
Lecture 5: Multilayer Perceptrons

Roger Grosse

1 Introduction

So far, we’ve only talked about linear models: linear regression and linear
binary classifiers. We noted that there are functions that can’t be rep-
resented by linear models; for instance, linear regression can’t represent
quadratic functions, and linear classifiers can’t represent XOR. We also saw
one particular way around this issue: by defining features, or basis func-
tions. E.g., linear regression can represent a cubic polynomial if we use the
feature map (x) = (1, x, x2, x3). We also observed that this isn’t a very
satisfying solution, for two reasons:

1. The features need to be specified in advance, and this can require a
lot of engineering work.

2. It might require a very large number of features to represent a certain
set of functions; e.g. the feature representation for cubic polynomials
is cubic in the number of input features.

In this lecture, and for the rest of the course, we’ll take a di↵erent ap-
proach. Some people would claim that the

methods covered in this course are
really “just” adaptive basis
function representations. I’ve
never found this a very useful way
of looking at things.

We’ll represent complex nonlinear functions by connecting together
lots of simple processing units into a neural network, each of which com-
putes a linear function, possibly followed by a nonlinearity. In aggregate,
these units can compute some surprisingly complex functions. By historical
accident, these networks are called multilayer perceptrons.

1.1 Learning Goals

• Know the basic terminology for neural nets

• Given the weights and biases for a neural net, be able to compute its
output from its input

• Be able to hand-design the weights of a neural net to represent func-
tions like XOR

• Understand how a hard threshold can be approximated with a soft
threshold

• Understand why shallow neural nets are universal, and why this isn’t
necessarily very interesting

1

Figure 1: A multilayer perceptron with two hidden layers. Left: with the
units written out explicitly. Right: representing layers as boxes.

2 Multilayer Perceptrons

In the first lecture, we introduced our general neuron-like processing unit:

a = �

0

@
X

j

wjxj + b

1

A ,

where the xj are the inputs to the unit, the wj are the weights, b is the bias,
� is the nonlinear activation function, and a is the unit’s activation. We’ve
seen a bunch of examples of such units:

• Linear regression uses a linear model, so �(z) = z.

• In binary linear classifiers, � is a hard threshold at zero.

• In logistic regression, � is the logistic function �(z) = 1/(1 + e�z).

A neural network is just a combination of lots of these units. Each one
performs a very simple and stereotyped function, but in aggregate they can
do some very useful computations. For now, we’ll concern ourselves with
feed-forward neural networks, where the units are arranged into a graph
without any cycles, so that all the computation can be done sequentially.
This is in contrast with recurrent neural networks, where the graph can
have cycles, so the processing can feed into itself. These are much more
complicated, and we’ll cover them later in the course.

The simplest kind of feed-forward network is a multilayer perceptron

(MLP), as shown in Figure 1. MLP is an unfortunate name. The
perceptron was a particular
algorithm for binary classification,
invented in the 1950s. Most
multilayer perceptrons have very
little to do with the original
perceptron algorithm.

Here, the units are arranged into a set of
layers, and each layer contains some number of identical units. Every unit
in one layer is connected to every unit in the next layer; we say that the
network is fully connected. The first layer is the input layer, and its
units take the values of the input features. The last layer is the output

layer, and it has one unit for each value the network outputs (i.e. a single
unit in the case of regression or binary classifiation, or K units in the case
of K-class classification). All the layers in between these are known as
hidden layers, because we don’t know ahead of time what these units
should compute, and this needs to be discovered during learning. The units

2

Figure 2: An MLP that computes the XOR function. All activation func-
tions are binary thresholds at 0.

in these layers are known as input units, output units, and hidden

units, respectively. The number of layers is known as the depth, and the
number of units in a layer is known as the width. Terminology for the depth is very

inconsistent. A network with one
hidden layer could be called a
one-layer, two-layer, or three-layer
network, depending if you count
the input and output layers.

As you might guess,
“deep learning” refers to training neural nets with many layers.

