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Overview

Goal: A more focused discussion on models that explicitly
represent probabilities

MLE review

Discriminative vs. Generative models

Generative models
I Näıve Bayes
I Gaussian Discriminant Analysis (and Linear Discriminant Analysis)

Bayesian approach to estimation and inference

Maximum A-Posteriori Estimation (MAP) of parameters
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Recall: Maximum Likelihood (MLE)

We have seen before that some ML algorithms can be derived
using the Maximum Likelihood Estimation (MLE) principle.

I Example: Regression with squared loss could be obtained as the
MLE with Gaussian noise model

Let’s try to understand it better by starting with a simple
example: Estimating the parameter of a biased coin

I You flip a coin N = 100 times. It lands heads NH = 55 times and
tails NT = 45 times.

I What is the probability it will come up heads if we flip again?

Model: flips are independent Bernoulli random variables with
parameter θ.

I Assume the observations are independent and identically
distributed (i.i.d.).
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Maximum Likelihood

The likelihood function is the density of the observed data, as a
function of parameters θ.

In our case, it is the probability of a particular sequence of H/T’s.

Under the Bernoulli model with i.i.d. observations: Let xi be the # Hs
in i-th flip (x ∈ {0, 1})

p(xi = 1|θ) = θ and p(xi = 0|θ) = 1− θ
which can be written more compactly as

p(xi|θ) = θxi(1− θ)1−xi .

Likelihood is given as

L(θ) =p(x1, ..., xN |θ) =

N∏
i=1

θxi(1− θ)1−xi = θNH (1− θ)NT

where NH =
∑

i xi and NT = N −
∑

i xi

We usually work with log-likelihoods:

`(θ) = logL(θ) = NH log θ +NT log(1− θ).
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Maximum Likelihood

Good values of θ should assign high probability to the observed
data. This motivates the maximum likelihood criterion, i.e.,
choosing θ that maximizes the likelihood.

We can set the derivative of the likelihood function to finds its
maximizer:

d`

dθ
=

d

dθ
(NH log θ +NT log(1− θ))

=
NH

θ
− NT

1− θ

Setting this to zero gives the maximum likelihood estimate:

θ̂ML =
NH

NH +NT
.

With this reminder, we are ready to talk about probabilistic
models.
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Generative vs Discriminative

Two approaches to classification:

Discriminative approach: estimate parameters of decision
boundary/class separator directly from labeled examples.

I Tries to solve: How do I separate the classes?

I learn p(t|x) directly (logistic regression models)

I learn mappings from inputs to classes (logistic regression, decision
trees, etc)

Generative approach: model the distribution of inputs
generated from the class (Bayes classifier).

I Tries to solve: What does each class “look” like?

I Build a model of p(x|t)
I Apply Bayes Rule
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A Generative Model: Bayes Classifier

Aim to classify text into spam/not-spam (yes c=1; no c=0)

Example: “You are one of the very few who have been selected as
a winners for the free $1000 Gift Card.”

Use bag-of-words features, get binary vector x for each email

Vocabulary:
I “a”: 1
I ...
I “car”: 0
I “card”: 1
I ...
I “win”: 0
I “winner”: 1
I “winter”: 0
I ...
I “you”: 1
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Bayes Classifier

Given features x = [x1, x2, · · · , xD]T we want to compute class
probabilities using Bayes Rule:

p(c|x)︸ ︷︷ ︸
Pr. class given words

=
p(x, c)

p(x)
=

Pr. words given class︷ ︸︸ ︷
p(x|c) p(c)

p(x)

Each of these terms have specific names:

posterior =
Class likelihood× prior

Evidence

How can we compute p(x) for the two class case? (Do we need to?)

p(x) = p(x|c = 0)p(c = 0) + p(x|c = 1)p(c = 1)

To compute p(c|x) we need: p(x|c) and p(c)
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Näıve Bayes

Assume that we have two classes: spam and non-spam. We have a
dictionary of D words, and binary features x = [x1, . . . , xD] saying
whether each word appears in the e-mail.

If we define a joint distribution p(c, x1, . . . , xD), this gives enough
information to determine p(c) and p(x|c).

Problem: specifying a joint distribution over D + 1 binary
variables requires 2D+1 − 1 entries. This is computationally
prohibitive and would require an absurd amount of data to fit.

We’d like to impose structure on the distribution such that:
I it can be compactly represented
I learning and inference are both tractable
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Näıve Bayes

Näıve assumption: Näıve Bayes assumes that the word features
xi are conditionally independent given the class c.

