can assume without loss of generality (w.l.o.g.) that the
threshold is r = 0:

wTx + b ≥ r ⇐⇒ wTx + b− r︸ ︷︷ ︸
,w0

≥ 0.

Eliminating the bias

Add a dummy feature x0 which always takes the value 1. The
weight w0 = b is equivalent to a bias (same as linear regression)

Simplified model

z = wTx

y =

{
1 if z ≥ 0
0 if z < 0
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Examples

Let us consider some simple examples to examine the properties of
our model

Forget about generalization and suppose we just want to learn
Boolean functions
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Examples

NOT

x0 x1 t

1 0 1
1 1 0

This is our “training set”

What conditions are needed on w0, w1 to classify all examples?
I When x1 = 0, need: z = w0x0 + w1x1 > 0 ⇐⇒ w0 > 0
I When x1 = 1, need: z = w0x0 + w1x1 < 0 ⇐⇒ w0 + w1 < 0

Example solution: w0 = 1, w1 = −2

Is this the only solution?
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Examples

AND

x0 x1 x2 t

1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

z = w0x0 + w1x1 + w2x2

need: w0 < 0

need: w0 + w2 < 0

need: w0 + w1 < 0

need: w0 + w1 + w2 > 0

Example solution: w0 = −1.5, w1 = 1, w2 = 1
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The Geometric Picture

Input Space, or Data Space for NOT example

x0 x1 t

1 0 1
1 1 0

Training examples are points

Weights (hypotheses) w can be represented by half-spaces
H+ = {x : wTx ≥ 0}, H− = {x : wTx < 0}

I The boundaries of these half-spaces pass through the origin (why?)

The boundary is the decision boundary: {x : wTx = 0}
I In 2-D, it is a line, but think of it as a hyperplane

If the training examples can be perfectly separated by a linear
decision rule, we say data is linearly separable.
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The Geometric Picture

Weight Space

w0 > 0

w0 + w1 < 0

Weights (hypotheses) w are points

Each training example x specifies a half-space w must lie in to be
correctly classified: wTx > 0 if t = 1.

For NOT example:
I x0 = 1, x1 = 0, t = 1 =⇒ (w0, w1) ∈ {w : w0 > 0}
I x0 = 1, x1 = 1, t = 0 =⇒ (w0, w1) ∈ {w : w0 + w1 < 0}

The region satisfying all the constraints is the feasible region; if
this region is nonempty, the problem is feasible, otw it is infeasible.
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The Geometric Picture

The AND example requires three dimensions, including the dummy one.

To visualize data space and weight space for a 3-D example, we can look
at a 2-D slice.

The visualizations are similar.

I Feasible set will always have a corner at the origin.
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The Geometric Picture

Visualizations of the AND example

Data Space

- Slice for x0 = 1 and
- example sol: w0 =−1.5, w1 =1, w2 =1
- decision boundary:
w0x0+w1x1+w2x2 =0
=⇒ −1.5+x1+x2 =0

Weight Space

- Slice for w0 = −1.5 for the
constraints
- w0 < 0
- w0 + w2 < 0
- w0 + w1 < 0
- w0 + w1 + w2 > 0
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The Geometric Picture

Some datasets are not linearly separable, e.g. XOR
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Overview

Recall: binary linear classifiers. Targets t ∈ {0, 1}

z = wTx + b

y =

{
1 if z ≥ 0
0 if z < 0

How can we find good values for w, b?

If training set is separable, we can solve for w, b using linear
programming

If it’s not separable, the problem is harder
I data is almost never separable in real life.
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Loss Functions

Instead: define loss function then try to minimize the resulting
cost function

I Recall: cost is loss averaged (or summed) over the training set

Seemingly obvious loss function: 0-1 loss

L0−1(y, t) =

{
0 if y = t
1 if y 6= t

= I[y 6= t]
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Attempt 1: 0-1 Loss

Usually, the cost J is the averaged loss over training examples; for
0-1 loss, this is the misclassification rate/error:

J =
1

N

N∑
i=1

I[y(i) 6= t(i)]
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Attempt 1: 0-1 Loss

Problem: how to optimize? In general, a hard problem (can be
NP-hard)

This is due to the step function (0-1 loss) not being nice
(continuous/smooth/convex etc)
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Attempt 1: 0-1 Loss

Minimum of a function will be at its critical points.
Let’s try to find the critical point of 0-1 loss
Chain rule:

∂L0−1
∂wj

=
∂L0−1
∂z

∂z

∂wj

But ∂L0−1/∂z is zero everywhere it is defined!