As an example to illustrate the power of MLPs, let’s design one that
computes the XOR function. Remember, we showed that linear models
cannot do this. We can verbally describe XOR as “one of the inputs is 1,
but not both of them.” So let’s have hidden unit h1 detect if at least one
of the inputs is 1, and have h2 detect if they are both 1. We can easily do
this if we use a hard threshold activation function. You know how to design
such units — it’s an exercise of designing a binary linear classifier. Then
the output unit will activate only if h1 = 1 and h2 = 0. A network which
does this is shown in Figure 2.

Let’s write out the MLP computations mathematically. Conceptually,
there’s nothing new here; we just have to pick a notation to refer to various
parts of the network. As with the linear case, we’ll refer to the activations
of the input units as xj and the activation of the output unit as y. The units

in the `th hidden layer will be denoted h(`)i . Our network is fully connected,
so each unit receives connections from all the units in the previous layer.
This means each unit has its own bias, and there’s a weight for every pair
of units in two consecutive layers. Therefore, the network’s computations
can be written out as:

h(1)i = �(1)

0

@
X

j

w(1)
ij xj + b(1)i

1

A

h(2)i = �(2)

0

@
X

j

w(2)
ij h(1)j + b(2)i

1

A

yi = �(3)

0

@
X

j

w(3)
ij h(2)j + b(3)i

1

A

(1)

Note that we distinguish �(1) and �(2) because di↵erent layers may have
di↵erent activation functions.

Since all these summations and indices can be cumbersome, we usually

3

write the computations in vectorized form. Since each layer contains mul-
tiple units, we represent the activations of all its units with an activation

vector h
(`). Since there is a weight for every pair of units in two consecutive

layers, we represent each layer’s weights with a weight matrix W
(`). Each

layer also has a bias vector b
(`). The above computations are therefore

written in vectorized form as:

h
(1) = �(1)

⇣
W

(1)
x+ b

(1)
⌘

h
(2) = �(2)

⇣
W

(2)
h
(1) + b

(2)
⌘

y = �(3)
⇣
W

(3)
h
(2) + b

(3)
⌘

(2)

When we write the activation function applied to a vector, this means it’s
applied independently to all the entries.

Recall how in linear regression, we combined all the training examples
into a single matrix X, so that we could compute all the predictions using a
single matrix multiplication. We can do the same thing here. We can store
all of each layer’s hidden units for all the training examples as a matrix H

(`).
Each row contains the hidden units for one example. The computations are
written as follows (note the transposes): If it’s hard to remember when a

matrix or vector is transposed, fear
not. You can usually figure it out
by making sure the dimensions
match up.

H
(1) = �(1)

⇣
XW

(1)> + 1b
(1)>

⌘

H
(2) = �(2)

⇣
H

(1)
W

(2)> + 1b
(2)>

⌘

Y = �(3)
⇣
H

(2)
W

(3)> + 1b
(3)>

⌘
(3)

These equations can be translated directly into NumPy code which e�-
ciently computes the predictions over the whole dataset.

3 Feature Learning

We already saw that linear regression could be made more powerful using a
feature mapping. For instance, the feature mapping (x) = (1, x, x2, xe) can
represent third-degree polynomials. But static feature mappings were lim-
ited because it can be hard to design all the relevant features, and because
the mappings might be impractically large. Neural nets can be thought
of as a way of learning nonlinear feature mappings. E.g., in Figure 1, the
last hidden layer can be thought of as a feature map (x), and the output
layer weights can be thought of as a linear model using those features. But
the whole thing can be trained end-to-end with backpropagation, which
we’ll cover in the next lecture. The hope is that we can learn a feature
representation where the data become linearly separable:

4

Figure 3: Left: Some training examples from the MNIST handwritten digit
dataset. Each input is a 28⇥ 28 grayscale image, which we treat as a 784-
dimensional vector. Right: A subset of the learned first-layer features.
Observe that many of them pick up oriented edges.

Consider training an MLP to recognize handwritten digits. (This will
be a running example for much of the course.) The input is a 28 ⇥ 28
grayscale image, and all the pixels take values between 0 and 1. We’ll ignore
the spatial structure, and treat each input as a 784-dimensional vector.

Later on, we’ll talk about
convolutional networks, which use
the spatial structure of the image.