I This means xi and xj are independent conditioned on the class
label c, i.e., p(xi, xj |c) = p(xi|c)p(xj |c) for i 6= j.

I Note: This doesn’t mean they are independent.
I Therefore, we have

p(c, x1, . . . , xD) = p(c)p(x1|c) · · · p(xD|c).

Compact representation of the joint distribution
I Prior probability of class: p(c = 1) = π (e.g. spam email)
I Conditional probability of word feature given class:
p(xj = 1|c) = θjc (e.g. word ”price” appearing in spam)

I 2D + 1 parameters total (before 2D+1 − 1)
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Bayes Nets

We can represent this model using an directed graphical
model, or a Bayesian network:

This graph structure means that the joint distribution factorizes
as a product of conditional distributions for each variable given its
parent(s).

Intuitively, you can think of the edges as reflecting a causal
structure. But mathematically, this doesn’t hold without
additional assumptions.

This is a very simple graphical model. There are more complex
structures too.
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Näıve Bayes: Learning

The parameters can be learned efficiently because the
log-likelihood decomposes into independent terms for each feature.

`(θ) =

N∑
i=1

log p(c(i),x(i)) =
N∑
i=1

log
{
p(x(i)|c(i))p(c(i))

}
=

N∑
i=1

log
{
p(c(i))

D∏
j=1

p(x
(i)
j | c

(i))
}

=

N∑
i=1

[
log p(c(i)) +

D∑
j=1

log p(x
(i)
j | c

(i))

]

=

N∑
i=1

log p(c(i))︸ ︷︷ ︸
Bernoulli log-likelihood

of labels

+

D∑
j=1

N∑
i=1

log p(x
(i)
j | c

(i))︸ ︷︷ ︸
Bernoulli log-likelihood

for feature xj

Each of these log-likelihood terms depends on different sets of
parameters, so they can be optimized independently.
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Näıve Bayes: Learning

We can handle these terms separately. For the prior we maximize:∑N
i=1 log p(c(i))

This is a minor variant of our coin flip example. Let p(c(i) = 1)=π.

Note p(c(i)) = πc
(i)

(1− π)1−c
(i)

.

Log-likelihood:

N∑
i=1

log p(c(i)) =

N∑
i=1

c(i) log π +

N∑
i=1

(1− c(i)) log(1− π)

Obtain MLEs by setting derivatives to zero:

π̂ =

∑
i I{c(i) = 1}

N
=

# spams in dataset

total # samples
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Näıve Bayes: Learning

Each θjc’s can be treated separately: maximize
∑N

i=1 log p(x
(i)
j | c(i))

This is (again) a minor variant of our coin flip example.

Let θjc = p(x
(i)
j = 1 | c). Note p(x

(i)
j | c) = θ

x
(i)
j

jc (1− θjc)1−x
(i)
j .

Log-likelihood:

N∑
i=1

log p(x
(i)
j | c

(i)) =
N∑
i=1

c(i)
{
x
(i)
j log θj1 + (1− x(i)j ) log(1− θj1)

}
+

N∑
i=1

(1− c(i))
{
x
(i)
j log θj0 + (1− x(i)j ) log(1− θj0)

}

Obtain MLEs by setting derivatives to zero:

θ̂jc =

∑
i I{x

(i)
j = 1 & c(i) = c}∑
i I{c(i) = c}

for c = 1
=

#word j appears in spams

# spams in dataset
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Näıve Bayes: Inference

We predict the category of an input x by performing inference in
the model.

Apply Bayes’ Rule:

p(c |x) =
p(c)p(x | c)∑
c′ p(c

′)p(x | c′)
=

p(c)
∏D
j=1 p(xj | c)∑

c′ p(c
′)
∏D
j=1 p(xj | c′)

We need not compute the denominator if we merely want to
determine the most likely c (why?).

Shorthand notation:

p(c |x) ∝ p(c)
D∏
j=1

p(xj | c)

For input x, predict by computing the values of p(c)
∏D
j=1 p(xj | c)

for different c and choose the largest.
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Näıve Bayes

Näıve Bayes is an amazingly cheap learning algorithm!

Training time: estimate parameters using maximum likelihood
I Compute co-occurrence counts of each feature with the labels.
I Requires only one pass through the data.