I ∂L0−1/∂wj = 0 means that changing the weights by a very small
amount has no effect on the loss (whenever the gradient of the loss
is defined)

I Almost any point has 0 gradient!
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Attempt 2: Linear Regression

Sometimes we can replace the loss function we care about with one
that is easier to optimize. This is known as relaxation with a
smooth surrogate loss function.

One problem with L0−1 is that it is defined in terms of final
prediction, which inherently involves a discontinuity

Instead, define loss in terms of wTx + b directly
I Redo notation for convenience: z = wTx + b
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Attempt 2: Linear Regression

We already know how to fit a linear regression model using the
squared error loss. Can we use the same squared error loss instead?

z = w>x + b

LSE(z, t) =
1

2
(z − t)2

Doesn’t matter that the targets are actually binary. Treat them as
continuous values.

For this loss function, it makes sense to make final predictions by
thresholding z at 1

2 (why?)
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Attempt 2: Linear Regression

The problem:

The loss function penalizes you when you make correct predictions
with high confidence!

If t = 1, the loss is larger when z = 10 than when z = 0.
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Attempt 3: Logistic Activation Function

There’s obviously no reason to predict values outside [0, 1]. Let’s
squash y into this interval.

The logistic function is a kind of sigmoid, or
S-shaped function:

σ(z) =
1

1 + e−z

σ−1(y) = log(y/(1− y)) is called the logit.

A linear model with a logistic nonlinearity is known as log-linear:

z = w>x + b

y = σ(z)

LSE(y, t) =
1

2
(y − t)2.

Used in this way, σ is called an activation function.
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Attempt 3: Logistic Activation Function

The problem:
(plot of LSE as a function of z, assuming t = 1)

∂L
∂wj

=
∂L
∂z

∂z

∂wj

For z � 0, we have σ(z) ≈ 0.
∂L
∂z ≈ 0 (check!) =⇒ ∂L

∂wj
≈ 0 =⇒ derivative w.r.t. wj is small

=⇒ wj is like a critical point

If the prediction is really wrong, you should be far from a critical
point (which is your candidate solution).
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Logistic Regression

Because y ∈ [0, 1], we can interpret it as the estimated probability
that t = 1.

The pundits who were 99% confident Clinton would win were
much more wrong than the ones who were only 90% confident.

Cross-entropy loss (aka log loss) captures this intuition:

LCE(y, t) =

{
− log y if t = 1
− log(1− y) if t = 0

= −t log y − (1− t) log(1− y)

Intro ML (UofT) CSC311-Lec4 56 / 70



Logistic Regression

Logistic Regression:

z = w>x + b

y = σ(z)

=
1

1 + e−z

LCE = −t log y − (1− t) log(1− y)

Plot is for target t = 1.
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Logistic Regression

Problem: what if t = 1 but you’re really confident it’s a negative
example (z � 0)?

If y is small enough, it may be numerically zero. This can cause
very subtle and hard-to-find bugs.

y = σ(z) ⇒ y ≈ 0

LCE = −t log y − (1− t) log(1− y) ⇒ computes log 0

Instead, we combine the activation function and the loss into a
single logistic-cross-entropy function.

LLCE(z, t) = LCE(σ(z), t) = t log(1 + e−z) + (1− t) log(1 + ez)

Numerically stable computation:

E = t * np.logaddexp(0, -z) + (1-t) * np.logaddexp(0, z)
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Logistic Regression

Comparison of loss functions: (for t = 1)
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Gradient Descent

How do we minimize the cost J in this case? No direct solution.
I Taking derivatives of J w.r.t. w and setting them to 0 doesn’t have

an explicit solution.

Now let’s see a second way to minimize the cost function which is
more broadly applicable: gradient descent.

Gradient descent is an iterative algorithm, which means we apply
an update repeatedly until some criterion is met.

