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1. Some definitions.

e Functions. We use f: R — R to denote that f is a function, its argument is in R% and
its output is real valued (or in R). We denote its gradient by V f(z) € R? (See Section 3 for
definition).

e /,-norms. Since we are mostly dealing with vectors in machine learning, we will use
different norms a lot. Euclidean norm, denoted as || - ||2, is the most commonly used norm.
But we can also use £, norms which are defined as
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When we drop the subscript and use || - ||, this typically means the Euclidean norm || - ||2.

e Indicator function. The indicator function I{statement} is equal to 1 whenever the state-
ment is true, and 0 otherwise. For example, I{z € Xy} is equal to 1 whenever z is a member
of set AXjp.

We may sometimes use a similar function 6(a,b) = 1 if a = b, and (a,b) = 0 if a # b. For
example, 6(2,2) =1 and 6(2,2.1) = 0.

e argmin & argmax. Assume that we are trying to find the point in R¢ that minimizes
f(x). This point is denoted by =, = argmin,, f(x). In general, there can be many points that
minimize the function f(x). If this is the case, argmin function returns a set of minimizers,
and notation is slightly different z, € argmin, f(z). The function argmax is similar. For
example, given a vector a € R?, let f(z) = ||z — a||, be a function. Then,

(1.2) a= arg;nin f(z).

Another example is that we have a binary classification problem over {0,1} and we are
using a decision tree to solve it. We want to predict the class assignment of a region with 5
samples t; = 1,to = 1,3 = 0,t4 = 0,¢t5 = 1. Then the majority assignment based on these
samples can be found by

5
(1.3) argmax » O(t,t;) =1,
te{0,1} ;

because the summation is equal to 3 when £ = 1, and 2 when ¢ = 0.



2. Random variables and vectors. Random vectors are simply vectors with each coordi-
nate a random variable. You can think of a d-dimensional random vector X € R? as a d random
variables X;’s stacked together to make a vector. Most probability rules we have for random
variables also hold for random vectors.

e Density. If we have a random vector X and its each coordinate is a continuous random
variable, then we can talk about probability density function p(z) : R — R associated with
the random vector X. This is defined similar to the one variable case and for a set A C R%,
it satisfies P(X € A) = [, p(x)dz.

For example, if we have the multivariate Gaussian random variable with mean y € R% and
covariance ¥ € R%?  its density is given as

(2.) el D) = G e — 5 - W= e - .

See below for definitions of mean and variance in the multivariable setting.
If we have two random vectors X,Y € R? with joint density p(z,y), the standard rules of
conditional density apply.

p(z,y)
ply)

e Expectation. If X € R? is a random vector, its expectation

(2.2) XY ~ p(zly) =

E[X] = p € R?

is also a vector and it is defined as E[X;] = p;. Below are some properties.

— For random vectors X,Y € R? and a constant matrix A € R¥? we have
E[X + AY] = E[X] + AE[Y].

— If we have X1, Xo, ..., X, random vectors with EX; = u, their sample mean has the
expectation u, i.e.,

E
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Note that independence is not required for the above result.

e Conditional expectation. For two random vectors X,Y with joint distribution p(z,y),
the conditional expectation of X|Y is given by

BIXIY =y = [ aplaly)ds.

This is like fixing the value of the random variable Y, and taking expectation of X after.
Note that in the conditional expectation, we integrate out the variable x, but the variable
we condition on is not integrated. This is why, E[X|Y = y] is a function of y.
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A rule that comes up in bias-variance decomposition is the law of iterated expectation:
E[E[X|Y]] = E[X].

This can be easily shown using the properties of the density. That is,

BELX|Y]) = [ [ / mp(xw)dm]p(y)dy: [ [eptayizay = wix.

e Variance. Variance of a random vector X € R%*? is defined as
Var(X) = B[(X — u)(X — u)7] € R,

Observe that variance of a random vector is a d X d matrix and its ij-th entry is given by
Var(X);; = E[(X; — ) (X; — py)] € R
e Covariance. Let X,Y be two random vectors in R%. Then their covariance is given as

Cov(X,Y)=E[(X — ux)(Y — ,uy)T] c RIxd

where px and py denotes the mean of X and Y respectively.
Now assume that X and Y are independent.

(a) Their covariance is zero: E[(X — pux)(Y — py)T] = E[(X — ux)E[(Y — py)T] = 0.

(b) For a constant matrix A € R?*?, we have
Var(X + AY) = Var(X) 4+ AVar(Y)AT.