Test time: apply Bayes’ Rule
I Cheap because of the model structure. (For more general models,

Bayesian inference can be very expensive and/or complicated.)

We covered the Bernoulli case for simplicity. But our analysis
easily extends to other probability distributions.

Unfortunately, it’s usually less accurate in practice compared to
discriminative models due to its “näıve” independence assumption.
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MLE Issue: Data Sparsity

Maximum likelihood has a pitfall: if you have too little data, it
can overfit.

Example: What if you flip the coin twice and get H both times?

θML =
NH

NH +NT
=

2

2 + 0
= 1

Because it never observed T, it assigns this outcome probability of
0. This is not an intuitive answer. It was just unlucky that we did
not observe any T in two flips, but it does not mean that the coin
would not be a T ever. This is an example of overfitting. And this
problem is sometimes known as data sparsity.

We can mitigate this issue by using a Bayesian approach to
estimation and inference.
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Bayesian Parameter Estimation and Inference

In maximum likelihood, the observations are treated as random
variables, but the parameters are not.

! "

The Bayesian approach treats the parameters as random
variables as well. The parameter θ has a prior probability,
specified by another parameter β.

β " #

To define a Bayesian model, we need to specify two distributions:
I The prior distribution p(θ), which encodes our beliefs about the

parameters before we observe the data
I The likelihood p(D |θ), same as in maximum likelihood
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Bayesian Parameter Estimation and Inference

When we update our beliefs based on the observations, we
compute the posterior distribution using Bayes’ Rule:

p(θ | D) =
p(θ)p(D |θ)∫
p(θ′)p(D |θ′) dθ′

.

We rarely ever compute the denominator explicitly. In general, it
is computationally intractable.

Note: There is a subtle difference between the interpretation of
probability according to a Bayesian and a frequentist (who
recommends MLE). For the former, probability is a degree of
belief about the truth of a statement; for the latter, a probability
is the number of times a statement is true when we observe a lot
of samples.
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Bayesian Parameter Estimation and Inference

Let’s revisit the coin example. We already know the likelihood:

L(θ) = p(D|θ) = θNH (1− θ)NT

It remains to specify the prior p(θ).
I We can choose an uninformative prior, which assumes as little as

possible. A reasonable choice is the uniform prior.
I But our experience tells us 0.5 is more likely than 0.99. One

particularly useful prior that lets us specify this is the beta
distribution:

p(θ; a, b) =
Γ(a+ b)

Γ(a)Γ(b)
θa−1(1− θ)b−1.

I Γ is the gamma function and has the property of Γ(n) = (n− 1)! for
positive integer n.

I This notation for proportionality lets us ignore the normalization
constant:

p(θ; a, b) ∝ θa−1(1− θ)b−1.

Intro ML (UofT) CSC311-Lec7 20 / 52



Bayesian Parameter Estimation and Inference

Beta distribution for various values of a, b:

Some observations:

I The expectation E[θ] = a/(a+ b) (easy to derive).
I The distribution gets more peaked when a and b are large.
I The uniform distribution is the special case where a = b = 1.

The beta distribution is used as a prior for the Bernoulli distribution.
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Bayesian Parameter Estimation and Inference

Computing the posterior distribution:

p(θ | D) ∝ p(θ)p(D |θ)

∝
[
θa−1(1− θ)b−1

] [
θNH (1− θ)NT

]
= θa−1+NH (1− θ)b−1+NT .

This is just a beta distribution with parameters NH + a and
NT + b.

The posterior expectation of θ is:

E[θ | D] =
NH + a

NH +NT + a+ b

The parameters a and b of the prior can be thought of as
pseudo-counts.

I The reason this works is that the prior and likelihood have the same
functional form. This phenomenon is known as conjugacy
(conjugate priors), and it is very useful in computation of posteriors.
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Bayesian Parameter Estimation and Inference

Bayesian inference for the coin flip example:

Small data setting
NH = 2, NT = 0

Large data setting
NH = 55, NT = 45

When you have enough observations, the data overwhelm the prior.
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Bayesian Parameter Estimation and Inference

What do we actually do with the posterior?

The posterior predictive distribution is the distribution over
future observables given the past observations. We compute this
by marginalizing out the parameter(s):

p(D′ | D) =

∫
p(θ | D)p(D′ |θ) dθ.