This is a multiway classification task with 10 categories, one for each digit
class. Suppose we train an MLP with two hidden layers. We can try to
understand what the first layer of hidden units is computing by visualizing
the weights. Each hidden unit receives inputs from each of the pixels, which
means the weights feeding into each hidden unit can be represented as a 784-
dimensional vector, the same as the input size. In Figure 3, we display these
vectors as images.

In this visualization, positive values are lighter, and negative values are
darker. Each hidden unit computes the dot product of these vectors with
the input image, and then passes the result through the activation function.
So if the light regions of the filter overlap the light regions of the image,
and the dark regions of the filter overlap the dark region of the image,
then the unit will activate. E.g., look at the third filter in the second row.
This corresponds to an oriented edge: it detects vertical edges in the
upper right part of the image. This is a useful sort of feature, since it gives
information about the locations and orientation of strokes. Many of the
features are similar to this; in fact, oriented edges are a very commonly
learned by the first layers of neural nets for visual processing tasks.

It’s harder to visualize what the second layer is doing. We’ll see some
tricks for visualizing this in a few weeks. We’ll see that higher layers of a
neural net can learn increasingly high-level and complex features.

4 Expressive Power

Linear models are fundamentally limited in their expressive power: they
can’t represent functions like XOR. Are there similar limitations for MLPs?
It depends on the activation function.

5

Figure 4: Designing a binary threshold network to compute a particular
function.

4.1 Linear networks

Deep linear networks are no more powerful than shallow ones. The reason
is simple: if we use the linear activation function �(x) = x (and forget
the biases for simplicity), the network’s function can be expanded out as
y = W

(L)
W

(L�1) · · ·W(1)
x. But this could be viewed as a single linear

layer with weights given by W = W
(L)

W
(L�1) · · ·W(1). Therefore, a deep

linear network is no more powerful than a single linear layer, i.e. a linear
model.

4.2 Universality

As it turns out, nonlinear activation functions give us much more power:
under certain technical conditions, even a shallow MLP (i.e. one with a
single hidden layer) can represent arbitrary functions. Therefore, we say it
is universal.

Let’s demonstrate universality in the case of binary inputs. This argument can easily be made
into a rigorous proof, but this
course won’t be concerned with
mathematical rigor.

We do this
using the following game: suppose we’re given a function mapping input
vectors to outputs; we will need to produce a neural network (i.e. specify
the weights and biases) which matches that function. The function can be
given to us as a table which lists the output corresponding to every possible
input vector. If there areD inputs, this table will have 2D rows. An example
is shown in Figure 4. For convenience, let’s suppose these inputs are ±1,
rather than 0 or 1. All of our hidden units will use a hard threshold at 0
(but we’ll see shortly that these can easily be converted to soft thresholds),
and the output unit will be linear.

Our strategy will be as follows: we will have 2D hidden units, each
of which recognizes one possible input vector. We can then specify the
function by specifying the weights connecting each of these hidden units
to the outputs. For instance, suppose we want a hidden unit to recognize
the input (�1, 1,�1). This can be done using the weights (�1, 1,�1) and
bias �2.5, and this unit will be connected to the output unit with weight 1.
(Can you come up with the general rule?) Using these weights, any input
pattern will produce a set of hidden activations where exactly one of the
units is active. The weights connecting inputs to outputs can be set based
on the input-output table. Part of the network is shown in Figure 4.

6

Universality is a neat property, but it has a major catch: the network
required to represent a given function might have to be extremely large (in
particular, exponential). In other words, not all functions can be represented
compactly. We desire compact representations for two reasons:

1. We want to be able to compute predictions in a reasonable amount of
time.

2. We want to be able to train a network to generalize from a limited
number of training examples; from this perspective, universality sim-
ply implies that a large enough network can memorize the training
set, which isn’t very interesting.

4.3 Soft thresholds

In the previous section, our activation function was a step function, which
gives a hard threshold at 0. This was convenient for designing the weights of
a network by hand. But recall from last lecture that it’s very hard to directly
learn a linear classifier with a hard threshold, because the loss derivatives
are 0 almost everywhere. The same holds true for multilayer perceptrons.
If the activation function for any unit is a hard threshold, we won’t be able
to learn that unit’s weights using gradient descent. The solution is the same
as it was in last lecture: we replace the hard threshold with a soft one.