Next, assume that we have X, Xs, ..., X;, independent random vectors with mean g
and covariance matrix Y. Contrary to sample mean above, in this case independence
is required.

(c) Using the above, if X ~ N(u,X), then AX ~ N (Au, ALAT). This follows from the
fact that linear transformation of a Gaussian random vector is again Gaussian — a
property also used in bivariate Gaussian distributions.

2.1. Maximum likelihood estimator. Assume that we observe N ii.d. random vectors D =
{X1,X9,..., XN} from a distribution p(z|f). We assume that the distribution function p(z|0) is
known, but the parameter 6 is not known. For example, distribution can be Gaussian, but its
mean and variance is unknown.

Using the independence assumption, we write the joint density of N i.i.d. random vectors.

N
(w1, 2, s wnl0) = | [ p(2i6).
=1

The main idea behind the maximum likelihood estimation (MLE) is that we plug in our observa-
tions D into the joint density and find the 6 value that maximizes this likelihood function. That
is,

N
oMLE — argmapr(XﬂG).
o =
3



When finding the maximum of a function, we take its derivative and set it equal to 0. However,
derivative of products is not easy to handle; therefore, we first apply the log function which doesn’t
change the point where the maximum is attained. This transforms the product to a summation.
That is,

N N
OMLE — argmax | | p(X;]0), = argmaxlo p(X;|0) |,
en E (X3]0) gmaxlog E (Xil0)
N
= argmax Z log p(X;|0).
0

i=1

Now, we can easily take derivatives and find the maximizer.

2.2. Maximum A posteriori Probability. Assume the previous setup that we observe N i.i.d.
random vectors D = {X1, X2, ..., Xy} from a distribution p(z|f). This time, we will also assume
that 0 is a random vector and its prior distribution is given by p(#). This means that instead
of treating the parameter 6 as a constant as in MLE, we assume some prior knowledge on 6
which comes from p(#). Maximum A posteriori Probability (MAP) estimator of § maximizes the
posterior distribution p(f|data) obtained by the Bayes rule

p(datal6)p(6)

p(f|data) = D(data)

Therefore, MAP estimator is given by

OMAP — argmax p(f|data) = argmax p(datald)p(6).
0 0

In the above maximization problem, we dropped the term in the denominator since it doesn’t
have the optimization parameter 6 in it and doesn’t contribute to the minimization problem.
For example in the previous setup, MAP estimator can be written as

N
PMAP = argmax p(X1, ., Xn|9)p(6) = argmaxp(6) [1»(xi16),
i=1

N

=argmax log p(6) + Z log p(X;|0).
0 i=1

3. Basic multivariable calculus. For a given function f : R — R, we denote its partial
derivative with respect to its i-th coordinate as 0 f(x)/0x; € R. Gradient of this function is simply
a vector with i-th coordinate df(z)/0x; € R. That is,

(3.1) Vf(@)]i = ag;@

The gradient of a function points in the direction of greatest increase, and its magnitude is the
rate of increase in that direction. Therefore, when you are minimizing a function, it makes sense
to move in the direction opposite to its gradient.
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Similarly, we can define the second derivative of the function f, which is generally referred to
as the Hessian of f. It is a matrix and its 4, j-th entry is given by

(32) 927l = 220,

Using the above definition, for z,y € R? and A € R¥*? we obtain

(a) the gradient with respect to = of 2y is v,

(b) the gradient with respect to = of z7x is 2z,

(c) the gradient with respect to x of 27 Az is 2Aw,
(d) the gradient with respect to = of Az is A.

In some cases, you can see that the above gradients are transposed. This is a matter of definition.
You should check the wikipedia page https://en.wikipedia.org/wiki/Matrix_calculus which
contains a very detailed list of rules.

3.1. Least squares problem. In the least squares problem, we are given a target vector t € RY,
a design matrix X € RV*P. We would like to find the weights w that minimizes the objective
function given by the least squares problem

1
minimize J (w) = = ||t — Xw]||3.
w 2
We know that a minimum occurs at a critical at which the partial derivatives are equal to 0. i.e.
0J(w)/w; = 0 for j = 1,..,D. This is equivalent to saying the gradient V.7 (w) = 0. We can
write
1 1
J(w) :§||t\|§ + §WTXTXW —t' Xw.
Taking derivative with respect to the vector w and setting it equal to 0, we obtain
VI(w)=X"Xw—-X"t=0.
If XX is invertible, a solution to above linear system is given by

whS = (XTX)"1XTt.


https://en.wikipedia.org/wiki/Matrix_calculus
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