For the coin flip example:

θpred = Pr(x′ = H | D)

=

∫
p(θ | D)Pr(x′ = H | θ) dθ

=

∫
Beta(θ;NH + a,NT + b) · θ dθ

= EBeta(θ;NH+a,NT+b)[θ]

=
NH + a

NH +NT + a+ b
.
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Bayesian Parameter Estimation and Inference

Bayesian estimation of the mean temperature in Toronto

Assume observations are
i.i.d. Gaussian with known
standard deviation σ and
unknown mean µ

Broad Gaussian prior over µ,
centered at 0

We can compute the posterior
and posterior predictive
distributions analytically
(derivation omitted)

Why is the posterior predictive
distribution more spread out
than the posterior distribution?
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Bayesian Parameter Estimation and Inference

Comparison of maximum likelihood and Bayesian parameter
estimation

The Bayesian approach deals better with data sparsity

Maximum likelihood is an optimization problem, while Bayesian
parameter estimation is an integration problem (taking
expectation).

I This means maximum likelihood is much easier in practice, since we
can just do gradient descent.

I Automatic differentiation packages make it really easy to compute
gradients.

I There aren’t any comparable black-box tools for Bayesian
parameter estimation.
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Maximum A-Posteriori Estimation

Maximum a-posteriori (MAP) estimation: find the most
likely parameter settings under the posterior

This is an approximation of the full Bayesian estimation and
inference, because it only finds one parameter instead of having a
probability distribution over them.
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Maximum A-Posteriori Estimation

This converts the Bayesian parameter estimation problem into a
maximization problem

θ̂MAP = arg max
θ

p(θ | D)

= arg max
θ

p(θ,D)

= arg max
θ

p(θ) p(D |θ)

= arg max
θ

log p(θ) + log p(D |θ)
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Maximum A-Posteriori Estimation

Joint probability in the coin flip example:

log p(θ,D) = log p(θ) + log p(D | θ)
= Const + (a− 1) log θ + (b− 1) log(1− θ) +NH log θ +NT log(1− θ)
= Const + (NH + a− 1) log θ + (NT + b− 1) log(1− θ)

Maximize by finding a critical point

0 =
d

dθ
log p(θ,D) =

NH + a− 1

θ
− NT + b− 1

1− θ

Solving for θ,

θ̂MAP =
NH + a− 1

NH +NT + a+ b− 2
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Comparison: MLE, MAP, and Bayesian

Comparison of estimates in the coin flip example:

Formula NH = 2, NT = 0 NH = 55, NT = 45

θ̂ML
NH

NH+NT
1 55

100 = 0.55

E[θ|D] NH+a
NH+NT+a+b

4
6 ≈ 0.67 57

104 ≈ 0.548

θ̂MAP
NH+a−1

NH+NT+a+b−2
3
4 = 0.75 56

102 ≈ 0.549

θ̂MAP assigns nonzero probabilities as long as a, b > 1.
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Gaussian Discriminant Analysis

Generative models – data generating distribution p(x|t = k)

Instead of trying to separate classes, try to model what each class
“looks like”.

Recall that p(x|t = k) may be very complex

p(x1, · · · , xd, t) = p(x1|x2, . . . , xd, t) · · · p(xd−1|xd, t)p(xd|t)p(t)

Naive Bayes used a conditional independence assumption to get

p(x1, · · · , xd, t) = p(x1|t) · · · p(xd−1|t)p(xd|t)p(t)

What else could we do?
I Choose a simple distribution.

Next, we will discuss fitting Gaussian distributions to our data.
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Bayes Classifier

Let’s take a step back.

Bayes Classifier

h(x) = argmax
k

p(t = k|x) = argmax
k

p(x|t = k)p(t = k)

p(x)

= argmax
k

p(x|t = k)p(t = k)

We previously talked about discrete x. What if x is continuous?
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Classification: Diabetes Example

Observation per patient: White blood cell count & glucose value.

How can we model p(x|t = k)?
I Multivariate Gaussian
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Multivariate Data

Multiple measurements (sensors)

D inputs/features/attributes

N instances/observations/examples

X =


[x(1)]>

[x(2)]>

...

[x(N)]>

 =


x
(1)
1 x

(1)
2 · · · x

(1)
D

x
(2)
1 x

(2)
2 · · · x

(2)
D

...
...

. . .
...

x
(N)
1 x

(N)
2 · · · x

(N)
D


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Multivariate Parameters

Mean
E[x(i)] = µ = [µ1, · · · , µd]T ∈ RD

Covariance

Σ = Cov
(
x(i)
)

= E[(x(i)−µ)(x(i)−µ)>] =


σ21 σ12 · · · σ1D
σ12 σ22 · · · σ2D

...
...