Does this cost us anything in terms of the network’s expressive power?
No it doesn’t, because we can approximate a hard threshold using a soft
threshold. In particular, if we use the logistic nonlinearity, we can approxi-
mate a hard threshold by scaling up the weights and biases:

4.4 The power of depth

If shallow networks are universal, why do we need deep ones? One important
reason is that deep nets can represent some functions more compactly than
shallow ones. For instance, consider the parity function (on binary-valued
inputs):

fpar(x1, . . . , xD) =

⇢
1 if

P
j xj is odd

0 if it is even.
(4)

We won’t prove this, but it requires an exponentially large shallow network
to represent the parity function. On the other hand, it can be computed
by a deep network whose size is linear in the number of inputs. Designing
such a network is a good exercise.

7

Lecture 6: Backpropagation

Roger Grosse

1 Introduction

So far, we’ve seen how to train “shallow” models, where the predictions are
computed as a linear function of the inputs. We’ve also observed that deeper
models are much more powerful than linear ones, in that they can compute a
broader set of functions. Let’s put these two together, and see how to train
a multilayer neural network. We will do this using backpropagation, the
central algorithm of this course. Backpropagation (“backprop” for short) is
a way of computing the partial derivatives of a loss function with respect to
the parameters of a network; we use these derivatives in gradient descent,
exactly the way we did with linear regression and logistic regression.

If you’ve taken a multivariate calculus class, you’ve probably encoun-
tered the Chain Rule for partial derivatives, a generalization of the Chain
Rule from univariate calculus. In a sense, backprop is “just” the Chain Rule
— but with some interesting twists and potential gotchas. This lecture and
Lecture 8 focus on backprop. (In between, we’ll see a cool example of how
to use it.) This lecture covers the mathematical justification and shows how
to implement a backprop routine by hand. Implementing backprop can get
tedious if you do it too often. In Lecture 8, we’ll see how to implement an
automatic di↵erentiation engine, so that derivatives even of rather compli-
cated cost functions can be computed automatically. (And just as e�ciently
as if you’d done it carefully by hand!)

This will be your least favorite lecture, since it requires the most tedious
derivations of the whole course.

1.1 Learning Goals

• Be able to compute the derivatives of a cost function using backprop.

1.2 Background

I would highly recommend reviewing and practicing the Chain Rule for
partial derivatives. I’d suggest Khan Academy1, but you can also find lots
of resources on Metacademy2.

1https://www.khanacademy.org/math/multivariable-calculus/
multivariable-derivatives/multivariable-chain-rule/v/
multivariable-chain-rule

2https://metacademy.org/graphs/concepts/chain_rule

1

https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/multivariable-chain-rule/v/multivariable-chain-rule
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/multivariable-chain-rule/v/multivariable-chain-rule
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/multivariable-chain-rule/v/multivariable-chain-rule
https://metacademy.org/graphs/concepts/chain_rule

2 The Chain Rule revisited

Before we get to neural networks, let’s start by looking more closely at an
example we’ve already covered: a linear classification model. For simplicity,
let’s assume we have univariate inputs and a single training example (x, t).
The predictions are a linear function followed by a sigmoidal nonlinearity.
Finally, we use the squared error loss function. The model and loss function
are as follows:

z = wx+ b (1)

y = �(z) (2)

L =
1

2
(y � t)2 (3)

Now, to change things up a bit, let’s add a regularizer to the cost function.
We’ll cover regularizers properly in a later lecture, but intuitively, they try to
encourage “simpler” explanations. In this example, we’ll use the regularizer
�
2w

2, which encourages w to be close to zero. (� is a hyperparameter; the
larger it is, the more strongly the weights prefer to be close to zero.) The
cost function, then, is:

R =
1

2
w2 (4)

Lreg = L+ �R. (5)

In order to perform gradient descent, we wish to compute the partial deriva-
tives @E/@w and @E/@b.