We initialize the weights to something reasonable (e.g. all zeros)
and repeatedly adjust them in the direction of steepest descent.
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Gradient for Logistic Regression

Back to logistic regression:

LCE(y, t) =− t log(y)− (1− t) log(1− y)

y =1/(1 + e−z) and z = wTx + b

Therefore

∂LCE

∂wj
=
∂LCE

∂y
· ∂y
∂z
· ∂z
∂wj

=

(
− t
y

+
1− t
1− y

)
· y(1− y) · xj

=(y − t)xj
Exercise: Verify this!
Gradient descent (coordinatewise) update to find the weights of logistic
regression:

wj ← wj − α
∂J
∂wj

= wj −
α

N

N∑
i=1

(y(i) − t(i))x(i)j
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Logistic Regression

Comparison of gradient descent updates:

Linear regression (verify!):

w← w − α

N

N∑
i=1

(y(i) − t(i)) x(i)

Logistic regression:

w← w − α

N

N∑
i=1

(y(i) − t(i)) x(i)

Not a coincidence! These are both examples of generalized linear
models. But we won’t go in further detail.

Notice 1
N in front of sums due to averaged losses. This is why you

need smaller learning rate when we optimize the sum of losses
(α′ = α/N).
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Stochastic Gradient Descent

So far, the cost function J has been the average loss over the
training examples:

J (θ) =
1

N

N∑
i=1

L(i) =
1

N

N∑
i=1

L(y(x(i),θ), t(i)).

By linearity,

∂J
∂θ

=
1

N

N∑
i=1

∂L(i)

∂θ
.

Computing the gradient requires summing over all of the training
examples. This is known as batch training.

Batch training is impractical if you have a large dataset N � 1
(e.g. millions of training examples)!
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Stochastic Gradient Descent

Stochastic gradient descent (SGD): update the parameters based on the
gradient for a single training example,

1. Choose i uniformly at random

2. θ ← θ − α∂L
(i)

∂θ

Cost of each SGD update is independent of N .

SGD can make significant progress before even seeing all the data!

Mathematical justification: if you sample a training example uniformly
at random, the stochastic gradient is an unbiased estimate of the batch
gradient:

E
[
∂L(i)

∂θ

]
=

1

N

N∑
i=1

∂L(i)

∂θ
=
∂J
∂θ

.

Problems:

I Variance in this estimate may be high
I If we only look at one training example at a time, we can’t exploit

efficient vectorized operations.
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Stochastic Gradient Descent

Compromise approach: compute the gradients on a randomly
chosen medium-sized set of training examples M⊂ {1, . . . , N},
called a mini-batch.

Stochastic gradients computed on larger mini-batches have smaller
variance. This is similar to bagging.

The mini-batch size |M| is a hyperparameter that needs to be set.
I Too large: takes more computation, i.e. takes more memory to store

the activations, and longer to compute each gradient update
I Too small: can’t exploit vectorization, has high variance
I A reasonable value might be |M| = 100.

Intro ML (UofT) CSC311-Lec4 65 / 70



Stochastic Gradient Descent

Batch gradient descent moves directly downhill. SGD takes steps
in a noisy direction, but moves downhill on average.

batch gradient descent stochastic gradient descent
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SGD Learning Rate

In stochastic training, the learning rate also influences the
fluctuations due to the stochasticity of the gradients.

Typical strategy:
I Use a large learning rate early in training so you can get close to

the optimum
I Gradually decay the learning rate to reduce the fluctuations
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SGD Learning Rate

Warning: by reducing the learning rate, you reduce the
fluctuations, which can appear to make the loss drop suddenly.
But this can come at the expense of long-run performance.
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SGD and Non-convex optimization

Local minimum

Global minimum
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Stochastic Gradient descent
updates

Stochastic methods have a chance of escaping from bad minima.

Gradient descent with small step-size converges to first minimum
it finds.
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Conclusion

Bias-Variance Decomposition
I The error of a machine learning algorithm can be decomposed to a

bias term and a variance term.
I Hyperparameters of an algorithm might allow us to tradeoff

between these two.

Ensemble Methods
I Bagging as a simple way to reduce the variance of an estimation

method

Binary Classification
I 0− 1 loss is the difficult to work with
I Use of surrogate loss functions such as the cross-entropy loss lead to

computationally feasible solutions
I Logistic regression as the result of using cross-entropy loss with a

linear model going through logistic nonlinearity
I No direct solution, but gradient descent can be used to minimize it
I Stochastic gradient descent
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