. . .
...

σD1 σD2 · · · σ2D


The mean and covariance are enough to represent a Gaussian
distribution. This is not true for all distributions.
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Multivariate Gaussian Distribution

x ∼ N (µ,Σ), a Gaussian (or normal) distribution defined as

p(x) =
1

(2π)D/2|Σ|1/2
exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]
where |Σ| is the determinant of the covariance matrix Σ.

The Central Limit Theorem says that sums of independent
random variables are approximately Gaussian.

I The r.v. do not need to be Gaussians themselves.

In machine learning, we use Gaussians a lot because they make the
calculations easy.Intro ML (UofT) CSC311-Lec7 36 / 52



Bivariate Normal

Σ =

(
1 0
0 1

)
Σ = 0.5

(
1 0
0 1

)
Σ = 2

(
1 0
0 1

)

Figure: Probability density function

Figure: Contour plot of the pdf
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Bivariate Normal

Σ =

(
1 0
0 1

)
Σ =

(
1 0.5

0.5 1

)
Σ =

(
1 0.8

0.8 1

)

Figure: Probability density function

Figure: Contour plot of the pdf
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Maximum Likelihood

Suppose we want to model the distribution of highest and lowest
temperatures in Toronto in March, and we’ve recorded the
following observations :(

(-2.5,-7.5) (-9.9,-14.9) (-12.1,-17.5) (-8.9,-13.9) (-6.0,-11.1)

Assume they’re drawn from a Gaussian distribution with mean µ,
and covariance Σ. We want to estimate these using data.
Log-likelihood function:

`(µ,Σ) = log

N∏
i=1

[
1

(2π)d/2|Σ|1/2
exp

{
−1

2
(x(i) − µ)TΣ−1(x(i) − µ)

}]

=

N∑
i=1

log

[
1

(2π)d/2|Σ|1/2
exp

{
−1

2
(x(i) − µ)TΣ−1(x(i) − µ)

}]

=
N∑
i=1

− log(2π)d/2︸ ︷︷ ︸
constant

− log |Σ|1/2 − 1

2
(x(i) − µ)TΣ−1(x(i) − µ)
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Maximum Likelihood

Maximize the log-likelihood by setting the derivative to zero:

0 =
d`

dµ
= −

N∑
i=1

d

dµ

1

2
(x(i) − µ)TΣ−1(x(i) − µ)

= −
N∑
i=1

Σ−1(x(i) − µ) = 0

Solving we get µ̂ = 1
N

∑N
i=1 x(i). In general, “hat” means estimator

This is just the sample mean of the observed values, or the
empirical mean.
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Maximum Likelihood

Similar calculation for the covariance matrix Σ yields:

Set the partial derivatives to zero, just like before

0 =
∂`

∂Σ
=⇒ Σ̂ =

1

N

N∑
i=1

(x(i) − µ̂)(x(i) − µ̂)>

This is called the empirical covariance and comes up quite often,
e.g., PCA in the next lecture.

Derivation in multivariate case is tedious. No need to worry about
it. But it is good practice to derive this in one dimension. See
appendix.
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Gaussian Discriminant Analysis (Gaussian Bayes
Classifier)

Gaussian Discriminant Analysis in its general form assumes that
p(x|t) is distributed according to a multivariate normal (Gaussian)
distribution

Multivariate Gaussian distribution conditioned on class t = k:

p(x|t = k) =
1

(2π)D/2|Σk|1/2
exp

[
−1

2
(x− µk)

TΣ−1k (x− µk)

]
where |Σk| denotes the determinant of the covariance matrix Σk

for class k, and D is dimension of x

Each class k has a mean vector µk and a covariance matrix Σk

Σk has O(D2) parameters - could be hard to estimate
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Gaussian Discriminant Analysis (Gaussian Bayes
Classifier)

GDA (GBC) decision boundary is based on class posterior p(tk|x).
We choose a class with the highest posterior probability, i.e.,
argmaxk p(tk|x).

This is equivalent to choosing argmaxk log p(tk|x).