This example will cover all the important ideas behind backprop; the
only thing harder about the case of multilayer neural nets will be the cruftier
notation.

2.1 How you would have done it in calculus class

Recall that you can calculate partial derivatives the same way you would
calculate univariate derivatives. In particular, we can expand out the cost
function in terms of w and b, and then compute the derivatives using re-

2

peated applications of the univariate Chain Rule.

Lreg =
1

2
(�(wx+ b)� t)2 +

�

2
w2

@Lreg

@w
=

@

@w

1

2
(�(wx+ b)� t)2 +

�

2
w2

�

=
1

2

@

@w
(�(wx+ b)� t)2 +

�

2

@

@w
w2

= (�(wx+ b)� t)
@

@w
(�(wx+ b)� t) + �w

= (�(wx+ b)� t)�0(wx+ b)
@

@w
(wx+ b) + �w

= (�(wx+ b)� t)�0(wx+ b)x+ �w

@Lreg

@b
=

@

@b

1

2
(�(wx+ b)� t)2 +

�

2
w2

�

=
1

2

@

@b
(�(wx+ b)� t)2 +

�

2

@

@b
w2

= (�(wx+ b)� t)
@

@b
(�(wx+ b)� t) + 0

= (�(wx+ b)� t)�0(wx+ b)
@

@b
(wx+ b)

= (�(wx+ b)� t)�0(wx+ b)

This gives us the correct answer, but hopefully it’s apparent from this
example that this method has several drawbacks:

1. The calculations are very cumbersome. In this derivation, we had to
copy lots of terms from one line to the next, and it’s easy to acciden-
tally drop something. (In fact, I made such a mistake while writing
these notes!) While the calculations are doable in this simple example,
they become impossibly cumbersome for a realistic neural net.

2. The calculations involve lots of redundant work. For instance, the
first three steps in the two derivations above are nearly identical.

3. Similarly, the final expressions have lots of repeated terms, which
means lots of redundant work if we implement these expressions di-
rectly. Actually, even in this derivation, I

used the “e�ciency trick” of not

expanding out �0
. If I had

expanded it out, the expressions

would be even more hideous, and

would involve six copies of wx+ b.

For instance, wx+ b is computed a total of four times between
@E/@w and @E/@b. The larger expression (�(wx+ b)� t)�0(wx+ b) is
computed twice. If you happen to notice these things, then perhaps
you can be clever in your implementation and factor out the repeated
expressions. But, as you can imagine, such e�ciency improvements
might not always jump out at you when you’re implementing an al-
gorithm.

The idea behind backpropagation is to share the repeated computations
wherever possible. We’ll see that the backprop calculations, if done properly,
are very clean and modular.

3

2.2 Multivariable chain rule: the easy case

We’ve already used the univariate Chain Rule a bunch of times, but it’s
worth remembering the formal definition:

d

dt
f(g(t)) = f 0(g(t))g0(t). (6)

Roughly speaking, increasing t by some infinitesimal quantity h1 “causes” g
to change by the infinitesimal h2 = g0(t)h1. This in turn causes f to change
by f 0(g(t))h2 = f 0(g(t))g0(t)h1.

The multivariable Chain Rule is a generalization of the univariate one.
Let’s say we have a function f in two variables, and we want to compute
d
dtf(x(t), y(t)). Changing t slightly has two e↵ects: it changes x slightly,
and it changes y slightly. Each of these e↵ects causes a slight change to f .
For infinitesimal changes, these e↵ects combine additively. The Chain Rule,
therefore, is given by:

d

dt
f(x(t), y(t)) =

@f

@x

dx

dt
+

@f

@y

dy

dt
. (7)

2.3 An alternative notation

It will be convenient for us to introduce an alternative notation for the
derivatives we compute. In particular, notice that the left-hand side in all
of our derivative calculations is dL/dv, where v is some quantity we compute
in order to compute L. (Or substitute for L whichever variable we’re trying
to compute derivatives of.) We’ll use the notation

v , @L
@v

. (8)

This notation is less crufty, and also emphasizes that v is a value we com-
pute, rather than a mathematical expression to be evaluated. This notation
is nonstandard; see the appendix if you want more justification for it.

We can rewrite the multivariable Chain rule (Eqn. 7) using this notation:

t = x
dx

dt
+ y

dy

dt
. (9)

Here, we use dx/dt to mean we should actually evaluate the derivative
algebraically in order to determine the formula for t, whereas x and y are
values previously computed by the algorithm.

2.4 Using the computation graph

In this section, we finally introduce the main algorithm for this course,
which is known as backpropagation, or reverse mode automatic dif-
ferentiation (autodi↵).3

3
Automatic di↵erentiation was invented in 1970, and backprop in the late 80s. Origi-

nally, backprop referred to the special case of reverse mode autodi↵ applied to neural nets,

although the derivatives were typically written out by hand (rather than using an autodi↵

package). But in the last few years, neural nets have gotten so diverse that we basically

think of them as compositions of functions. Also, very often, backprop is now imple-

mented using an autodi↵ software package. For these reasons, the distinction between

autodi↵ and backprop has gotten blurred, and we will use the terms interchangeably in

this course. Note that there is also a forward mode autodi↵, but it’s rarely used in neural

nets, and we won’t cover it in this course.

4

Figure 1: Computation graph for the regularized linear regression example
in Section 2.4. The magenta arrows indicate the case which requires the
multivariate chain rule because w is used to compute both z and R.

Now let’s return to our running example, written again for convenience:

z = wx+ b

y = �(z)

L =
1

2
(y � t)2

R =
1

2
w2

Lreg = L+ �R.

Let’s introduce the computation graph. The nodes in the graph corre-
spond to all the values that are computed, with edges to indicate which
values are computed from which other values. The computation graph for
our running example is shown in Figure 1. Note that the computation graph

is not the network architecture.

The nodes correspond to values

that are computed, rather than to

units in the network.

The goal of backprop is to compute the derivatives w and b. We do this
by repeatedly applying the Chain Rule (Eqn. 9). Observe that to compute
a derivative using Eqn. 9, you first need the derivatives for its children in
the computation graph. This means we must start from the result of the
computation (in this case, E) and work our way backwards through the
graph. It is because we work backward through the graph that backprop
and reverse mode autodi↵ get their names.

Let’s start with the formal definition of the algorithm. Let v1, . . . , vN
denote all of the nodes in the computation graph, in a topological ordering.
(A topological ordering is any ordering where parents come before children.)
We wish to compute all of the derivatives vi, although we may only be
interested in a subset of these values. We first compute all of the values in
a forward pass, and then compute the derivatives in a backward pass.
As a special case, vN denotes the result of the computation (in our running
example, vN = E), and is the thing we’re trying to compute the derivatives
of. Therefore, by convention, we set vN = 1. E = 1 because increasing the cost

by h increases the cost by h.
The algorithm is as follows:

For i = 1, . . . , N

Compute vi as a function of Pa(vi)

vN = 1

For i = N � 1, . . . , 1

vi =
P

j2Ch(vi)
vj

@vj
@vi

5

Here Pa(vi) and Ch(vi) denote the parents and children of vi.
This procedure may become clearer when we work through the example

in full:

Lreg = 1

R = Lreg
dLreg

dR
= Lreg �

L = Lreg
dLreg

dL
= Lreg

y = L dL
dy

= L (y � t)

z = y
dy

dz
= y �0(z)

w = z
@z

@w
+RdR

dw
= z x+Rw

b = z
@z

@b
= z

Since we’ve derived a procedure for computing w and b, we’re done. Let’s
write out this procedure without the mess of the derivation, so that we can
compare it with the näıve method of Section 2.1:

Lreg = 1

R = Lreg �

L = Lreg

y = L (y � t)

z = y �0(z)

w = z x+Rw

b = z

The derivation, and the final result, are much cleaner than with the näıve
method. There are no redundant computations here. Actually, there’s one redundant

computation, since �(z) can be

reused when computing �0
(z). But

we’re not going to focus on this

point.