Let us take a closer look at log p(tk|x).

log p(tk|x) = log
p(x|tk)p(tk)

p(x)
= log p(x|tk) + log p(tk)− log p(x)

= −D
2

log(2π)− 1

2
log |Σ−1k | −

1

2
(x− µk)

TΣ−1k (x− µk)

+ log p(tk)− log p(x)
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Gaussian Discriminant Analysis (Gaussian Bayes
Classifier)

log p(tk|x) =− d

2
log(2π)− 1

2
log |Σ−1k | −

1

2
(x− µk)

TΣ−1k (x− µk) +

log p(tk)− log p(x)

Where is the decision boundary between class k and l 6= k?

It is where
log p(tk|x) = log p(tl|x).

Let us write it down

(x− µk)
TΣ−1k (x− µk) = (x− µ`)

TΣ−1` (x− µ`) + Ck,l

xTΣ−1k x− 2µTkΣ−1k x = xTΣ−1` x− 2µT` Σ−1` x + Ck,l

Quadratic function in x =⇒ quadratic decision boundary

What is Ck,l? What if Σk = Σ`?
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Decision Boundary

likelihoods)

posterior)for)t1)

discriminant:!!
P!(t1|x")!=!0.5!
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Learning

Learn the parameters for each class using maximum likelihood

Let us assume that we have two classes t = {0, 1}, and the prior
over them is specified by a Bernoulli distribution

p(t|φ) = φt(1− φ)1−t.

We can compute the MLE in closed form (good exercise):

φ̂ =
1

N

N∑
n=1

I{t(n) = 1}

µ̂k =

∑N
n=1 I{t(n) = k}x(n)∑N
n=1 I{t(n) = k}

Σ̂k =
1∑N

n=1 I{t(n) = k}

N∑
n=1

I{t(n) = k}(x(n) − µ̂t(n))(x
(n) − µ̂t(n))

T
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Simplifying the Model

What if x is high-dimensional?

For Gaussian Bayes Classifier, if input x is high-dimensional, then
covariance matrix has many parameters O(D2)

Save some parameters by using a shared covariance for the classes,
i.e., Σk = Σl.

Any other idea you can think of? (next lecture)

MLE in this case:

Σ̂k = Σ̂ =
1

N

N∑
n=1

(x(n) − µt(n))(x
(n) − µt(n))

T .

Linear decision boundary (verify this mathematically!).

This is often called Linear Discriminant Analysis (LDA).
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Decision Boundary: Shared Variances (between Classes)

variances may be 
different 
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Gaussian Discriminative Analysis vs Logistic Regression

Binary classification: If you examine p(t = 1|x) under GDA and
assume Σ0 = Σ1 = Σ, you will find that it looks like this:

p(t|x, φ, µ0, µ1,Σ) =
1

1 + exp(−wTx)

where w is an appropriate function of (φ, µ0, µ1,Σ), φ = p(t = 1).

GDA is similar to logistic regression (LR), but parameter are
estimated differently.

When should we prefer GDA to LR, and vice versa?
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Gaussian Discriminative Analysis vs Logistic Regression

GDA is a generative model, LR is a discriminative model.

GDA makes stronger modelling assumption that the
class-conditional data is a multivariate Gaussian.

If this is true, GDA is asymptotically efficient.

But LR is more robust, less sensitive to incorrect modelling
assumptions (what loss is it optimizing?)

When these distributions are non-Gaussian (true almost always),
LR usually beats GDA

GDA can handle easily missing features
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Generative Models – Recap

GDA has quadratic; LR has linear decision boundary

With shared covariance, GDA leads to a model similar to logistic
regression (but with different estimation procedure).

Generative models:
I Flexible models, easy to add/remove class.

I Handle missing data naturally

I More “natural” way to think about how data is generated.

Tries to solve a hard problem in order to solve a easy problem.
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Appendix: MLE for univariate Gaussian

0 =
∂`

∂µ
= −

1

σ2

N∑
i=1

x(i) − µ

0 =
∂`

∂σ
=

∂

∂σ

[
N∑
i=1

−
1

2
log 2π − log σ −

1

2σ2
(x(i) − µ)2

]

=
N∑
i=1

−
1

2

∂

∂σ
log 2π −

∂

∂σ
log σ −

∂

∂σ

1

2σ
(x(i) − µ)2

=
N∑
i=1

0−
1

σ
+

1

σ3
(x(i) − µ)2

= −
N

σ
+

1

σ3

N∑
i=1

(x(i) − µ)2

µ̂ML =
1

N

N∑
i=1

x(i)

σ̂ML =

√√√√ 1

N

N∑
i=1

(x(i) − µ)2
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