Furthermore, the
procedure is modular : it is broken down into small chunks that can be
reused for other computations. For instance, if we want to change the
loss function, we’d only have to modify the formula for y. With the näıve
method, we’d have to start over from scratch.

3 Backprop on a multilayer net

Now we come to the prototypical use of backprop: computing the loss
derivatives for a multilayer neural net. This introduces no new ideas beyond

6

(a) (b)

Figure 2: (a) Full computation graph for the loss computation in a multi-
layer neural net. (b) Vectorized form of the computation graph.

what we’ve already discussed, so think of it as simply another example to
practice the technique. We’ll use a multilayer net like the one from the
previous lecture, and squared error loss with multiple output units:

zi =
X

j

w(1)
ij xj + b(1)i

hi = �(zi)

yk =
X

i

w(2)
ki hi + b(2)k

L =
1

2

X

k

(yk � tk)
2

As before, we start by drawing out the computation graph for the network.
The case of two input dimensions and two hidden units is shown in Figure
2(a). Because the graph clearly gets pretty cluttered if we include all the
units individually, we can instead draw the computation graph for the vec-
torized form (Figure 2(b)), as long as we can mentally convert it to Figure
2(a) as needed.

Based on this computation graph, we can work through the derivations
of the backwards pass just as before. One you get used to it, feel free to

skip the step where we write down

L.L = 1

yk = L (yk � tk)

w(2)
ki = yk hi

b(2)k = yk

hi =
X

k

ykw
(2)
ki

zi = hi �
0(zi)

w(1)
ij = zi xj

b(1)i = zi

Focus especially on the derivation of hi, since this is the only step which
actually uses the multivariable Chain Rule.

7

Once we’ve derived the update rules in terms of indices, we can find
the vectorized versions the same way we’ve been doing for all our other
calculations. For the forward pass:

z = W(1)x+ b(1)

h = �(z)

y = W(2)h+ b(2)

L =
1

2
kt� yk2

And the backward pass:

L = 1

y = L (y � t)

W(2) = yh>

b(2) = y

h = W(2)>y

z = h � �0(z)

W(1) = zx>

b(1) = z

4 Appendix: why the weird notation?

Recall that the partial derivative @E/@w means, how much does E change
when you make an infinitesimal change to w, holding everything else fixed?
But this isn’t a well-defined notion, because it depends what we mean by
“holding everything else fixed.” In particular, Eqn. 5 defines the cost as a
function of two arguments; writing this explicitly,

E(L, w) = L+
�

2
w2. (10)

Computing the partial derivative of this function with respect to w,

@E
@w

= �w. (11)

But in the previous section, we (correctly) computed

@E
@w

= (�(wx+ b)� t)�0(wx+ b)x+ �w. (12)

What gives? Why do we get two di↵erent answers?
The problem is that mathematically, the notation @E/@w denotes the

partial derivative of a function with respect to one of its arguments. We
make an infinitesimal change to one of the arguments, while holding the
rest of the arguments fixed. When we talk about partial derivatives, we
need to be careful about what are the arguments to the function. When
we compute the derivatives for gradient descent, we treat E as a function
of the parameters of the model — in this case, w and b. In this context,

8

@E/@w means, how much does E change if we change w while holding b
fixed? By contrast, Eqn. 10 treats E as a function of L and w; in Eqn. 10,
we’re making a change to the second argument to E (which happens to be
denoted w), while holding the first argument fixed.

Unfortunately, we need to refer to both of these interpretations when
describing backprop, and the partial derivative notation just leaves this dif-
ference implicit. Doubly unfortunately, our field hasn’t consistently adopted
any notational conventions which will help us here. There are dozens of ex-
planations of backprop out there, most of which simply ignore this issue,
letting the meaning of the partial derivatives be determined from context.
This works well for experts, who have enough intuition about the problem
to resolve the ambiguities. But for someone just starting out, it might be
hard to deduce the meaning from context.

That’s why I picked the bar notation. It’s the least bad solution I’ve
been able to come up with.

9

	Introduction
	Learning Goals

	Multilayer Perceptrons
	Feature Learning
	Expressive Power
	Linear networks
	Universality
	Soft thresholds
	The power of depth

